数字化设计制造技术基础

数字化设计制造技术基础
数字化设计制造技术基础

第一章

1.1数字化设计制造是现代产品研制的基本手段。

1.2先进制造技术的特征:(1)先进制造技术是制造技术的最新发展阶段;(2)先进制造技术贯穿了制造全过程以至产品的整个生命周期;(3)先进制造技术注重技术与管理的结合;(4)先进制造技术是面向工业应用的技术。

1.3设计制造技术主要表现在全球化、网络化、虚拟化、智能化和绿色化等几个方面。

1.4任何一种产品的研制过程从大的方面可以划分为设计与制造两部分。

1.5可以将产品的制造过程的基本要素抽象为产品(product)、工艺过程(process)、制造资源(resource),即PPR模型,实际的过程是三个要素相互耦合作用的结果。

1.6串行设计与并行设计:

(1)串行设计的组织模式是递阶结构,各个阶段的活动是按时间顺序进行的,一个阶段的活动完成后,下一个阶段的活动才开始,各个阶段依次排列,都有自己的输入和输出。

(2)并行设计的工作模式是在产品设计的同时就考虑后续阶段的相关工作,包括加工工艺、装配、检验等,在并行设计中产品开发过程各个阶段的工作是交叉进行的。

1.7数字化设计制造基本概念:

(1)数字化是利用数字技术对传统的技术内容和体系进行改造的进程。

(2)数字化设计就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术、网络信息技术,支持产品开发与生产全过程的设计方法。数字化设计制造的内涵是支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等,归纳起来就是产品建模是基础,优化设计是主体,数据管理是核心。

(3)数字化制造是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也使制造企业、制造系统和生产系统不断实现数字化的必然。

(4)数字化设计制造本质上是产品设计制造信息的数字化,它将产品的结构特征、材料特征、制造特征和功能特征统一起来。

1.8典型的CAD模型标准交换格式,DXF、DWG、JGES、STEP。

1.9典型的数字化设计制造应用工具系统:

(1)CAD系统,AutoCAD、CATIA、UGS、Pro/E

(2)CAE系统,NASTRAN、ANASYS

(3)CAPP系统,CAPPFramework

(4)CAM系统,在CATIA、UGS和Pro/E等CAD/CAM系统中,均包含有专门的CAM模块(5)DFx(designfor x)系统,x可代表生命周期中的各种因素,如制造、装配、检测等

1.10产品数据管理(product data management,PDM)是一种帮助工程技术人员管理产品数据和产品研发过程的工具。PDM系统确保跟踪设计、制造所需的大量数据和信息,并由此支持和维护产品。

1.11数字化设计制造的特点:(1)过程延伸;(2)智能水平的提高;(3)集成水平的提高。1.12数字化设计制造的性能要求:(1)稳定性;(2)集成性(3)敏捷性;(4)制造工程信息的主动共享能力;(5)数字仿真能力(6)支持异构分布式环境的能力;(7)扩展能力。

第二章

2.1产品数字化模型是产品信息的载体,包含了产品功能信息、性能信息、结构信息、零件几何信息、装配信息、工艺和加工信息等。

2.2信息的表现形式主要以几何信息和非几何信息为主。

2.3设计过程的零件模型为主模型,其他模型均以主模型为基础,在此基础上进行新模型的构建。

2.4产品设计阶段的模型:

(1)概念设计阶段模型:主要从功能需求分析出发,初步提出产品的设计方案,此时并不涉及产品的精确形状和几何参数设计。概念设计模型包括产品的方案构图、创新设计等。从数字化角度看,概念设计师在一定的设计规范下,以方案报告、草图等形式完成设计的。

(2)零件几何模型:几何模型是产品详细设计的核心,是将概要设计进行细化的关键内容,是所有后续工作的基础,也是最适合计算机表示的产品模型。几何模型用二维或者三维模型表示。几何模型的非几何信息以属性表示,属性信息的定义以文本说明。零件几何模型是详细设计阶段产生的信息模型,是其他各阶段设计的信息载体,通常作为主模型。

(3)产品仿真模型:一般不能直接在详细设计阶段产生的零件几何模型上进行。产品仿真模型表达了仿真分析阶段的信息。

(4)产品装配模型:表示产品的结构关系、装配的物料清单、装配的约束关系、面向实际的装配顺序和路径规划等。①装配结构树,反映产品的总体结构;②属性信息表,用来表示产品的非几何信息;③装配约束模型,包括装配特征描述、装配关系描述、装配操作描述以及装配约束参数;④装配规划模型,用于装配顺序规划和路径规划。

2.5产品制造阶段的模型:

(1)工艺信息模型:为CAPP提供基本信息。根据零件加工要求和尺寸、粗糙度、公差、基准、加工方法等信息,建立工艺信息模型。工艺设计的数据源来自于详细设计阶段产生的几何模型和装配模型。

(2)工装模型:是经过不断演化产生的中间状态模型。工装模型包含了两大部分,工装设计模型和产品过程模型。

(3)数控加工模型:是指数控加工设计的模型和产生的相应NC程序。

2.6物理样机与数字样机:

(1)用物质材料制作的产品模型一般称为物理模型(或物理样机、实物样机)。

(2)数字样机(Digital MockUp,DMU)是相对于物理样机在计算机上表达的产品数字化模型。

(3)在CAD领域,虚拟样机的概念实际上是数字样机的含义。

(4)虚拟现实技术特征:自主性、交互性和浸没性。

2.7几何模型构造的模型表达类型分为,线框模型、表面模型、实体模型。

(1)线框模型:在计算机内描述一个三维线框模型必须给出两类信息:①顶点表(存储模型中各顶点的三维坐标);②边表(存储模型中的各棱边,用指针指向个棱边的顶点)。它的缺点是:①由于信息过于简单,没有面信息,所以不能进行消隐处理;②模型在显示时理解上存在二义性;③不便于描述含有曲面的物体;④无法应用于工程分析和数控加工刀具轨迹的自动计算。

(2)表面模型:数据结构是以“面-棱边-点”三层信息表示。表面模型避免了线框模型的二义性,表示的是零件几何形状的外壳,不具备零件的实体特征,不能进行物理特性计算,如转动惯量、体积等。

(3)实体模型:一般是以“体-面-环-棱边-点”五层结构信息表示模型。实体建模最常用的是

边界描述法(boundaryrepresentation,B-Rep)和构造性实体几何法(computed structuregeometry,CSM)。实体建模方法在表示物体形状和几何特性方面是完全有效的。

2.8特征建模

(1)特征是产品各种信息的载体,包括几何信息和非几何信息。

(2)特征分类:①形状特征;②材料特征;③精度特征;④装配特征。

(3)特征造型的本质还是实体造型,但是进行了工程语义的抽象,即语义+形状特征。

(4)应用最好和最为成熟的是形状特征设计。

(5)特征设计是在实体模型基础上,根据特征分类,对一个特征定义,对操作特征进行描述,指定特征的表示方法,并且利用实体造型具体实现。

2.9特征造型系统的基本要求:

(1)所建立的产品零件模型应包括下列5种数据类型:①几何数据;②拓扑数据;③形状特征数据;④精度数据;⑤技术数据

(2)特征造型方式必须灵活多变,应当允许设计这以任何形式,任意级别和任意组合的方式定义特征,以满足各应用领域的需要。

(3)造型系统应能方便地实现特征和零件模型的建立、修改、删除、更新,应能单独定义和分别引用产品模型中的各个层次数据对行啊,并对其进行关联,相互作用,构成新的特征与零件模型。

(4)应建立与应用相关的映像模型,支持产品模型的应用特征分解与释义。

2.10参数化设计与变量化设计

(1)参数化设计一般是指设计对象的结构形状基本不变,而用一组参数来约定尺寸关系。参数与设计对象的控制尺寸有显示对应关系,设计结果的修改受尺寸驱动,因此参数的求解较简单。

(2)参数化设计的特点:①基于特征;②全尺寸约束;③尺寸驱动实现设计修改;④全数据相关。

(3)参数化设计与变量化设计的共同点:二者都强调基于特征的设计、全数据相关,并可实现尺寸驱动设计修改等。

(4)参数化设计与变量化设计的不同点:参数化设计强调的是尺寸全约束,而变量化设计不严格要求尺寸全约束,可以是过约束,也可以是全约束。参数化设计方法主要是利用尺寸约束,而变量化设计的约束种类比较广,包括几何、尺寸、工程约束,通过求解一组联立方程组来确定产品的尺寸和形状。

2.11常用的文件交换类型:

(1)IGES(initial graphics exchange specification)初始图形交换规范,是国际上产生最早,且应用最广泛的图形数据交换标准。在IGES文件中,信息的基本单位是实体(entity)。

(2)STEP(standard for the exchange ofproduct model data)产品模型数据交换标准,是国际标准组织(ISO)制定的产品数据表达与交换标准。STEP的产品模型数据覆盖产品的整个生命周期。形状特征信息模型是STEP的产品模型的核心。几何信息交换是STEP标准应用著广泛的一部分。

(3)DXF(data exchange file )数据交换文件。

第三章

3.1数字化设计技术:是以专业设计技术为基础,与以信息技术为代表的高科技充分融合,形成面向产品结构设计、分析运算、虚拟仿真,在数字空间完成制造。数字化设计是利用数字化技术对传统产品设计过程的改造、延伸与发展。

3.2“1+3+X ”综合设计法:采用功能优化、动态优化、智能优化和可视优化及对某种产品有特殊要求的设计等几种方法来完成设计工作。1-功能优化;3-将动态优化、智能优化和可视优化结合在一起的设计方法;X-对某种产品有特殊要求的设计方法。

3.3可靠性设计

(1)可靠性定义:产品在规定的条件下和规定的时间内完成规定功能的能力。它包括四个要素:①研究对象;②规定的条件;③规定的时间;④规定的功能。

(2)可靠性设计常用指标:

①可靠度(R(t)),设有N 个相同的产品在相同的条件下工作,到任意给定时间t时,累积有n(t)个产品失效,其余N -n(t)个产品仍能正常工作,那么该产品到时间t 的可靠度为 R(t )={ N-n (t)}/N 。

②累积失效概率(F(t)):F (t)=n(t)/N;R(t)+F(t)=1。

③失效概率密度(f (t)):f(t )= F’(t)=(-R’(t))

④失效率(λ(t)):λ(t )=t

t n N t n t t n ?--?+)]([)()(;λ(t)= f(t )/ R(t); (3)可靠性设计中常用分布函数:

①指数分布,当失效率λ(t)为常数时,R(t),F(t),f(t)都呈指数分布函数的形式。 R(t)=e t dt t ?-0)(λ=e t λ- ; F(t)=1-e

t λ- ;f(t)=e

t λλ- ②正态分布:u z ’=u c -u s ;σz ’=σσ22s c +;Z R =σ''z z u =σ

σ2

2s c s

c u u +- P(z ’<0)=P(t<-ZR)=P (t >

Z R )=1- P(t

*R 2*……*R n (5)并联系统的可靠度:R S =(1-R 1)(1-R 2)……(1-R n )

(6)复杂系统的可靠度:

①形函数:N i =A 21(y

c x b a i i i ++ )(下标i ,j,m 轮换)

②集中载荷移植:{R}e =[N]T {P}

③面力移植:{R}e

=}

{

]

[P

N T

tds

第五章

5.1成组技术

(1)基本原理,对相似的零件进行识别和分组,相似的零件归入一个零件组或零件族,并在设计和制造中充分利用他们的相似点,以获得所期望的经济效益。

(2)零件的相似性包括设计性质方面的相似性和制造型之方面的相似性,是零件分祖的基础。

(3)定义:成组技术是一门生产技术科学和管理技术科学,研究如何识别和发展生产活动中有关事务的相似性,并充分利用它把他们之间的相似性归类成组,并寻求解决这一组问题相对统一的最优方案,已取得所期望的经济效益。

5.2OPITZ编码系统是一个十进制的9位代码的呼和结构分类编码系统。是由德国教授

H.Opitz领导开发的。

(1) 第Ⅰ~Ⅴ位,代表形状码,用于描述工件的主要设计特征,其中第Ⅰ位代表零件类别码,第Ⅱ~Ⅴ位代表形状及加工码。

(2) 第Ⅵ~Ⅸ位代表辅助码,用于描述制造特征。

5.3我国研制的编码系统JLBM-1,其基本结构与OPITZ基本相同,该系统有15个码位,每个码位有0~9十个数字表示不同的特征项号。

(1)第1~2码位代表零件类别码

(2)第3~9码位代表形状和加工码

(3)第10~15码位代表辅助码,表示工艺信息。

5.4工艺规划是连接产品设计与制造的桥梁,产品制造一般包括工艺规划、生产设计制定、零件加工、部件和产品装配、检验等主要环节。其中工艺规划一般是指零件机械加工工艺设计和产品装配工艺设计。

5.5机械产品是由零件、组件和部件组成的。装配单元可分为零件、组件、部件和机器四种等级。

5.6计算机辅助工艺规划(computeraided process planning,CAPP)是指利用计算机技术进行工艺设计和编制工艺规程。计算机技术在在工艺规划中的辅助作用主要体现在交互处理、数值计算、图形处理、逻辑决策、数据存储与管理等方面。从内容上来说,CAPP 应包括工艺规划的全部内容。

5.7CAPP的发展,可分为三个发展阶段:(1)基于自动化思想的修订/创成式CAPP系统;(2)基于计算机辅助的实用化CAPP系统;(3)面向企业信息化的制造工艺信息系统。

5.8CAPP系统的三个基本组成部分:(1)产品的设计信息输入;(2)工艺决策;(3)产品工艺信息输出。

5.9CAPP系统所采用的基本工艺决策方法有以下两种:?(1)修订式方法(variant approach):修订式方法也称为派生式方法,其基本思路是将相似的零件归并成零件族,设计时检索出相应零件族的标注工艺规程,并根据设计对象的具体特征加以修订。

(2)生成式方法(generative approach):生成式方法也称为创成式方法,其基本思路是将人们设计工艺过程时的推理和决策转换成计算机可以处理的决策逻辑、算法,在使用时由计算机程序采用内部的决策逻辑和算法,依据制造资源信息,自动生成零件的工艺规程。

5.10常用的决策方法有决策表和决策树等。

5.11工艺决策专家系统

(1)所谓专家系统,就是一种在特定领域内具有专家水平的计算机程序系统,它将人类专家的知识和经验以知识库的形式存入计算机,并模拟人类专家解决问题的推理方式和思维过程,运用这些知识和经验对现实中的问题做出判断和决策。

(2)专家系统的三个组成部分:零件信息输入模块、推理机和知识库。其中,知识库和推理机是专家系统的两大主要组成部分,知识库是专家系统的核心。

(3)专家系统中使用的三种推理方法:正向演绎推理、反向演绎推理和正反向混合演绎推理5.11物料清单BOM(bill ofmaterial)是描述用于制造一个产品的所有零件、组件、部件和原材料的表单,并给出了它们的类型、编号、数量及其装配关系。

(1)设计部门产生的是工程BOM(EBOM)

(2)工艺部门产生的是制造BOM(MBOM)

(3)制造部门产生的是质量BOM(QBOM)

第六章

6.1生产过程是指围绕完成产品生产的一系列有组织的生产活动的运行过程。

6.2生产过程的组织形式可以按照生产工艺专业化(job shop)和产品对象专业化(flow shop)原则进行分类。

(1)按照生产工艺专业化的原则分类,常见的形式有:锻造车间、铸造车间、机械加工车间。

(2)按照产品对象专业化的原则分类,常见的形式有:汽车生产线、家电生产线。

6.3按照生产的连续程度生产类型可以分为连续型生产和离散型生产两种类型。机械加工是典型的离散加工类型。根据产品的品种的产量,离散型生产可进一步分为:

(1)大批量生产,最典型的例子是汽车制造业。

(2)单件小批量生产,如船舶、大型电机、桥梁、大型建筑等。

(3)多品种小批量生产,主要特点是通常应用成组技术。

(4)大批量定制生产

6.4生产管理是企业对所有和生产产品或提供服务有关活动的管理,是对生产过程所涉及的活动进行计划、组织与控制。

(1)狭义的生产管理主要包括生产管理和生产控制两个方面。

(2)广义的生产管理主要包括与企业生产相关的计划、组织和控制等活动。

6.5数字化生产管理的特点:(1)实时性;(2)精确性;(3)集成性;(4)自反馈性;(5)决策支持。

6.6在现代生产管理过程中,把用于生产管理的各种软硬件与管理方法和制造过程集成起来,形成数字化生产管理系统。它的主要功能包括:计划管理、资源管理、库存管理、生产过程控制等。数字化生产管理系统是计算机软硬件、生产管理理念与生产过程的集成。

6.7物料需求计划(material resource planning,MRP)

(1)MRP是以生产计划为基础,结合产品结构信息和库存信息来制定生产计划和采购计划(2)MRP的基本原理:是将企业产品中的各中物料分为独立物料和相关物料,并按时间段确定不同时期的物料需求,基于产品结构的物料需求组织生产,根据产品完工日期和产品结构制订生产计划,从而解决库存物料订货与组织生产的问题。

(3)主计划是独立需求计划,MRP是相关需求计划。

6.8制造资源计划(MRPⅡ)

(1)在MRP的基础上增加了财务管理和销售管理

(2)基本思想:基于企业经营目标制订生产计划,围绕物料转化组织制造资源,实现按需按时

生产。

6.9企业资源规划(enterprise resource planning,ERP),涉及企业供应链的所有管理。

6.10MRPⅡ(manufacturing resource planning)/ERP和MES(制造执行系统)集成阶段,管理系统加入了生产状况反应信息。

6.11制造计划又称为生产计划,是为制造企业、制造车间或制造单元等制造活动的执行机构制定在未来一段时间内所完成的任务和达到的目标。制造计划按照不同的层次,可以分为三类计划:

(1)企业战略规划:一般来说,战略规划是由高层管理人员参与制订,它的覆盖周期通常为3~5年或者更长。

(2)生产经营计划:企业战术层的经营计划比战略规划的时间跨度要短一些,通常为一年左右。在企业中,经营计划的制定往往由生产计划部门负责。

(3)执行作业计划:执行作业计划的生产周期一般比较短,集中在战术层和执行层。

6.12数字化制造计划系统主要有:

(1)MRP计划系统:

①是一种将库存管理和生产进度计划集合在一起的计算机辅助生产计划管理系统。

②MRP的计划原理:MRP计划是以零部件为对象的生产进度计划。通常,它是根据产品结构中的零件层次关系,来编制零件的生产进度。MRP计划最为关键的文件形式就是物料清单BOM,以此来描述零件在产品中的层次关系和数量。

③MRP计划系统根据产品设计文件、工艺文件、物料文件和生产提前期(lead time)等资料自动生成BOM表。

④MRP在编制零部件的生产进度时,它是以产品的交货期(或计划完工日期)为基准,朝着工艺过程的逆向,按生产投入提前期的长度,采用倒排法来编制。

⑤滚动计划(rolling plan)是一种动态编制计划的计划方法,滚动计划编制规则是每走一步向前看两步。滚动计划一般把计划分为三个时区,执行区、准备区和展望区。离当前最近的是执行区,最远的是展望区。按滚动计划而编制方法是每经过一个执行区编制一次计划,每个计划的长度仍为8个星期。

⑥MRP的滚动期通常设为周,班组的生产日程规划每天滚动一次。每滚动一次,计划就重编一次,为了减少重新编制的操作采用了两种方式切换进行的方式,即采用净改变(net change)和完全重编(regeneration)。净改变只修改计划期内有变化的部分,局部重编。完全重编则要运行一次计划编制程序,重新一个新计划。

(2)JIT(just in time)计划系统:

①JIT计划的核心思想是在需要的时候才去生产所需要的品种和数量,不要多生产,也不要提前生产。JIT计划系统又称丰田生产系统。

②JIT属于拉式系统,是由需求驱动的,而MRP等推式系统,是有计划驱动的。

③拉式系统不制订主生产计划。

④看板是JIT计划系统中最为重要的管理工具。看板的作用是传递信息。看板的种类有生产看板、运输看板、外协看板和临时看板等。看板使用规则如下:看板必须跟随实物,与工件一起转移;每一种看板严格按照自己的路线运行;看板必须对所需工件提供完整的信息;不合格产品不能使用看板。

(3)TOC计划系统:

①约束理论(TOC)的指导思想实质上是寻求系统的关键约束点,集中精力优先解决主要矛盾。TOC计划系统,首先确定瓶颈工序和瓶颈资源,编制产品关键生产计划,在确认关键件的生产进度的前提下,再编制非关键件的生产计划,一般来说,瓶颈工序的前导和后续工序采用不同

的计划方法,以提高计划的可执行性。

(4)APS高级计划排产系统:是进行优先能力计划的应用系统,它是基于约束理论,通过事先定义的规则,由计算机自动进行排产的过程。

6.13生产调度(product scheduling)是在生产作业计划的基础上确定生产任务(入工件)进入车间的顺序以及车间运行中各种制造资源的实时动态调度。一般将生产调度又分解为生产任务的静态排序、动态排序和系统资源实时动态调度三个子问题。

(1)生产任务的静态排序(off-line sequencing)是指根据零件生产作业计划规定的生产进度,进一步具体地确每个工件在每台设备上的加工工序和生产进度,同时也确定了每台设备、每个工作人员、给个工作班次的生产任务。

①生产任务排序分类:按机器的数目的不同,可以分为单台机器的排序问题和多台机器的排序问题。按工件到达的情况不同,可以分为静态排序问题和动态排序问题。按目标函数的不同,可以分为使平均的流程时间最短的排序问题和使误期完工工件数量最少的排序问题。

②生产任务排序方法:约翰逊法;关键工序法;优先规则法。

(2)生产任务的动态排序(on-line or real time sequencing):使用最多的动态排序算法是人工智能领域的启发式规则和遗传算法等。

6.14制造执行系统(MES)在数字化生产管理中起到了承上启下的作用。数字化生产管理系统的层次模型:

(1)计划层:数字化生产管理中的计划系统,以客户订单和市场需求为计划源头,充分利用企内的各种资源,降低库存,提高生产经营的效益。从数字化生产管理的角度来看,MRPⅡ/ERP 属于企业的计划层。

(2)执行层:上层和底层的信息枢纽,强调计划的执行和制造过程的控制,把上层的计划层和车间的生产现场控制有机地集成起来。

(3)控制层:对生产设备的开启、运行和停止进行控制等,完成计划指令和制造指令执行的控制。

第七章

7.1数字控制(numerical control,NC),简称数控,是一种自动控制技术,使用数字化信号对控制对象加以控制的一种方法。数字控制的对象是多种多样的,但数控机床是最早应用数控技术的控制对象,也是最经典的数控化设备。

7.2数控机床主要由控制介质、数控系统、伺服系统和机床本体组成。

7.3数控加工是采用数字信息对零件加工过程进行定义,并控制机床进行自动运行的一种自动化加工方法。

7.4数控机床控制方式:

(1)按机床的运动轨迹分为:①点位控制,包括数控铣床、数控镗床和数控冲床;②直线切削控制,包括数控车床、数控镗铣床;③连续切削控制,又称为轮廓控制,包括数控铣床、数控车床、数控磨床和加工中心。

(2)按数控系统能同时控制的机床坐标轴数分为:2轴控制、2.5轴控制、3轴控制等。

7.5数控机床分类:按其加工工艺方式可分为:金属切削类、金属成型类、特种加工类和其他类型数控机床。在金属切削类数控机床中,根据其自动化程度的高低,又可分为普通数控机床、加工中心数控机床和柔性制造单元。

7.6数控机床坐标系和运动方向:

(1)在确定编程坐标时,一般看作是工件相对静止,刀具产生运动

(2)数控机床上标准坐标系采用右手笛卡尔坐标系,大拇指的方向为X轴正方向,食指方向为Y轴正方向,中指方向为Z轴正方向。

(3)先确定Z轴,在确定X轴,最后确定Y轴。Z轴垂直于工件装夹平面,X轴平行于工件装夹平面。

(4)工件坐标系:是为了确定工件几何图形上各几何要素的位置而建立的坐标系。

(5)机床原点与参考点:机床原点是指机床坐标系原点,是其他所有坐标,如工件坐标系、机床参考点的基准点。机床参考点适用于机床工作台、滑板以及刀具相对运动的测量系统进行定位和控制的点,有时也称为机床零点。

(6)编程原点:编制程序时,为了编程方便,需要在零件图上选择一个适当的位置作为编程原点,即程序原点或程序零点。

(7)对刀点:是数控加工时,刀具相对于工件运动的起点。

7.7计算机辅助编程有多种方法,但目前普遍使用的方法是图形交互数控编程。图形交互数控编程就是根据计算机图形显示器上所显示的零件图形,通过人机交互方式指定加工表面和选择刀具及工艺参数,在软件支持下自动生成零件数控加工程序。

7.8典型的柔性制造系统(FMS)由三大部分组成:加工系统、物料储运系统和控制系统。其中控制系统是FMS的核心。

第八章

8.1PDM的主要功能:(1)产品结构与配置管理;(2)图文档管理;(3)工作流程管理;(4)动态

权限设置;(5)工程变更管理;(6)项目管理;(7)外部集成器。

8.2基于PDM系统的CAx系统集成可分为三个层次:封装、接口和集成。

数字化设计与制造试题及答案

数字化设计与制造试题及答案 一、填空题 1.在全球化竞争时代,制造企业面临严峻挑战体现在时间产品质量成本服务水平和环保 2.从市场需求到最终产品主要经历两个过程:设计过程和制造过程。 3.设计过程包括分析和综合两个阶段。 4.数字化设计技术群包括:计算机图形学计算机辅助设计计算机辅助分析和逆向工程。 5.有限元方法是运用最广泛的数字化仿真技术。 6.数控加工是数字化制造中技术最成熟最、运用最广泛的技术。 7.实现数据交换的两种方式:点对点交换和星形交换。 8.计算机图形学主要是对矢量图形的处理。 9.笛卡尔坐标系分为:右手坐标系和左手坐标系。 10.常用坐标系的转换关系:建模坐标系-世界坐标系--观察坐标系--规格化坐标系--设备坐标系。 11.参数化造型的软件系统分为:尺寸驱动系统和变量设计系统。 12.仿真的对象是:系统。 13.CAPP的类型:派生型、创成型、智能型、综合型、交互型。 14.高速切削刀具的材料有;金刚石、立方氮化硼、陶瓷刀具、涂层刀具和硬质合金刀具。 15.逆向工程的四种类型:实物逆向、软件逆向、影像逆向和局部逆向。 16.逆向工程基本步骤:分析、再设计、制造。 17.实物逆向工程的关键技术主要有:逆向对象的坐标数据测量、测量数据的处理及模型重构技术。 18.对三坐标测量机数据修正方法:等距偏移法、编程补偿法。 19.典型的快速原型制造工艺及设备:立体光固化(SL)、熔融沉积成形(FDM)、选择性激光烧结(SLS)、叠层实体制造(LOM)、三维印刷(3DP)。 20.尺寸驱动系统只考虑尺寸及拓扑约束,不考虑工程约束,变量设计系统不仅考虑尺寸及拓扑约束还考虑工程约束。 21.FMS是指柔性制造系统 二、简答题 1.CAD、CAE、CAM之间的关系? 答:以计算机辅助设计和计算机辅助分析为基础的数字化设计和以计算机辅助制造为基础的数字化制造,是产品数字化开发的核心技术。 数字化设计与制造的特点有哪些? 答:a.计算机和网络技术是数字化设计与制造的基础; b.计算机只是数字化设计与制造的重要辅助工具; c. 数字化设计与制造能有效地提高了产品质量、缩短产品开发周期、降低产品成本; d.数字化设计与制造技术只涵盖产品生命周期的某些环节。 2.窗口与视口的变换关系是怎样的? 答:视口不变,窗口缩小或放大,视口显示的图形会相应的放大或缩小;窗口不

国内外先进制造技术的新发展现状和趋势

国内外先进制造技术的新发展现状和趋势 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

国内外先进制造技术的新发展现状和趋势1?当前制造科学要解决的问题 (1)制造系统是一个复杂的大系统,为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求。生物制造观越来越多地被引入制造系统,以满足制造系统新的要求。? (2)为支持快速敏捷制造,几何知识的共享已成为制约现代制造技术中产品开发和制造的关键问题。例如在机辅助设计与制造(CAD/CAM)集成、坐标测量(CMM)和机器人学等方面,在三维现实空间(3-Real?Space)中,都存在大量的几何算法设计和分析等问题,特别是其中的几何表示、几何计算和几何推理问题;在测量和机器人路径规划及零件的寻位(如Localization)等方面,存在C-空间 (配置空间Configuration?Space)的几何计算和几何推理问题;在物体操作(夹持、抓取和装配等)描述和机器人多指抓取规划、装配运动规划和操作规划方面则需要在旋量空间(Screw?Space)进行几何推理。制造过程中物理和力学现象的几何化研究形成了制造科学中几何计算和几何推理等多方面的研究课题,其理论有待进一步突破,当前一门新学科--计算机几何正在受到日益广泛和深入的研究。

机械制造技术基础课程设计

一:课程设计原始资料 1.齿轮的零件图样 2.生产类型:成批生产 3.生产纲领和生产条件 二:课程设计任务书 1.对零件进行工艺分析,拟定工艺方案。 2.拟定零件的机械加工工艺过程,选择各工序加工设备及工艺装备(刀具、夹具、量具、辅具);完成某一表面工序设计(如孔、外圆表面 或平面),确定其切削用量及工序尺寸。 3.编制机械加工工艺规程卡片(工艺过程卡片和工序卡片)l套。 4.设计夹具一套到二套,绘制夹具装配图2张。 5.撰写设计说明书1份。 三:参考文献 1.熊良山机械制造技术基础华中科技大学出版社 2.刘长青机械制造技术课程设计指导华中科技大学出版社

目录 说明 (4) 第一章零件的分析 (6) 1.1零件的工作状态及工作条件 (6) 1.2零件的技术条件分析 (6) 1.3零件的其他技术要求 (7) 1.4零件的材料及其加工性 (8) 1.5零件尺寸标注分析 (9) 1.6检验说明 (9) 1.7零件工艺分析 (10) 第二章齿轮毛坯的设计 (11) 2.1毛坯种类的确定 (11) 2.2毛坯的工艺要求 (11) 第三章工艺规程设计 (13) 3.1工艺路线的制定 (13) 3.2机床、夹具、量具的选择 (16) 第四章齿轮加工机床夹具设计 (17) 4.1专用机床夹具设计目的 (17) 4.2机床夹具的作用与组成 (17) 4.3机床夹具设计的基本要求 (18) 4.4机床夹具设计的一般步骤 (18) 4.5专用齿轮加工夹具的设计 (20) 心得体会 (21)

说明 齿轮是机械传动中应用极为广泛的零件之一。汽车同步器变速器齿轮起着改变输出转速、传递扭矩的作用,所以在齿轮加工过程中要求较为严格。变速器齿轮应具有经济精度等级高、耐磨等特点,以提高齿轮的使用寿命和传动效率。齿轮在工作时,要求传动平稳且噪声低,啮合时冲击应小。 齿轮本身的制造精度,对整个机器的工作性能、承载能力及使用寿命都有很大的影响。根据其使用条件,齿轮传动应满足以下几个方面的要求。 (一)传递运动准确性 要求齿轮较准确地传递运动,传动比恒定。即要求齿轮在一转中的转角误 差不超过一定范围。 (二)传递运动平稳性 要求齿轮传递运动平稳,以减小冲击、振动和噪声。即要求限制齿轮转动时瞬时速比的变化。 (三)载荷分布均匀性 要求齿轮工作时,齿面接触要均匀,以使齿轮在传递动力时不致因载荷分布不匀而使接触应力过大,引起齿面过早磨损。接触精度除了包括齿面接触均匀性以外,还包括接触面积和接触位置。 (四)传动侧隙的合理性 要求齿轮工作时,非工作齿面间留有一定的间隙,以贮存润滑油,补偿因温度、弹性变形所引起的尺寸变化和加工、装配时的一些误差。 齿轮的制造精度和齿侧间隙主要根据齿轮的用途和工作条件而定。对于

数字化设计及仿真

数字化设计及仿真 祝楷天 (盐城工学院优集学院江苏盐城224051) 摘要:制造业信息化的发展促使许多企业建立起了相应的CAD/CAM软件环境平台,并应用CAD/CAM软件进行产品的设计、分析、加工仿真与制造,取得了显著的效果。利用计算机辅助设计和制造(CAD/CAM)软件系统来完成机床夹具设计过程是加速夹具设计效率、提高设计质量的一种重要手段。但现有的通用CAD/CAM软件没有针对机床夹具设计的完整技术手册资料和三维标准件图库系统,设计人员仍然需要使用传统的纸质工具手册书籍进行资料查询和标准件三维实体图绘制工作,影响了机床夹具设计的效率和质量。因此,研究机床夹具数字化设计手册软件和三维标准件图库系统对满足数字化时代工程技术人员的需要具有重要的作用。 关键词:机械产品;数字化;设计仿真。 Digital design and simulation ZHU Kai-tian (UGS College,Yancheng Institute of Technology,Yancheng,Jiangsu 224051)Abstract: The development of manufacturing industry has led many enterprises to set up the corresponding CAD/CAM software environment platform, and the application of CAD/CAM software for product design, analysis, processing simulation and manufacturing, has achieved remarkable results. Using computer aided design and manufacturing (CAD/CAM) software system to accomplish machine tool fixture design process is an important means to accelerate fixture design efficiency and improve design quality. But the existing general CAD/CAM software does not have the complete technical manual data and the 3D standard part library system for the machine tool fixture design, the design personnel still need to use the traditional paper tools manual books to inquire and the standard piece three-dimensional entity chart drawing work, has affected the efficiency and the quality of the machine tool jig design. Therefore, it is important to study the software and 3D standard part library system of the digital design of machine tool fixture to meet the needs of engineering and technical personnel in the digital age. Keywords: Mechanical products, Digitization , Design simulation.

专升本机械工程及自动化数字化设计与制造技术ok

江南大学现代远程教育课程考试大作业 请于11月10日前提交 考试科目:《数字化设计与制造技术》 一、大作业题目(内容): 一、参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求有哪些?(10分) 答:参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求包括以下几方面:1).稳定性。稳定性是指在正常情况下,系统保持其稳定状态的能力。 2).集成性。集成性指系统内各子系统相互关联,能协同工作。 3).敏捷性。敏捷性指系统对环境或输入条件变化及不确定性的适应能力,对内外各种变化能快速响应、快速重组的能力。单件、多品种、小批量是市场对现代产品研制的基本生产要求。 4).制造工程信息的主动共享能力。数字化设计制造中零件设计、工艺设计和工装设计等过程的集成和并行协同要求信息能同步传递,这种信息共享方式称为“信息主动共享”。 5).数字仿真能力。数字仿真能力指系统对产品制造中涉及的诸多问题进行虚拟仿真的能力。6).支持异构分布式环境的能力。无论从不同类型设备联网还是从数据管理考虑,或是从面向全生命周期的零件信息模型考虑,均需对系统的结构体系和数据结构进行合理的综合规划与设计,实现系统分布性与统一性的协调。 7).扩展能力。系统的扩展是通过软件工具集的扩展来实现的。 二、什么是参数化设计?请说明参数化设计在产品设计中的意义。(10分) 答:参数化设计一船是指设计对象的结构形状基本不变,而用一组参数来约定尺寸关系。参数与设计对象的控制尺寸有显式对应关系,设计结果的修改受尺寸驱动,因此参数的求解较简单。 意义:在产品设计中,设计实质上是一个约束满足问题,即由给定的功能、结构、材料及制造等方面的约束描述,经过反复迭代、不断修改从而求得满足设计要求的解的过程。除此之外,设计人员经常碰到这样的情况:①许多零件的形状具有相似性,区别仅是尺寸的不同;⑧在原有罕件的基础上做一些小的改动来产生新零件;③设计经常需要修改。这些需求采用传统的造型方法是难以满足的,一般只朗重新建模。参数化方法提供了设计修改的可能性。 三、CAPP系统由哪些基本部分组成?(10分) 答:传统的CAPP系统通常包括三个基本组成部分,即产品设计信息输入、工艺决策、产品工艺信息输出。 1.产品设计信息输入:工艺规划所需要的最原始信息是产品设计信息。 2.工艺决策:所谓工艺决策,是指根据产品/零件设计信息,利用工艺知识和经验,参考具体的制造资源条件,确定产品的工艺过程。 3.产品工艺信息输出 四、数字化制造体系下的制造计划系统有哪些?(10分) 答:数字化制造体系下的制造计划系统主要有MRP计划系统、JIT(Just ln Time)计划系统、 TOC(Theory of Constraint)计划系统和APS(Advanced P1anning System)计划系统四个主要流派,各自蕴含的原理和方法均有所不同. 1.MRP计划系统:物料需求计划系统是一种将库存管理和生产进度计划结合在一起的计算机辅助生产计划管理系统。

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

1机械制造技术基础课程设计指导书

1机械制造技术基础课程设计指导书

机械制造技术基础课程设计 一、设计任务 本次课程设计为《机械制造技术基础》的课程设计,因此,要求学生必须完成如下任务: 1.分析零件的结构特点、设计其工艺路线,填写“机械加工综合过程卡”及“机械加工工序卡”。 2.完成该零件某工序的加工专用夹具的总体装配图。 3.绘制夹具上非标准零件的工程图。 4.编制课程设计说明书。 完成课程设计后所提交资料:专用夹具总图、非标准零件的工程图、课程设计说明书 二、设计内容和步骤 1.分析零件的结构特点、设计其工艺路线。 (1)针对零件的结构特征,审查其结构工艺性。 (2)根据结构特点、生产纲领和各表面的技术要求,选择加工方法。 (3)制订零件的加工工艺路线(制订两套以上的工艺方案,并在设计说明书上对工艺方案作出比较和评价。) 2.绘制专用夹具总图及非标零件图。 (1)确定设计方案,绘制原理草图 ①根据基准的选择原则及工序要求,确定其定位方式,并选择定位元件。 ②确定其夹紧方式,并设计夹紧机构。 ③选择对刀——导引元件。 根据上述的选择及设计,绘制原理草图,确定初步方案。 (2)绘制正规的夹具总图 所确定的初步方案征得指导教师的同意,再绘制正规的夹具总图。(3)绘制夹具上的非标零件图 3.编制课程设计说明书。 1.定位元件 2.夹紧机构(或装置) 3.对刀——导引元件 4.连接元件 5.夹具体 6.其它元件和装置

夹具方案设计 如图所示零件,底平面已加工好,现加工上平面,用铣床对其加工。 一.定位基准及定位元件 1.定位基准的选择 作为平面加工,要保证上下平面平行及间距,则只要确定一个平面,故只需约束3个自由度。以底平面作为定位基准。 2.定位元件的选择 工件以平面定位,那么,定位元 件怎么选择呢? (1)支承钉 支承钉有三种形式,即: 平头支承钉:精基面 球头支承钉:粗基面 锯齿头支承钉:粗基面(侧面) (2)支承块(板) 用于精基面。分A 、B 型两种形式。 (A 型用于侧面) 注意:①一块支承块在起定位作用时,相当于一条线。②要确定 一个平面,可将支承钉、支承块组合。 (3)其他 若用支承钉、支承块及其组合都不合适,可根据定位表面的形状,自己设计。 (4)工件以外圆面定位时的定位元件 定位套、V 型块 (5)工件以内圆面定位时的定位元件 x z

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要不断吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力 2 先进制造技术的组成 先进制造技术是为了适应时代要求提高竞争能力,对制造技术不断优化和推陈出新而形

《机械制造技术》课程设计实例

广东工业大学华立学院 课程设计(论文) 课程名称机械制造技术课程设计 题目名称拨叉加工工艺规程及钻¢8mm孔夹具设计 学生学部(系) 专业班级 学号 学生姓名××× 指导教师 20 年月日

广东工业大学华立学院 课程设计(论文)任务书 题目名称拨叉机械加工工艺规程及钻¢8mm锁销孔工序夹具设计学生学部(系) 专业班级 姓名 学号 一、课程设计(论文)的内容 本次设计是汽车拨叉零件的机械加工工艺规程及钻¢8mm锁销孔工序夹具设计。具体内容如下: 1 确定生产类型,对零件进行工艺分析; 2 确定毛坯种类及制造方法,绘制毛坯图(零件毛坯图); 3 拟定零件的机械加工工艺过程,选择各工序加工设备及工艺装备(刀具、夹具、量具和辅具); 4 确定工序尺寸及公差,各工序切削用量,画出工序简图 5 填写工艺文件,包括工艺过程卡、工序卡(可只填写部分主要工序的工序卡片); 6 设计某一工序的夹具,绘制夹具装配图和主要零件图3~5张; 7 撰写设计说明书。 二、课程设计(论文)的要求与数据 要求学生全面地综合运用本课程所学的知识与内容及其有关先修课程的理论和实践知识,进行零件加工工艺规程的设计,机床夹具设计以及正确选用加工机床,与刀具、量具的正确运用。

《机械制造技术》课程设计题目制订如下: 设计——零件的机械加工工艺规程及——工序专用夹具 生产类型:中批或大批生产 三、课程设计(论文)应完成的工作 1 零件图:1张 2 毛坯图:1张; 3 机械加工工艺过程卡片:1套; 4 机械加工工序片:3~4张; 5 机床夹具装配图:1张; 6 夹具主要零件图(包括夹具体):3~5张; 7 课程设计说明书:1份。 四、课程设计(论文)进程安排 序号设计(论文)各阶段内容地点起止日期 1 明确任务,分析零件图1-501 10月28日~10月29日 2 零件的工艺,制订工艺路线,绘制毛坯图和工艺过程卡 片 图书馆 11月1日~11 月8日 3 余量、切削用量、工序尺寸等计算,填写工序卡片图书馆11月9日~11月12日 4 抒写夹具方案、绘制夹具装配草图图书馆11月10日~11月14日 5 绘制夹具总图及零件图图书馆11月16日~11月25日 6 编写课程设计说明书图书馆12月2日~12月11日

数字化设计与制造

数字化设计与制造 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数字化设计与制造 一、背景 在计算机技术出现之前,机械产品的设计与加工的方式一直都是图纸设计和手工加工的方式,这种传统的产品设计与制造方式,这使得产品在质量上完全依赖于产品设计人员与加工人员的专业技术水平,而数量上则完全依赖于产品加工人员的熟练程度,而随着工业社会的不断发展,人们对机械产品的质量提出了更高要求,同时数量上的需求也不断增长。为了适应社会对机械产品在质量与数量上的需求,同时也为了能进一步降低机械产品的生产成本,人们在努力寻求一种全新的机械产品设计与加工方式,而二十世纪四五十年代以来计算机技术的出现及其发展,特别是计算机图形学的出现,让人们看到了变革传统机械产品设计与生产方式的曙光。于是,数字化设计与制作方式应运而生,人们逐步将机械产品的设计与加工任务交给计算机来做,这一方面使得机械产品的设计周期大大缩短,另一方面也使得产品的质量与数量基本摆脱了对于设计与加工人员的依赖,从而大大提升了产品的质量,降低了产品的生产成本,同时也使得产品更加适合批量化生产。 二、概念 数字化设计:就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术和网络信息技术,支持产品开发与生产全过程的设计方法。 数字化设计的内涵:支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等。 其基础是产品建模,主体是优化设计,核心是数据管理。 数字化制造:是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程。 数字化制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。

机械制造技术基础课程设计

一、目录 摘要 1、设计目的及要求 2、零件的工艺分析 3、选择毛坯,设计毛坯 4、制定加工工艺路线 5、工序设计 6、确定切削用量及基本时间 7、机械加工工艺过程卡和机械加工工序卡 8、夹具的设计 9、小结 摘要 本课程设计主要培养学生综合运用所学的知识来分析处理生产工艺问题的能力,使学生进一步巩固有关理论知识,掌握机械加工工艺规程设计的方法,提高独立工作的能力,为将来从事专业技术工作打好基础。 这次设计的是车床夹具,分别绘制了零件图、毛坯图、夹具体图、装配图各一张,机械加工工艺过程卡片一张。在熟悉被加工零件的基础上,接下来根据零件的材料性质和零件图上各端面和内部结构的粗糙度确定毛坯的尺寸和机械加工余量。然后我们再根据定位基准先确定粗基准,后确定精基准,最后拟定工艺路线图,制定该工件的夹紧方案,画出夹具装配图。通过查阅各种书籍完成本次 课程设计任务。 关键词:工艺路线,工序设计,车床夹具 一、设计目的及要求 掌握编制零件机械加工工艺规程的方法,能正确解决中等复杂程度零件在加工中的工艺问题。 提高结构设计的能力。通过设计夹具的训练,根据被加工零件要求,设计出能保证加工技术要求、经济、高效的工艺装备。 学会使用与机械加工工艺和工装设计有关的手册及图纸资料 二、零件的工艺分析 原始资料如下: 零件材料: 40Cr 技术要求:(1)清理毛刺; (2)调质处理。 生产批量:大批量生产,2班制 零件图样分析:

尺寸:如图所示 粗糙度:下凹面旁边两个支撑脚粗糙度要求为 3.2,左端面粗糙度要求为3.2,内孔粗糙度要求为 3.2,底部凹面中间的粗糙度保持原供应面,其余表面要求为6.3. 精度要求:由该零件的功用和技术要求,确定其精度为一般级数。 三、选择毛坯,设计毛坯 1、确定毛坯的种类 机械产品及零件常用毛坯种类有铸件、锻件、焊接件、冲压件以及粉末冶金件和工程塑料等。根据要求的零件材料,零件对材料组织性能的要求,零件结构及外形尺寸,零件生产纲领,选择合适的毛坯,材料为40Cr,考虑到车床在削螺纹或者其他车削工作中经常要正反向翻转,该零件经常承受冲击负荷以及向下的压力,所以应选择铸件,又考虑到该零件需大量生产,因此,我们选择金属模机器造型,从提高生产率和保证加工精度上讲也是应该的。 2、确定毛坯的形状 从减少机械加工余量和节约金属材料出发,毛坯选择接近零件的形状,各加工表面总余量和毛坯种类。 3、铸件机械加工余量、毛坯尺寸和公差的相关因素 4、要确定毛坯的尺寸公差及机械加工余量,应先确定以下各项因素。 (1)公差等级。由该零件的功用和技术要求,确定公差为普通级。 (2)质量mf。 (3)零件表面粗糙度。除底面、左端面和孔的粗糙度为Ra3.2以外,其余各加工表面的粗糙度都为Ra6.3.

先进制造技术的现状和发展趋势

先进制造技术的现状和 发展趋势 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

浅谈先进制造技术现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济发展的关键时期,制造技术是我们的薄弱环节。只有跟上发展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在激烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的发展状况和发展趋势。 1 先进制造技术的含义和特点 含义 先进制造技术(AMT)是以人为主体,以计算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸收机械、信息、材料、能源、环保等高新技术及现代系统管理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、管理及售后服务的制造全过程,实现优质、高效、低耗、清洁、敏捷制造,并取得理想技术经济效果的前沿制造技术的总称。 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产准备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术特别强调计算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统管理技术在产品设计、制造和生产

数字化设计技术总结

. . 1、广义的数字化设计技术涵盖以下内容: 1) 产品的概念化设计、几何造型、虚拟装配、工程图生成及相关文档编写。 2) 进行产品外形、结构、材质、颜色的优选及匹配,满足顾客的个性化需求,实现最佳的产品设计效果。 3) 分析产品公差、计算质量、计算体积和表面积、分析干涉现象等。 4) 对产品进行有限元分析、优化设计、可靠性设计、运动学及动力学仿真验证等,以实现产品拓扑结构和性能特征的优化。 2、曲线二阶参数连续性,二阶几何连续性含义及其之间的关系? 二阶参数连续性,记作C 2连续,是指两个曲线段在交点处有一阶和二阶导数的方向相同,大小相等。 二阶几何连续性,记为G 2连续,指两个曲线段在交点处其一阶、二阶导数方向相同,但大小不等。 关系: 1)曲线面造型中,一般只用到一阶和二阶连续性; 2)同级参数连续必能保证同级几何连续,同级几何连续不能保证同级参数连续; 3)二者形成的曲线面形状有差别。 3、实体造型优缺点: 优点:完整定义三维形体,确定物体的物性参数,方便的生成三维物体的多视图和剖视图,可以消除隐藏线和面,直接进行数控加工编程。 缺点:不能适应形体的动态修改,缺乏产品在产品设计开发整个生产周期中所需的所有信息,难以实现CAD/CAM/CAPP 集成。 4、参数化造型的含义和特点 参数化造型使用约束来定义和修改几何模型。约束反映了设计时要考虑的因素,包括尺寸约束、拓扑约束及工程约束(如应力、性能)等。 参数化设计中的参数与约束之间具有一定关系。当输入一组新的参数数值,而保持各参数之间原有的约束关系时,就可以获得一个新的几何模型。 5、逆向工程有哪些关键技术及其主要内容 实物逆向工程的关键技术:逆向对象的坐标数据测量、测量数据处理 模型重构 数据处理及模型重构技术等 主要内容:1)根据实物模型的结构特点,做出可行的测量规划,选择合适的数据采集,设备,将实物模型数据化。 2)初步处理:剔除误差明显偏大的数据点,补测某些关键点,测量数据分块处理,产品功能结构分析以及数据曲率分布,定义曲面边界,提取边界线,对测量数据进行分块,对边界进行规则化处理,提高边界拟合曲线由于疏密不均的数据精度。 3)根据所采集的样本几何数据在计算机内重构样本模型的过程,根据点数据特征分析,确定构建特征曲线所需的数据点,构造曲线网格,控制曲线的准确性和平滑度,编辑曲面间的连续性和光滑性,形成逆向对象的曲面和实体造型。 6、数字化仿真的基本步骤: 系统建模,仿真实验,仿真结果分析 1)在计算机上将描述实际系统几何、数学模型转化为能被计算机求解的仿真模型 2)运行仿真过程,进行仿真研究过程,对所建立的仿真模型进行试验求解的过程 3)仿真结果分析:从试验中提取有价值的信息以指导实际系统的开发 7、有限元分析方法的基本原理 将形状复杂的连续体离散化为有限个单元组成的等效组合体,单元之间通过有限个节点相互连接;根据精度要求,用有限个参数来描述单元的力学或其他特性,连续体的特性就是全部单元体特性的叠加;根据单元之间的协调条件,可以建立方程组,联立求解就可以得到所求的参数特征。 5/数字化开发技术: 以计算机辅助设计CAD 、计算机辅助工程分析CAE 为基础的数字化设计DD 和计算机辅助制造CAM 为基础的数字化制造DM 技术,是产品数字化开发技术的核心内容。 4/数字化开发技术的意义: 产品的数字化开发技术深刻地改变了产品设计、制造和生产组织模式,成为加快产品更新换代、提高企业竞争力、推进企业技术进步的关键技术和有效工具。 3/数字化制造技术包括: 用于编制零件的制造工艺的成组技术GT 及计算机辅助工艺规划CAPP 技术; 控制刀具和机床的相对运动,进而实现零件加工的数控NC 编程及数控加工技术; 实现产品快速开发的快速原型制造RPM 技术; 实现快速复制的逆向工程RE 技术 1. 什么是数字化设计,涵盖哪些环节和内容? 数字化设计(DD)是以实现新产品设计为目标,以计算机软硬件技术为基础,以数字化信息为辅助手段,支持产品建模、分析、修改、优化以及生成设计文档的相关技术的有机集合. 2. 论述数字化设计、制造与产品开发之间的关系。 从产品开发的角度,数字化设计和数字化制造之间具有密切的双向联系:只有与数字化制造技术结合,产品数字化设计模型的信息才能被充分利用;只有基于产品的数字化设计模型,才能充分体现数字化制造的高效性。

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势

摘要近年来, 制造业出现了世界范围的研究并采用“先进制造技术”的浪潮,先进制造技术已成为当代国际间的科技竞争的重点。本文论述了先进制造技术的发展现状与发展趋势,指出:信息化、精密化、集成化、柔性化、动态化、虚拟化、智能化、绿色化将是未来制造技术的必然发展方向。 1.先进制造技术简介 1.1先进制造技术的定义 先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成了现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是不断利用新技术逐步发展和完善的技术,因而它具有动态性和相对性。先进制造技术以提高企业竞争能力为目标,应用于产品的设计、加工制造、使用维修、甚至回收再生的整个制造过程,强调优质、高效、清洁、灵活生产,体现了环境保护与可持续发展和制造的柔性化。 1.2 先进制造技术的内涵和技术构成 先进制造技术的技术构成可以分为以提高生产效率和快速响应市场需求为 目的的技术构成和以满足特种需求为目的的技术构成。 以提高生产效率和快速响应市场需求为目的的技术构成强调制造系统与制 造过程的柔性化、集成化和智能化。包括: (1) 系统理论与技术(着重制造系统组织优化与运行优化,以提高制造系统的整体柔性与效率) 。 (2) 制造过程的单元技术(着重制造过程的优化,以提高单元的效率与精 度) 。系统理论与技术涉及范围包括:CIMS、敏捷制造、精益生产、智能制造等。制造过程单元技术涉及的范围包括:设计理论与方法、并行工程、系统优化、运行、控制、管理、决策与自组织技术、虚拟制造技术、制造过程智能检测、信息处理、状态检测、补偿与控制、制造设备的自诊断与自修复、智能机器人技术、

023《机械制造技术课程设计》

《机械制造技术课程设计》课程标准 课程名称:《机械制造技术课程设计》课程编码:0508062 学分:1 总学时:28 学时 适用专业:三年制高职数控技术专业 一、前言 1.课程性质 《机械制造技术课程设计》是机械制造类专业学生的大型设计训练,是后续毕业设计的重要基础。本课程在二年级开设,其前导课程是《机械产品测绘》、《机械设计基础课程设计》《金工实习》,后续课程有《数控编程》、《毕业设计》等。 2.基本理念 通过为期一周的对真实夹具结构的设计,使学生将所学理论和生产实践结合起来,牢固地掌握机床夹具设计基本知识,了解机床夹具的工作过程,提高机床夹具设计能力。同时训练学生查阅资料、运用设计手册、标准和规范的能力,以及工程绘图、设计计算、计算机操作等方面的能力。 3.设计思路 本课程设计是安排在《机械制造技术》课程学习之后开展的,是对该课程知识的巩固和深化。以一道工序的夹具设计作为一个项目进行,以企业产品设计流程为学习主线,通过学生在校内高仿真的生产环境之下的真实演练及模拟,来培养学生岗位能力及职业素养。教学效果评价采取过程评价与结果评价相结合的方式,以学生对每一个项目的设计思路、方案确定、运用相关技术资料的能力、职业素质表现为评价重点,评价职业能力。 二、课程目标 1.总体目标 《机械制造技术课程设计》是机械制造类专业学生真实性设计训练。其主要目的是:综合运用理论知识,解决工件定位方案和夹紧机构设计和主要零部件的设计。学习和掌握通用定位方案、夹紧装置、对刀元件、分度元件、加具体的一般设计方法;培养学生工程设计能力和分析问题、解决问题的能力及创新意识和创造能力;训练从事机械夹具设计的基本技能,包括查阅资料、运用设计手册、标准和规范的能力以及工程绘图、设计计算、计算机操作等方面的能力。为后续的专业课打下良好的基础。 2.具体目标 知识目标 ①掌握夹具定位方案的设计和定位元件的选用,能进行定位精度分析;

数字化设计与制造的现状和关键技术讲解学习

数字化设计与制造的现状和关键技术 一、数字化设计与制造的发展现状 数字化设计与制造主要包括用于企业的计算机辅助设计(CAD)、制造(CAM)、工艺设计(CAPP)、工程分析(CAE)、产品数据管理(PDM)等内容。其数字化设计的内涵是支持企业的产品开发全过程、支持企业的产品创新设计、支持产品相关数据管理、支持企业产品开发流程的控制与优化等,归纳起来就是产品建模是基础,优化设计是主体,数控技术是工具,数据管理是核心。 由于通过CAM及其与CAD等集成技术与工具的研究,在产品加工方面逐渐得到解决,具体是制造状态与过程的数字化描述、非符号化制造知识的表述、制造信息的可靠获取与传递、制造信息的定量化、质量、分类与评价的确定以及生产过程的全面数字化控制等关键技术得到了解决,促使数字制造技术得以迅速发展。 作为制造业的一个分支,船舶行业要实现跨越式发展,必须以信息技术为基础。世界造船强国从CAX开始,逐步由实施CIMS、应用敏捷制造技术向组建“虚拟企业”方向发展,形成船舶产品开发、设计、建造、验收、使用、维护于一体的船舶产品全生命周期的数字化支持系统,实现船舶设计全数字化、船舶制造精益化和敏捷化、船舶管理精细化、船舶制造装备自动化和智能化、船舶制造企业虚拟化、从而大幅度提高生产效率和降低成本。所谓数字化设计就是运用虚拟现实、可视化仿真等技术,在计算机里先设计一条“完整的数字的船”。不仅可以点击鼠标进入船体内部参观一番,还可以在虚拟的大海中看它的速度、强度、抗风浪能力。这样一来船舶设计的各个阶段和船、机、舾、涂等多个专业模块在同一数据库中进行设计。 船舶是巨大而复杂的系统,由数以万计的零部件和数以千计的配套设备构成,包括数十个功能各异的子系统,通过船体平台组合成一个有机的整体。造船周期一般在10个月以上,既要加工制造大量的零部件,又要进行繁杂的逐级装配,涉及物资、经营、设计、计划、成本、制造、质量、安全等各个方面。这样的一个复杂的系统需要非常强大的信息处理能力。我国船舶行业今年来虽有很大的发展,但与国际造船强国相比,无论在产量,还是在造船技术上差距甚大,信息化水平落后是直接原因。其中,集成化设计系统与生产进程联系不紧密、船舶零部

机械制造技术基础课程设计设计说明书.

课程设计 课程名称:机械制造基础课程设计 设计题目:年产量为10000件的拨叉的机械加工工艺规程及 典型夹具设计 学院: ****************** 专业: **************** 年级: 101班 学生姓名: *** 指导教师: *** 日期: 2013.7.1~2013.7.12 教务处制

课程设计任务书 ***** 学院***************** 专业 2010 年级 学生姓名: *** 课程设计题目:年产量为10000件的拨叉的机械加工工艺规程及典型夹具设计 课程设计主要内容: 1、绘制拨叉零件的零件图和毛坯图。 2、设计拨叉零件的机械加工工艺规程,并填写: 1)整个零件的机械加工工艺过程卡; 2)整个零件关键工序的机械加工工序卡。 3、以小组为单位设计某工序的夹具一套,绘出总装图。 4、编写设计说明书。 设计指导教师(签字): 教学基层组织负责人(签字): 年月日

一、摘要 此次,课程设计的主要任务是年产量为10000件的拨叉的机械加工工艺规程及典型夹具的设计。要求在设计中能初步的学会综合应用以前所学的课程,并利用图书馆资源查找自己所需的相关内容。通过此次课程设计应能达到以下要求: 1、能熟练地运用机械制造工艺学的基本理论和夹具设计原理,准确的解决一个零件在加工中的定位,夹紧及其工艺规程的制定。 2、通过对某一道工序的加工数据的查询与计算,学会解决加工过程中某工序所需的工艺参数。 3、通过对某一道工序的夹具设计,学会工艺装备设计的一般办法,提高自己结构设计的能力。 4、学会利用图书馆资源,学会使用手册、查询相关资料。 关键词:拨叉、工艺分析、精度、工艺规格设计、铣床、花键 二、前言 机械制造技术基础课程设计是我们在大学学完了全部基础课,专业基础课及专业课后进行的。是我们在毕业设计前对所学的各科课程得一次综合式的复习,也是一次理论联系实际的训练。 我设计的是主要任务是年产量为10000件的拨叉的机械加工工艺规程及典型夹具的设计。在课程设计的两个周时间里,查阅了很多手册,终于把我的设计任务完成,在典型夹具的设计的设计中我们小组充分体现出了合作精神,在一次次的提出问题,查阅大量书籍解决问题,需求老师帮助的过程中,我们顺利的完成了此次课程设计。

相关文档
最新文档