开关电源磁芯尺寸和类型的选择(凭经验)

开关电源磁芯尺寸和类型的选择(凭经验)
开关电源磁芯尺寸和类型的选择(凭经验)

单端反激式开关电源磁芯尺寸和类型的选择

字体大小:大| 中| 小2008-08-28 12:53 - 阅读:6184 - 评论:2

https://www.360docs.net/doc/c01265954.html, 徐丽红王佰营

A、InternationalRectifier公司--56KHz

输出功率推荐磁芯型号

0---10W

EFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25

10-20W

EE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25

20-30W

EI25 EF(D)25 EPC25 EPC30 EF(D)30 ETD29 EER28(L)

30-50W

EI28 EER28(L) ETD29 EF(D)30 EER35

50-70WEER28L

ETD34 EER35 ETD39

70-100W

ETD34 EER35 ETD39 EER40 E21

摘自InternationalRectifier,AN1018-“应用IRIS40xx系列单片集成开关IC开关电源的反激式变压器设计”

B、ELYTONE公司https://www.360docs.net/doc/c01265954.html,

型号输出功率(W)

<5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 EI50 EI60 -- EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65

<5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EF EF12.6 EF16 EF20 EF25 EF30 EF32 -- --

EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 -- -- EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 -- -- EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD -- -- ETD29 ETD34 ETD44 ETD49 ETD54 --

EP EP10 EP13 EP17 EP20 -- -- -- -- RM RM4 RM5 RM6 RM10 RM12 RM14 -- -- POT POT1107 POT1408 POT1811 POT2213 POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC -- -- -- -- -- EC35 EC41 EC70 摘自PowerTransformers OFF-LINE Switch Mode

APPLICATION NOTES

"Converter circuitas a function of S.M.P.S. output voltage (Vo) and output power (Po)"

C、Fairchild Semiconductor公司--67KHz

Output Power EIcore EE core EPC core EER core

0-10W EI12.5 EE8 EPC10

EI16 EE10 EPC13

EI19 EE13 EPC17

EE16

10-20W EI22 EE19 EPC19

20-30W EI25 EE22 EPC25 EER25.5

30-50W EI28 EE25 EPC30 EER28

EI30

50-70W EI35 EE30 EER28L

70-100W EI40 EE35 EER35

100-150W EI50 EE40 EER40

EER42

150-200W EI60 EE50 EER49

EE60

The core quickselection table For universal input range, fs=67kHz and 12V singleoutput

摘自:Application Note AN4140

Transformer Design Consideration for off-lineFlybackTMConverters using Fairchild Power Switch (FPS)

D、单端反激式变压器磁芯的选择公式https://www.360docs.net/doc/c01265954.html,

Ve =5555 * P / f

式中:Ve——为磁芯的体积:Ve=Ae*Le;单位为:毫米立方;

P——为输入功率;单位为:瓦;

f——为开关频率;单位为:千赫兹;

本公式假设:Bm=0.3T, Lg/Le=0.5%=气隙长度/磁芯等效长度;

如果Lg/Le=气隙长度/磁芯等效长度=1%时,又如何计算呢?(请考虑)

输出功率、磁芯截面积和开关频率决定气隙,因为在反激式开关电源中气隙的体积大小决定储能的多少,频率决定能量传输的快慢;

如:EI25Ve=2050mm3,Ae=42平方毫米,Le=49.4mm;f=40KHz;η=0.75;

Lg= 0.005*49.4 = 0.247mm ---气隙长度

Pin =Ve*F/5555 = 2050*40/5555 = 14.76W;

Pout =η*Pin= 0.75 * 14.76 = 11.07W;

若:f=100KHz 则:

Pout = 11.07W *(100/40) = 27.675W;

反激式开关电源设计的思考一

字体大小:大| 中| 小2007-03-01 11:00 - 阅读:4593 - 评论:3

反激式开关电源设计的思考一

王佰营徐丽红

对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。

励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。

正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。

反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:

第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;

第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。

磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。

由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。

如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。

反激式开关电源设计的思考二---气隙的作用

王佰营徐丽红

https://www.360docs.net/doc/c01265954.html,

“反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁

芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?

由全电流定律可知:

由上例可知,同一个磁芯在电流不变的条件下,仅增加1mm气隙,加气隙的磁感强度仅为不加气隙的磁感应强度的4.8%,看来效果相当明显。

加了气隙后,是否会影响输出功率呢?换句话说,加了气隙变压器还能否储

原来那些能量呀?看一下下面的例子就知道了:

在“思考一”一文中已讨论过,当开关管导通时,次级绕组均不构成回路,此

时,变压器象是仅有一个初级绕组带磁芯的电感器一样,母线将次级需要的全部

能量都存在这个电感器里。如下图1就是一个有气隙的电感器:

图1表示一个磁芯长为lm,气隙长为lg,截面积为Ae的磁芯,在其上绕N匝线圈,当输入电压为Ui时,输入功率为Wi:

6式右边的积分为图2中阴影部分面积A,即就是说:

磁场能量的大小等于磁化曲线b和纵轴所围成的面积大小。图1中,假定磁路

各部分的面积相等,磁芯各部分的磁场强度为Hm,气隙部分的磁场强度为Hg,由

全电流定律得:

11式右边第一项是磁芯中的磁场能量,第二项是气隙部分的磁场能量,分别用

Wi和Wg表示;那么:

图3中,曲线m表示图1电感器无气隙时的磁化曲线,曲线g表示有气隙时的磁化曲线。图中,面积Am表示储存在磁芯部分的磁场能量;面积Ag表示储存在气隙

部分的磁场能量。上面讲了气隙的作用以及磁场能量在变压器中的分布,那么,

根据输出功率如何选用磁芯呢?将在反激式开关电源设计思考三中讨论。

反激式开关电源设计的思考三---磁芯的选取字体大小:大| 中| 小2007-03-09 14:11 - 阅读:4852 - 评论:2 反激式开关电源设计的思考三(磁芯的选取)

王佰营徐丽红

https://www.360docs.net/doc/c01265954.html,

在DCM状态下选择:

Uin-电源输入直流电压

Uinmin-电源输入直流电压最小值

D-占空比

Np-初级绕组匝数

Lp-初级绕组电感量

Ae-磁芯有效面积

Ip-初级峰值电流

f-开关频率

Ton-开关管导通时间

I-初级绕组电流有效值

η-开关电源效率

J-电流密度

通过(3)式可方便计算出反激式开关电源在电流断续模式

时磁芯的AeAw值,通过查厂商提供的磁芯参数表就可选择

合适的磁芯,在选择磁芯时要留一定的余量。

例如:有一反激式开关电源输出功率为10W,开关频率为

40KHz, ΔB为0.16T,电流密度取4.5A/mm2磁芯选用EE系列,那么由公式(3)可知:

考虑到实际绕线的绝缘层等的影响,须考虑填充系数(取0.8), 即:

Ap = AeAw/0.8=1.736×1000 / 0.8 = 2207.5

通过上面计算,EE19磁芯比较接近,考虑到辅助绕组和其他因素选择EE20磁芯。

为计算方便,(3)式可修正为:

Ap = AwAe = 6500×P0 / (△B×J×f) (4)

单位:

P0 ----- 瓦特;

△B ---- 特斯拉

J ------ 安培/平方毫米

f ------ 千赫兹

Ap ------ 毫米的四次方

在实际使用中一定要注意公式的应用条件,公式(4)是在

单端反激式开关电源电流断续模式下推导出来的,并且用

了一系列假设:

1.窗口使用系数SF:0.4

2.初级绕组面积Ap = 次级绕组面积As

3.当直流输入电压最低时Dm=0.5

4.电源效率η= 0.8

5.填充系数为0.8

因此,该计算值在使用中要根据实际情况酌情修正,并且作

为我们选择磁芯的一个大致参考,由于工艺的原因必须通过

实践验证而最终确定。

另外单端反激式开关电源中,他激式和自激式的效率差别

比较大,一般自激式的效率比较低,大概在0.7左右,使用

公式(4)时要乘以(0.8/0.7=)1.15进行修正。

磁芯选好后,在反激式开关电源设计过程中应该遵循的规则

将在反激式开关电源设计的思考四中讨论。

反激式开关电源设计的思考四-反激式开关电源设计应遵循的规则字体大小:大| 中| 小2007-03-20 16:41 - 阅读:1783 - 评论:10 反激式开关电源设计的思考四

-反激式开关电源设计应遵循的规则

王佰营徐丽红

(https://www.360docs.net/doc/c01265954.html,)

由于反激式开关电源的特殊性,在设计时要特别考虑的问

题就多一些,归纳起来有如下几点:

一、任何时刻开关管上所承受的电压都要低于它所能够承受

的最大电压,并且要有足够的安全裕量;

以此为出发点,就确定了变压器的变比:

Ucemax = Uinmax + N·Uo + Upk + Uy

式中:Ucemax-开关管所能承受的最大电压

N-变比初级匝数Np / 次级匝数Ns

Uin-直流输入电压最大值

Uo-输出电压

Upk-漏感所产生的电压

Uy-电压裕量

此式很重要一点,就是确定了变比N,变比一确定一系列问题就确定下来;比如:反射电压:VoR =N·Vo;

占空比: D = VoR /( Vin +VoR);

导通时间:Ton = D·T

变比一定要选择合适,以使电路达到优化;若使用双极型

晶体管对其基电极的控制很重要,因为它影响着Vcemax的

大小:Vces>Vcer>Vceo;在ce间承受最高电压时最好保证

be结短接或者反偏,此时晶体管就可承受较高的反偏电压.

二、任何时刻都应保证磁芯不饱和;

由于反激式开关变压器的特殊性,磁芯饱和问题在反激式

变换器的设计中尤为重要。一旦磁芯饱和,开关管瞬间就

会损坏。为防止磁芯饱和反激式开关变压器磁芯一般都留

气隙,显著扩大磁场强度的范围,但仅靠气隙并不能完全

解决磁芯饱和的问题,由磁感应定律很容易得出:

由(1)式知:

磁感应强度与输入电压和导通时间有关。在输入电压一

定时,由反馈电路保证Ton的合适值。

在工作过程中,根据磁饱和的形式分两种情况:

一种是:一次性饱和:

当反馈环路突然失控时,在一个周期内导通一直持续,

直到过大的Ip使磁芯饱和而使开关管立即损坏;

另一种是:逐次积累式饱和:

磁芯每个周期都有置位与复位动作,反激式开关电源磁

芯置位是由初级绕组来实现,磁芯复位是由次级绕组和

输出电路来实现。当电路等设计不当时,每次磁芯不能

完全复位,一次次的积累,在若干周期内磁芯饱和。就像

吹气不一样,一口气吹破就相当磁芯一次性饱和;每吹一次,就排气,但每次排气量都比进气量少一点,这样循环

几次后,气球就会被撑破的;若每次充排气量相同,气球

就不会破的,磁芯也是如此,如下图:

磁芯从a→b→c为置位,从c→d→a为复位,每个周期都要回到a,磁芯就不会饱和。对于反激式开关电源的断续模式,磁芯复位一般是不成问题的。

三、始终保持变换器工作于一个模式如CCM或DCM;不要在两个模式之间转换,这两种模式不同,对反馈回路的调节

电路要求也不同,在考虑某一种模式而设计的调节电路,

如运行到另一模式时易引起不稳定或者性能下降。

四、保证最小导通时间不接近双极性开关管的存储时间;(

MOSFET管例外)

在设计反激式开关电源时,特别在开关电源频率较高

、直流输入电压最高,负载又较轻时,开关导通时间

Ton最小,若这个时间接近或小于双极性晶体管的存储时

间(0.5μs~1.0μs)时,极易造成开关管失控,而使磁

芯饱和。此时就要重新审视开关频率的选择,或能否工作

于如此高电压或者通过调节占空比来适应。或者选用其

他电路拓扑。

五、不要将变换器的重要元件的参数选得接近分布参数;具

体来说,电阻不要太大,电容器和电感器不要太小。

(1)许多反激式开关电源都有一个振荡频率,由IC芯片提供,如UC3842,由RC决定,当把R选择太大,C太小时,就易使稳定性特别差;如电容C小得接近分布参数,也就是

说取掉该电容由线路板及其它元件间的分布参数而形成

的容值都和所选的电容容值差不多;或者所选电阻太大以

至于线路板上的漏电流所等效的阻值都和所选的电阻大小

差不多;这将造成工作不稳定,如温度或湿度变化时其

分布参数也跟着变化,严重影响振荡的稳定性。R一般

不要大于1M欧,C一般不要小于22PF。

(2)反激式开关电源的输出功率如下式:(DCM)

注意:由于笔误,应为:U2=U*U,D2=D*D

由(2)式可知:

在电流断续模式时,当电压和频率固定的情况下,输出功率和变压器的初级电感成反比。即要增加功率就要减小初级绕组的电感量。反激式开关变压器的特殊性:当开关管导通时变压器相当于仅有初级绕组的一个带磁芯的电感器,当这个电感器小到一定值时就不可太小了,当小至和分布电感值差不多时,这样变压器的参数就没有一致性,工作稳定性差,可能分布参数的变化都会使整个电感值变化一少半,电路的可靠性就无从谈起。初级电感值至少应是分布电感的10倍以上。

(3)同样道理,磁芯的气隙也不可选的太少,太小的话,磁芯稍微的变动(如热胀冷缩)对气隙来说都显得占的比例很大,这样的变压器就无一致性可言,更无法批量生产。

六、反激式变换器的输出滤波电容比起其它拓扑形式的电路

所受的冲击更大,它的选择好坏对整个电源的性能及寿命有举足轻重的作用。选择时,一般是按纹波电压要求初

选电容值,用电容的额定纹波电流确定电容值,这样比

较安全稳妥。当然,耐压值和温度等级也要足够。

七、降低损耗,遏制温升,提高效率,延长寿命

开关电源内部的损耗主要分四个方面:

(1)开关损耗如:功率开关,驱动;

(2)导通损耗如:输出整流器,电解电容中电阻损耗;(3)附加损耗如:控制IC,反馈电路,启动电路,驱动电路;

(4)电阻损耗如:预加负载等;

在反激式开关电源中,功率开关和驱动以及输出整流部

分占损耗的90%多,磁性元件占5%,其它占5%;损耗

直接影响效率,更影响电源的稳定性和工作寿命。损耗

都以发热而表现出来,晶体管和电容和磁性元件都对温

度很敏感;下面看一下温度的影响:

(1)温度每升高10℃,电解电容的寿命就会减半

(2)在高温和反向电压接近额定值时,肖特基二极管的漏电很严重,就像阴阳极通路一样;

(3)通用磁性材料,从25℃到100℃饱和磁感应强度下降30%左右;在这里,磁性材料的损耗虽然说占比例很小但是它

对整个开关电源的影响非常大。比如在正常工作时,设计

的最大磁通密度偏大,由于温升的原因将使饱和磁感应强

度下降,再加上反馈回路的延迟效应而使导通时间加长,

极易使磁芯饱和,瞬间开关管损坏。在此设计时,最好保

证铜耗接近于磁耗,初级绕组的铜耗接近于次级绕组的铜

耗以达到最优化的设计防止磁芯过渡温升。

(4)MOSFET管,每升高25℃,栅极阀值电压下降5%;MOSFET 管的最大节点温度时150℃,节点温度的理想值为105℃,

最高不要超过125℃;MOSFET管,Rds随温度的升高而增大. (5)双极型晶体管,随温度的升高,Vce而减小,在环境温度较高或接近最高结温时,晶体管的实际最高耐压会有所下

降,并且漏电流会更进一步增加,很易造成热损耗。所以

,在设计时,尽可能降低元件本身损耗而造成的温升,也

要注意远离热源,不因外界原因而造成温升。更要优化设

计减小损耗,提高效率,延长元器件及整个电源的工作寿

命。

反激式开关电源设计的思考五-常用公式的理解字体大小:大| 中| 小2007-03-28 11:57 - 阅读:3136 - 评论:12

反激式开关电源设计的思考五

-常用公式的理解

王佰营徐丽红

https://www.360docs.net/doc/c01265954.html,

在反激式开关电源设计之前,我们必须对要用到的公式有所了解,这样不至于造成不管公式适用条件如何,拿来就用,以致看似合理实则差之远矣。下面将在反激式开关电源设计中常用的公式分析如下:

再讲电源设计用公式前先看一看一些基本的知识。

一、基本知识

1.磁场的产生:

磁场是由运动电荷产生的,变压器磁芯中的磁场是由绕组中的传导电流产生,磁铁的磁场是由“分子电流”产生。

2.右手定则

右手定则用于判断通电螺线管的磁极(N极/S极,或者说磁力线的方向),用右手握住螺线管,弯曲的四指沿电流回绕方向将拇指伸直,这时拇指指向螺线管的N极或者磁力线的方向。

3.磁感应强度B

磁场是由运动电荷产生的,同时,运动的电荷在磁场中又会受到力的作用。由此,人们通过在磁场中运动的电荷所受磁场力的大小来反映磁场的强弱;让不同电量(q>0)的电荷,在垂直磁场的方向以不同的速度运动,该电荷就会受力,虽然电荷在各点受磁场力的大小不同,但是力与电荷量以及速度

的比值在同一点却是相同的,唯一的,这个值就反映了该点磁场的强弱。因此:

B =F /q.v (1)

该式的物理意义为:磁场中某点的磁感应强度B的大小,在数值上等于单位

正电荷,以单位速度沿垂直磁场方向运动时,所受力的大小。磁感应强度的

单位:

4.磁通量φ

磁场不仅有强弱还有方向,用磁力线能很好的表示磁感应强度的方向,磁力

线是一些围绕电流的闭合线,没有起点也没有终点的曲线。把垂直穿过一个

曲面的磁感应线的条数称为穿过该面的磁通量。用φ表示。也形象的将磁感

应强度称为磁通密度,两者关系如下:

φ=B·S (2)

磁通的单位:1T·m2 = 1Wb(韦伯)

5.磁场强度H

既然点电荷之间的相互作用服从库仑定律,那么,库仑认为点磁荷也应有类

似的定律。

此式为磁的库仑定律;

既然电场强弱可通过点电荷去测量,那么磁场的强弱也就可用点磁荷来测量

,类似的,把点磁荷放在磁场中,根据其受力的大小就可反映该点磁场的强弱,因此就引入了磁场强度的物理量H

H =F/qm0 (4)

该式中F是试探点磁荷qm0在磁场某点所受的力,该式的物理意义:磁场中某

点的磁场强度H的大小在数值上等于单位磁荷在该点所受到的磁场力的大小。

6.安培环路定理

磁感应线是套连在闭合载流回路上的闭合线,若取磁感应强度沿磁感应线的环路积分,则磁感应强度沿任何闭合环路L的线积分,等于穿过这个环路所有电流的代数和的μ0倍。

∮(L)B·dl =μ0∑I(5)

在有磁介质时,安培环路定律表示为:

∮LB·dl =μ0(∑I +Is)(6)

(6)式中:Is-为磁化电流

I -传导电流

介质内任何曲面S的磁化电流强度I s为

Is =∮LM dl (7)

(7)式中,M为磁化强度,在数值上等于磁化面电流密度

代(7)式入(6)式得:

∮LB·dl =μ0(∑I +∮LM dl)

或:∮L(-M)·dl =∑I

令:H =-M

则:∮LH·dl =∑I(8)

(8)式表示:

磁场强度沿任一闭合路径的线积分只与传导电流有关。也说明传导电流确定以后,不论磁场中放进什么样的磁介质,也不论磁介质放在何处,磁场强度的线积分都只与传导电流有关。

因而,引入磁场强度H这个物理量后,就可绕过磁介质磁化,磁化电流等不方便测量、处理等一系列问题,而可方便的从宏观上处理磁介质的存在时的磁场问题。

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.360docs.net/doc/c01265954.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.2 4.05±0.303.40±0.20 5.00±0.207.60 2.65±0.201.90±0.20 5.30 EPC13/13 13.30±0.3 6.60±0.304.60±0.205.60±0.2010.50 4.50±0.302.05±0.208.30 EPC17/17 17.60±0.5 8.55±0.306.00±0.307.70±0.3014.30 6.05±0.302.80±0.2011.50 EPC19/20 19.60±0.5 9.75±0.306.00±0.308.50±0.3015.80 7.25±0.302.50±0.2013.10 EPC25/25 25.10±0.512.50±0.38.00±0.3011.50±0.320.65 9.00±0.304.00±0.2017.00

EPC功率磁芯电气特性及有效参数

注:AL值测试条件为1KHz,0.25v,100Ts,25±3℃ Pc值测试条件为100KHz,200mT,100℃ EE、EEL、EF型功率磁芯

特点:引线空间大,绕制接线方便。适用围广、工作频 率高、工作电压围宽、输出功率大、热稳定性能好 用途:广泛应用于程控交换机电源、液晶显示屏电源、 大功率UPS逆变器电源、计算机电源、节能灯等领域。 EE、EEL、EF型功率磁芯尺寸规格 Dimensions(mm)尺寸 磁芯型号TYP A B C D Emin F EE5/5.3/2 5.25±0.15 2.65±0.15 1.95±0.15 1.35±0.15 3.80 2.00±0.15 EE8.3/8.2/3.6 8.30±0.30 4.00±0.25 3.60±0.20 1.85±0.20 6.00 3.00±0.15 EE10/11/4.8 10.20±0.30 5.60±0.30 4.80±0.25 2.50±0.257.50 4.40±0.30 EE12.8/15/3.6 12.70±0.307.40±0.30 3.60±0.25 3.60±0.258.60 5.50±0.30 EE13/12/6 13.20±0.30 6.10±0.30 5.90±0.30 2.70±0.309.80 4.70±0.30 EE13/13W 13.00±0.40 6.50±0.30 9.80±0.30 3.60±0.209.00 4.60±0.20 EE16/14/5 16.10±0.407.10±0.30 4.80±0.30 4.00±0.3011.70 5.20±0.20 EE16/14W 16.10±0.407.25±0.30 6.80±0.30 3.20±0.3512.50 5.60±0.30 EE19/16/5 19.10±0.408.00±0.30 4.85±0.30 4.85±0.3014.00 5.60±0.30 EE19/16W 19.30±0.408.30±0.307.90±0.30 4.80±0.3014.00 5.70±0.30 EE22/19/5.7 22.00±0.509.50±0.30 5.70±0.30 5.70±0.3015.60 5.70±0.30 EE25/20/6 25.40±0.5010.00±0.30 6.35±0.30 6.35±0.3018.60 6.80±0.30

开关电源参数计算

(1)输入电压:185V AC~240V AC (2)输出电压1:+5VDC ,额定电流1A ,最小电流750mA ; (3)输出电压2:+12VDC ,额定电流1A ,最小电流100mA ; (4)输出电压3:-12VDC ,额定电流1A ,最小电流100mA ; (5)输出电压4:+24VDC ,额定电流1.5A ,最小电流250mA ; (6)输出电压纹波:+5V ,±12V :最大100mV (峰峰值);+24V :最大250mV (峰峰值) (7)输出精度:+5V ,±12V :最大± 5%;+24V :最大± 10%; (8)效率:大于80% 3. 参数计算 (1)输出功率: 5V 112V 1224V 1.565 out P A A A W =?+??+?= (3-1) (2)输入功率: 6581.2580%0.8 out in P W P W = == (3-2) (3)直流输入电压: 采用单相桥式不可控整流电路 (max)240VAC 1.414=340VDC in V =? (3-3) (min)185VAC 1.414=262VDC in V =? (3-4) (4)最大平均电流: (m a x ) (m i n )81.25 0.31262in in in P W I A V V == = (3-5) (5)最小平均电流: (min)(max) 81.250.24340 in in in P W I A V = = = (3-6) (6)峰值电流: 可以采用下面两种方法计算,本文采用式(3-8)的方法。

(min)max (min)(min)225581.25 1.550.4262out out out Pk C in in in P P P W I I A V D V V V ?== ====? (3-7) min 5.5 5.581.25 1.71262out Pk C in P W I I A V V ?== == (3-8) (7)散热: 基于MOSFET 的反激式开关电源的经验方法:损耗的35%是由MOSFET 产生,60%是由整流部分产生的。 开关电源的损耗为: (180%)81.25 20%16.25D in P P W W =?-=?= (3-9) MOSFET 损耗为: 35%16.2535% 5.69D MOSFET D P P W W -=?=?= (3-10) 整流部分损耗: (5)55( )60%()16.2560%0.756565D V D W W P P W W W W +=??=??= (3-11) (12)12122()60%2()16.2560% 3.66565D V D W W P P W W W W ±=???=???= (3-12) (242)3636()60%()16.2560% 5.46565D V D W W P P W W W W +=??=??= (3-13) (8)变压器磁芯: 采用天通的EER40/45,饱和磁通密度Bs 在25℃时大于500mT ,在100℃时大于390mT 。窗口有效截面积Ae=152.42mm 2。 所以,取 max 11 0.390.222 s B B T T = =?≈ (3-14) Ae=152.42mm 2 (3-15) (9)开关电源频率: 40f khz = (3-16) (10)开关电源最大占空比: max 0.4D = (3-17)

开关电源磁芯主要参数

第5章开关电源磁芯主要参数 5.1 概述 5.1.1 在开关电源中磁性元件的作用 这里讨论的磁性元件是指绕组和磁心。绕组可以是一个绕组,也可以是两个或多个绕组。它是储能、转换和/或隔离所必备的元件,常把它作为变压器或电感器使用。 作为变压器用,其作用是:电气隔离;变比不同,达到电压升、降;大功率整流副边相移不同,有利于纹波系数减小;磁耦合传送能量;测量电压、电流。 作为电感器用,其作用是:储能、平波、滤波;抑制尖峰电压或电流,保护易受电压、电流损坏的电子元件;与电容器构成谐振,产生方向交变的电压或电流。 5.1.2 掌握磁性元件对设计的重要意义 磁性元件是开关变换器中必备的元件,但又不易透彻掌握其工作情况(包括磁材料特性的非线性,特性与温度、频率、气隙的依赖性和不易测量性)。在选用磁性元件时,不像电子元件可以有现成品选择。为何磁性元件绝大多数都要自行设计呢?主要是变压器和电感器涉及的参数太多,例如:电压、电流、频率、温度、能量、电感量、变比、漏电感、磁材料参数、铜损耗、铁损耗等等。磁材料参数测量困难,也增加了人们的困惑感。就以Magnetics公司生产的其中一种MPP铁心材料来说,它有10种μ值,26种尺寸,能在5种温升限额下稳定工作。这样,便有10×26×5= 1300种组合,再加上前述电压、电流等电参数不同额定值的组合,将有不计其数的规格,厂家为用户备好现货是不可能的。果真有现货供应,介绍磁元件的特性、参数、使用条件的数据会非常繁琐,也将使挑选者无从下手。因此,绝大多数磁元件要自行设计或提供参数委托设计、加工。 本章将介绍磁元件的一般特性,针对使用介绍设计方法。结合线性的具体形式的设计方法,以后还将进一步的介绍。 5.1.3 磁性材料基本特性的描述 磁性材料的特性首先用B-H平面上的一条磁化曲线来描述。以μ表示B/H,数学上称为斜率,表示为tanθ=B/h;电工上称为磁导率,如图5.1所示。由于整条曲线多处弯曲,因此有多个μ值称呼。另外,从不同角度考查也有不同称呼。

开关电源磁芯尺寸功率等参数

开关电源磁芯尺寸功率等参数

————————————————————————————————作者:————————————————————————————————日期:

开关电源磁芯尺寸功率等参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

变压器输出功率与磁芯尺寸的关系

变压器输出功率与磁芯尺寸的关系 发布者:admin 发布时间:2012-4-20 阅读:64次 要使变压器输出更大的功率,我们希望在电压一定的情况下,圈数要尽可能的少、导线尽可能的粗。 这样才有利于提供较大的电流,输出更大的功率。前者需要较大的磁芯截面积,后者需要较大的磁芯窗口面积。因此要获得较大的输出功率磁芯尺寸必须够大才行。 变压器初级绕组的圈数可用下式来算: N = k *10^5 * U /(f *Ae* Bmax ) k 为最大导通时间与周期之比,通常取k=0.4; U 是初级绕组输入电压(V),(近似等于直流输入电压); f 是变压器的工作频率(KHZ); Ae 是磁芯的截面积(cm2); Bmax 是允许的磁通密度最大变化幅度(G) 因此,在一定电压下,增大截面积Ae、提高工作频率f和选择更大的峰值磁通密度Bmax,都有利于减少圈数,提高输出功率。但是,磁芯的损耗(铁损)是按Bmax的2.7次幂和f的1.7次幂呈指数增长的,Bmax还受磁芯饱和的限制。因此,提高工作频率f和选择更大的峰值磁通密度Bmax都是有限度的。大多数适合做开关电源的铁氧体磁芯频率通常限制在10-50KHZ以内,Bmax限制在2000G (高斯)以内,一般取Bmax=1600G较为合适。因此,功率主要靠磁芯截面积Ae、其次靠工作频率f控制。 但必须明确的是,这种控制关系是间接的而不是直接的,Ae加大和f提高只是表示对同样的电压,允许绕的圈数更少,只有实际把圈数减少了才能提高功率。如果在同样材料的一个大磁芯和一个小磁芯上,用一样的导线绕同样的圈数,对同样的输入电压输出功率是基本相同的。同样,如果一个做好的变压器,仅仅靠改变工作频率,也是不会使输出功率提高的。 联想到楼主张伟明的问题,因为变压器已经做好,所以我建议提高输入电压来提高功率;如果从变压器入手的话,可以尝试把导线适当加粗,同时把频率提高一些,以允许圈数能有所减少,这样就可加大输出功率。 导线加粗受到磁芯窗口面积Ac限制。用截面积为Ad的导线绕N圈,占用的窗口面积为: Awc = N *Ad = k * 10^5 * U *Ad / (f *Ae* Bmax ) 设,初级绕组窗口占用系数为Sn =Awc / Ac, Ad用电流I(有效值)和允许的电流密度J表示为 Ad=I/J/100,(Ad-平方厘米,I-A有效值,J-A/平方毫米) 则上式可写成:Ac* Sn = k * U *I*10^3 / ( f *Ae* Bmax * J) 或,U*I = Sn * Bmax * J * f *Ae* Ac * 10^-3 / k 因为输入功率等于输入电压U与电流平均值k*Ip的乘积,而电流有效值I 与峰值Ip的关系为 Ip= 1.58*I,所以输入功率Pi = 1.58*k*U*I = 1.58*Sn * Bmax * J * f *Ae* Ac * 10^-3 再乘上效率Ef就得到最大输出功率的表达式

常用铁氧体磁芯规格

常用铁氧体磁芯规格、型号与技术参数 功率铁氧体磁芯 EI EE EE PQ EC EI60 EE80 EE35 PQ50/50 EC90 EI50 EE72 EE30 PQ40/40 EC70 EI40 EE70 EE25 PQ35/35 EC52 EI35 EE60 EE19 PQ32/30 ECI70 EI33 EE55 EE16 PQ32/20 EER49/54 EI30 EE50 EE13 PQ26/25 EER49/43 EI28 EE49 EE10 PQ26/20 EER49/38 EI25 EE42 — PQ20/20 EER42/43 EI22 EE42/20 — PQ20/16 EER42/45 EI19 — — — EER40/45 EI16 — — UF102 EER28L 常用功率铁氧体材料牌号技术参数 项目 条件 单位 PC30 PC40 2500B B25 3C8 N27 μi — — 2500 2300 2500 2300 2000 2000 Bms H=1200A/m mT 510 510 490 510 450 510 Br H=800A/m mT 117 95 100 130 — — Hc — A/m 12 14.3 15.9 15.9 18.8 20 Tc — ℃ >230 >215 >230 >220 >200 >220 P 200mT23℃ 25KHz60℃ 100℃ KW/m3 130 600 95 600 900 48 KW/m3 90 — 70 — — — KW/m3 100 — 75 — — — 100mT60℃ 100KHz100℃KW/m3 — 450 — 450 — — KW/m3 — 410 — 410 — — 公司 — — TDK TDK TOKIN TOKIN FERROCXLUB E SIEMENS

磁芯种类和AP法选磁芯

磁芯分为铁氧体磁芯和合金类磁芯 铁氧体磁芯(常用的):锰锌系列,镍锌系列 铁氧体磁芯锰锌系镍锌系 组成 71%,MnO 20%, 其他为ZnO 50%,NiO 24%,其他为ZnO 特点电阻率高(10omh-cm) 铁芯损耗低 居里温度高电阻率高(omh-cm) 铁芯损耗较锰锌系高 工作频率高 居里温度高 形状EE,ER,EI,PQ,RM,POT DR,R,环形 用途功率变压器,EMI共模滤 波器,储能电感 常模滤波器,储能电感 合金类 磁芯 硅钢片铁粉芯铁硅铝合金铁镍合金钼坡莫合金 组成硅,钢极细的 铁粉和 有机材 料粘合铝6%,硅 9%,铁85% 组合成 镍50%, 铁50% 组合而 成 钼2%,铁17%, 镍81%组成 特点极高的磁导率 (μ约 60000) 很高的饱和磁 通密度 (0.6T~1.9T) 电阻率非常低 (取决于硅含 量),故使用频 率不高 成本低廉磁导率 在10~75 之间 低成本 铁芯损 耗很高 磁导率在 26~125之 间 成本中等 铁芯损耗低 饱和磁 通密度 高于铁 硅铝合 金 成本高 于铁硅 铝合金 铁芯损 耗于铁 硅铝合 金和铁 粉芯之 间 磁导率在14~550 之间 饱和磁通密度最 高 成本最高 铁芯损耗最低, 稳定性最好 型式片状或带状以 及加工后的O 型,R型等EE,ER, 环形等 环形环形环形根据变压器用途选磁芯: PQ功率磁芯:

功率传输变压器,开关电源变压器,滤波电感器,宽频及脉冲变压器,转换电源变压器 主要材质:TP3,TP4 EP型高导磁芯: 主要用于滤波器波形整理,消除杂波,使视频清晰或音频保真 根据工作频率选择磁芯适用的工作频率范围 TP3材质温度升高,功率呈下降趋势,中心工 作频率25KHz—200KHz TP4材质中心工作频率在200KHz—300KHz TH7,TH10,TH12材质中心工作频率小于150KHz 根据功率大小选择磁芯 小于5W可用磁芯ER9.5,ER11.5,EE8.3,EE10,EE13, EP7,EP10,RM4,UI19.8,URS7 5—10W可用磁芯ER20,EE19,RM5,GU14,EI22, EF16,EP13,UI11.5 10—20W可用磁芯ER25,EE20,EE25,RM6,GU18, EF20 20—50W可用磁芯ER28,EI28,EE28,EE30,EF25, RM8,GU22,PQ20系列,EFD20 50—100W可用磁芯ER35,ETD34,EE35,EI35,EF30, RM10,GU30,PQ26系列 100—200W可用磁芯ER40,ER42,EI40,RM12,GU36, PQ32系列 200—500W可用磁芯ER49,EC53,EE42,EE55,RM14, GU42,PQ35系列,PQ40系列,UU66 500W以上可用磁芯ER70,EE65,EE85,GU59,PQ50 系列,UU80,UU93 根据滤波器电感量大小: AL=(L/)*1000000() (准确的说法是叫电感系数,他是为了便于开关电源的匝数引入的,(N*N=Lp/Al 其中N为线圈的匝数,Lp为线圈的电感量,Al为电感系数)一般手册上给的是1匝线圈的电感量,有的给出的是1000的电感量.1mH=1000uH 1uH=1nH ,nH(纳亨) UU型磁芯1300—6000

磁芯规格对照表

Dimensions (mm)Ap Ae Aw A L Le Ve Wt P CL 100kHz 200mT Pt 100kHz 幅寬mm 窗口面积mm 2 PIN A * B * C ( cm 4 ) ( mm 2 )( mm 2 )(nH/N 2) ( mm ) ( mm 3 ) ( g ) @100℃(W) (W) 可配合BOBBIN EC353C8535.3*17.3*9.5 1.374184.30163.002100.077.406530.038.0021.5 8H EC413C8541.6*19.5*11.6 2.5894121.00214.002700.089.3010800.060.0024.58H EC523C8552.2*24.2*13.4 5.5980180.00311.003600.0105.0018800.0112.0028.312H EC703C8571.7*34.5*16.417.8281279.00639.003900.0144.0040100.0254.0041.412/34H EE05PC40 5.25*2.65*1.950.0013 2.63 5.00285.012.6033.10.160.02 1.1 2.76-8H EE6.3PC40 6.1*2.85*7.950.0015 3.31 4.46405.012.2040.40.240.02 2.76H EE8PC408.3*4.0*3.60.00917.0013.05590.019.47139.00.700.06 1.9 4.78 5.36H EE10/11PC4010.2*5.5*4.750.028712.1023.70850.02 6.60302.0 1.500.16 6.612.28V EE13PC4013.0*6.0*6.150.05701 7.1033.351130.030.20517.0 2.700.2357.422.210V EE16PC4016*7.2*4.80.076519.2039.851140.035.00672.0 3.300.31 8.527.36-10V H EE19PC401 9.1*7.95*5.00.124323.0054.041250.039.40900.0 4.800.42933.16-8V H EE19/16PC4019.29*8.1*4.750.119122.4053.151350.039.10882.0 4.800.41933.16-8V H EE20/20/5PC4020.15*10*5.10.119131.0050.701460.043.001340.07.500.51EE22PC4022*9.35*5.750.119141.0038.792180.039.401610.08.800.618.45208 V EE2329S PC4023*14.7*6 0.119135.80122.001250.064.902320.012.00 1.16EE25/19PC4025.4*9.46*6.290.119140.0078.202000.048.701940.09.100.99.842.5EE25.4PC4025.4*9.66*6.350.119140.3078.732000.048.701963.010.000.9EE2825PC4028*12.75*10.60.119186.9098.103300.057.705010.026.00 2.519.639.410V EE30 PC4030*13.15*10.70.1191109.0073.354690.057.706310.032.00 2.913.743.210-12V EE30/30/7PC4030.1*15*7.050.119159.70124.872100.066.904000.022.00 1.51EE3528PC4034.6*14.3*9.30.119184.80158.002600.069.705910.029.00 2.9615.788.712V EE40PC4040*17*10.70.1191127.00173.234150.077.009810.050.00 4.217.3 108 12 V EE4133PC4041.5*17*12.70.1191157.00180.004200.079.0012470.064.00 6.25EE42/21/15PC4042*21.2*150.1191178.00278.003800.097.9019510.088.008.8EE42/21/20PC4042*21.2*20 0.1191235.00275.005000.097.8023000.0116.0011.6EE47/39PC4047.12*19.63*15.620.1191242.00196.406660.090.6021930.0108.009.7EE50 PC4050*21.3*14.60.1191226.00253.736110.095.8021600.0116.009.421.317012V EE55/55/21PC4055.15*27.5*20.70.1191354.00386.347100.0123.0043700.0234.0011.0(150MT) EE57/47PC4056.57*23.6*18.80.1191344.00282.368530.0102.0035100.0190.008.5EE60PC4060*22.3*15.60.1191247.00399.025670.0110.0027100.0135.0012.523.829412V EE50.3 PC4050.3*25.6*6.10.1191120.85152.642900.0104.9012676.068.00 5.8328.2596.0512H EE62.3/62/6PC4062.3*31*6.10.1191153.01198.223100.0125.7419240.0102.008.8533.85115.0912H EE65/32/27 PC40 65.15*32.5*27 0.1191 535.00 575.00 8000.0 147.0078700.0 399.00 5.9(100MT) EC EE CORE参数对照表 形狀 TYPE MATE-RIAL

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大| 中| 小2008-08-28 12:53 - 阅读:6184 - 评论:2 单端反激式开关电源磁芯尺寸和类型的选择 徐丽红王佰营 https://www.360docs.net/doc/c01265954.html, A、InternationalRectifier公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25 EPC25

EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自InternationalRectifier,AN1018-“应用IRIS40xx系列单片集成开关IC开关电源的反激式变压器设计” B、ELYTONE公司https://www.360docs.net/doc/c01265954.html, 型号输出功率(W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K EI EI12.5 EI16 EI19 EI25 EI40 EI50 EI60 --

EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 -- -- EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 -- -- EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 -- -- EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD -- -- ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- -- -- -- RM RM4 RM5 RM6 RM10 RM12 RM14 -- -- POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC -- -- -- -- -- EC35 EC41 EC70 摘自PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES "Converter circuitas a function of S.M.P.S. output voltage (Vo) and output power (Po)" C、Fairchild Semiconductor公司--67KHz Output Power EIcore EE core EPC core EER core 0-10W EI12.5 EE8 EPC10

开关电源磁芯尺寸和类型的选择(凭经验)

单端反激式开关电源磁芯尺寸和类型的选择 字体大小:大| 中| 小2008-08-28 12:53 - 阅读:6184 - 评论:2 https://www.360docs.net/doc/c01265954.html, 徐丽红王佰营 A、InternationalRectifier公司--56KHz 输出功率推荐磁芯型号 0---10W EFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20W EE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30W EI25 EF(D)25 EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50W EI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100W ETD34 EER35 ETD39 EER40 E21 摘自InternationalRectifier,AN1018-“应用IRIS40xx系列单片集成开关IC开关电源的反激式变压器设计” B、ELYTONE公司https://www.360docs.net/doc/c01265954.html, 型号输出功率(W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K EI EI12.5 EI16 EI19 EI25 EI40 EI50 EI60 -- EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K EF EF12.6 EF16 EF20 EF25 EF30 EF32 -- --

相关文档
最新文档