积分判别法

积分判别法
积分判别法

积分判别法 若在[1,∞)上f 减, 非负, 则∑f (n )收敛??∞1f 收敛. 此时?∞1f ≤∑f (n )≤

?∞1f + f (1).

证 ?21f ≤f (1) = f (1), ?32f ≤f (2)≤?2

1f , … ,?+1n n f ≤f (n )≤?-n n f 1, 相加得?+11n f ≤

∑-n

k k f 1)(≤?n f 1+ f (1). 令n →∞得证. 注. 条件可改为x 充分大时f 减, 非负.

例1(p 级数)∑p

n 1当且仅当p > 1时收敛. 证一. p > 0时用积分判别法; p ≤0时由必要条件.

证二 p ≤1时由n -p ≥n -1得发散, p >1时用积分判别法.

*证三 p ≤1时由n -p ≥n -1得发散. p > 1时按下列方法加括号: 括号内的项数依次为1, 2, 4, 8, 16, …, 则由1141447141,21223121--=<++=<+p p p p p p p p , … 及比较判别法知

加括号后的级数收敛, 故p 级数也收敛. △∑∑∞=∞

=32ln ln 1 ,ln 1n p n p n n n n n , … . 备考. 设f (x ) = (x ln p x )-1 (x ≥2), 则p ≥0时显然f 减. 而p < 0时对充分大的x , f 仍减[p < 0时f ' (x ) = - (x ln p x )-2 ln p -1x (ln x + p )< 0 (x > e -p ), 故可直接应用积分判别法得∑(n ln p n )-1当p > 1时收敛, p ≤1时发散. △∑)1(~ )1(2

3n n n +. △)1(~ 1n n n ∑-.△)1(~ )1(q q p p n n n ∑++.△∑sin n 1 (~n 1). △∑n n 1 (n n a =n 1→0, 或n n 1

n )(ln 1(n n a →0). △∑! n a n (a >0) (n n a a 1+=1+n a , 或n n a =n n a ! →0). △∑n n n ! (n n a a 1+→e 1或n n a →e

1(上 册p.40.4(5)). △∑)2()1(n n n n +(n

n a a 1+= (1 +n 1)n 4)22)(12()1(2e n n n →+++<1). △∑n ln 1(n ln 1>n 1或1-n a n →∞). △∑p n )(ln 1(1

-n a n →∞). △∑p n n ln (p ≤1时1-n a n →∞,发散; p >1时取q 使p >q >1,, 则q n n a -→0或a n ≤n -q , 收敛).

△∑(n

a - 1) (a >1) (由x

a x 1-→ln a (x →0)知n a - 1 = O(n 1). p.16.1 (9)类似). *△∑2121)1ln 2(+-++n n n n n (≤n n n n n 21)2(2121≤+-). *△∑n n ln ln )(ln 1(∵x x ln )ln (ln 2→0(x → ∞), ∴n 充分大时(ln n ) ln ln n = exp(ln ln n )2 < e ln n = n , 发散). 例2. 证明: 若a n > 0, ∑a n 收敛, 则∑1

+n n a a 与∑a n a n +1收敛. [与∑a n 比较]. 例3(p.16.9(4). 考察∑∞=3)ln (ln )(ln 1n q

p n n n 的收敛性.

解 设f (x ) = x (ln x )p (ln ln x ) q , 则f ' (x ) = ln p -1 x (ln ln x ) q -1((ln x + p ) ln ln x + q ), x 充分大时?p , q , f ' (x ) > 0, 故可用积分判别法. ??∞∞

==3ln 3ln )(u

u du x f dx I q p . p >1时取r

使p >r >1,

由u r u u q p ln 1→0知I 收敛. p =1时I =?∞3ln ln q t dt , 当且仅当q >1时收敛. p <1时由u u

u q p ln 1 →∞, I 发散. 由积分判别法, 所给级数当p > 1或p =1, q > 1时收敛, 在其它情形发散.

*例4 (p.16.10) a n ↓, 非负, 则∑a n 收敛?∑2m m a 2(=2a 2 + 4a 4 + …)收敛.

证 设∑2 m m a 2= s . 因为n s 2= a 1 + a 2 + … +n a 2= a 1 + (a 2 + a 3 ) + (a 4 + … + a 7 ) + … +

(+++--)1221n n a a n a 2≤a 1 + 2a 2 + 4a 4 + … = a 1 + s , 故?n s n

得∑a n 收敛.

设∑a n = s , 则由a 2 ≤ a 1 + a 2 , 2 a 4 ≤ a 3 + a 4等得∑=n

m m m a 1

2221≤ (a 1 + a 2 ) + (a 3 + a 4 ) + (a 5 + …+ a 8 ) + … = s . 因此∑2m m a 2的部分和有界, 从而收敛.

应用: ∑p

n 1收敛?∑2m mp 21=∑2(1-p )m 收敛?21-p < 1?p >1 . ∑∑∑∑?=?p p p m p m m p m m n n 1

2ln 12ln 212ln 1收敛收敛收敛?p >1. *例5 (Raabe 判别法) 若lim n (1 -n n a a 1+) = l , 则l >1时∑a n 收敛, l < 1时∑a n 发散, l =

1时不定.

证 l >1时取p 使l >p >1,则n 充分大时n (1-n n a a 1+)>p ,n n a a 1+<1-p

p p n n n n p ---=-≤)1()11(. 由比较法, 收敛. l <1时对充分大的n 有n (1 -n n a a 1+)<1, n n a a 1+>1-11)1(1---=n n n

积分敛散性的判断

目录 摘要........................................................................................... (2) 引言........................................................................................... . (3) 1无穷积分........................................................................................... .. (5) 1.1无穷积分的概念........................................................................................... .. (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分........................................................................................... .. (8) 2.1瑕积分的定义........................................................................................... . (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结........................................................................................... ......... .. (13) 参考文献........................................................................................... ... .. (14)

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

对数判别法

一个比拉阿比判别法更精细的正项级数判别法 摘要:本文用级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法,笔者称之为“对数判别法”。 关键词:比较判别法 级数判别法的极限形式 拉格朗日中值定理 对数判别法 目前较常用而又精细的正项级数判别法是拉阿比判别法,然而此判别法有时精确度仍然不够。以下本文就以级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法——“对数判别法”。 我们先看级数∑ ∞ =3ln 1 n p n n 的敛散性:当1>p 时级数收敛;当1≤p 时级数发散。这个结论可用柯西积分判别法证明(具体证明请参见邓东皋、尹小玲编著《数学分析简明教程》),本文不再细述。 先考虑发散的情况。由比较判别法有:设数列}{n u 是正项数列,若n 足够大时,有 n n n n u u n n ln ) 1ln()1(1++< + 成立,则∑∞ =1 n n u 发散。 为了应用方便我们来寻求像拉阿比判别法那样的“极限形式”: n n n n u u n n ln )1ln()1(1++<+n n n u n nu n n ln ln )1ln(1)1(1-+< -+?+, 由拉格朗日中值定理知,对任意n ,存在)1,(+∈n n n ξ,使得 n n n ξ1 ln )1ln(= -+, 故 n n n n u u n n ln ) 1ln()1(1++<+1]1)1([ln 1 <-+?+n n n u n nu n ξ, 要使n 足够大时有1]1)1([ ln 1 <-++n n n u n nu n ξ成立,只需

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

无穷积分的敛散判别法

无穷积分的敛散判别法 摘 要:本文主要介绍了无穷积分的几种敛散判别方法,并对这些方法作一些规律性的分析,总结. 关键词:无穷积分;收敛;柯西准则;发散 The convergence and divergence method of infinite integral Abstract :this article mainly introduces several kinds of infinite integral convergence and divergence discrimination method ,and the method for some regularity analysis ,summary. Key Words :Infinite integral; Convergence ;Cauchy criterion;Divergence 前言 我们知道当讨论定积分时要考虑两个条件:一是积分区间时必须是有限闭区间;二是 被积函数必须是有界函数.但实际应用中会遇到积分的上限或下限趋于无穷大的情况,这时虽然可以用牛顿-莱布尼茨公式再求极限来解决,但是,如果被积函数的原函数不是初等函数,那么,就不能用上面的方法来解决问题了.这时,这个问题就变成积分上限函数当上限趋于无穷大时的极限是否存在的问题.这即是所谓的反常积分的敛散性问题.这里我们给出几种判断无穷积分敛散的方法. 1 无穷积分的定义 定义:设函数f 定义在无穷积分区间[,)a +∞上,且在任何有限区间[,]a u 上可积.如果存在极限 l i m ()u u a f x d x J →∞=? 则称此极限J 为函数f 在[,)a +∞上的无穷限反常积分(简称无穷积分),记作 ()a f x dx J +∞ =? 并称()a f x dx +∞? 收敛.如果极限不存在,为方便起见,亦称()a f x dx +∞? 发散. 类似地,可定义f 在(,]b -∞上的无穷积分: ()()lim b u b u f x dx f x dx →∞-∞=?? 对于在(,)-∞+∞上的无穷积分,他用前面两种无穷积分来定义: ()()()b a f x dx f x dx f x dx +∞ +∞ -∞-∞ =+??? , 其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则 一、教学目标分析 在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。让学生反常积分在一些实际问题中的应运。 二、学情/学习者特征分析 学生通过对前面课程的学习,对积分已经有了初步的了解。但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。 三、学习内容分析 1.本节的作用和地位 通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。 2.本节主要内容 1. 无穷限反常积分的定义与计算方法 2. 无穷限反常积分的性质 3. 无穷限反常积分的比较审敛法则 4. 条件收敛与绝对收敛 3.重点难点分析 教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。 4.课时要求:2课时 四、教学理念 学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。 五、教学策略 在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境 网络环境下的多媒体教室与课堂互动。 七、教学过程 一、无穷限反常积分的定义 定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 J dx x f u a u =? +∞→)(lim 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作 dx x f J a ?+∞ =)(,并称 dx x f a ?+∞ )(收敛.如果极限J dx x f u a u =? +∞→)(lim 不存在,亦称 dx x f a ?+∞ )(发散. 类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f b u u b ? ?-∞→∞-= 对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义: ,)()()(dx x f dx x f dx x f a a ???+∞ ∞ -∞-+∞ +=其中a 为任一实数, 当且仅当右边两个无穷积分都收敛时它才是收敛的. 注: dx x f a ? +∞ )(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线 )(x f y =,直线a x =以及x 轴之间那一块向右无限延伸的阴影区域有面积J . 例1 讨论无穷积分.1) 10 2? +∞ +x dx ,.1)22 ?∞+∞-+x dx ,.)302 ?+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:? +∞ 1 ) 1p x dx , ;)(ln )22?+∞p x x dx 二、无穷积分的性质 由定义知道,无穷积分 ?+∞ a dx x f )(收敛与否,取决于积分上限函数= )(u F ? u a dx x f )(在 +∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分 ? +∞a dx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要 G u u >21,,便有 ε<= -? ? ?2 1 2 1 )()()(u u u a u a dx x f dx x f dx x f .

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔 2)若、‘1,。0)的敛散性推导得出的。这在分析教材 中都有介绍。 在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结 论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d 用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。 例‘讨论几兴dx的敛散性 解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”, 考虑极限31imx了 工一。+ 一Inx 、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十 。___3___.,~~,、,,‘,_ 送里入~丁丈1,d~U,砍原积分收双。悦 分析讨论:能否取入一告呢?‘ 由极限lim、奋 x~。+ 一InX V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+ 怎样确定入呢?我们考虑极限limx‘ x~。十 Inx 侧丁~1jm,要使该极限值为有限,而O<久

积分敛散性的判断

目录 摘要 (2) 引言 (3) 1无穷积分 (5) 1.1无穷积分的概念 (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分 (8) 2.1瑕积分的定义 (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结.................................................................................................... .. (13) 参考文献.............................................................................................. .. (14)

判断反常积分敛散性的方法 谢鹏数学与计算机科学学院 摘要:反常积分的收敛性是数学分析中的难点之一,本文介绍了反常积分敛散性的定义和一些重要的反常积分收敛和发散的例子,以及绝对收敛和条件收敛的概念等,让读者能够用反常积分的柯西收敛原理、非负函数反常积分的比较判别法、柯西判别法,以及一般函数反常积分的狄利克雷、阿贝尔判别法判别法判别基本的反常积分敛散性,以便更好的掌握反常积分收敛先判断的方法. 关键词:无穷积分;瑕积分;敛散性;判别方法 On Convergence of The Method of Judging Abnormal Integral Name of student, School: XiePeng,School of Mathematics & Computer Science

14第十四讲 阿贝尔判别法和狄利克雷判别法

数学分析第十二章数项级数 阿贝尔判别法狄利克雷判别法 第十四讲

数学分析第十二章数项级数 引理(分部求和公式,也称阿贝尔变换) 阿贝尔判别法和狄利克雷判别法 下面介绍两个判别一般项级数收敛性的方法. =,(1,2,,),,i i v i n ε 设两组实数若令 =+++=12(1,2,,), k k v v v k n σ 121232111 ()()().(18) n i i n n n n n i v εεεσεεσεεσεσ--==-+-++-+∑则有如下分部求和公式成立: 证-==-=111,(2,3,,)k k k v v k n σσσ 以分别乘以 =(1,2,,),k k n ε 整理后就得到所要证的公式(18).

数学分析第十二章数项级数 推论(阿贝尔引理) =12(i),,,max{};n k k εεεεε 是单调数组,记(ii)(1),k k k n A σ对任一正整数有则有 ≤≤≤=≤∑1 3.(19) n k k k v A ε ε12231,,,n n εεεεεε ----若证由(i)知都是同号的. 121232111 ()()()n k k n n n n n k v ε εεσεεσεεσεσ--==-+-++-+∑12231()()()n n n A A εεεεεεε-≤-+-++-+1n n A A εεε=-+1(2)n A εε≤+3. A ε≤于是由分部求和公式及条件(ii)推得

数学分析第十二章数项级数 定理12.15(阿贝尔判别法) 且级数∑n b 收敛, {}n a 0,. n M a M 使>≤证由于数列单调有界,使当n >N 时,对任一正整数p ,都有 +=<∑. n p k k n b ε若{}n a 为单调有界数列,故存在,收敛又由于∑n b ,ε数依柯西准则,对任意正存在 正数N ,n n a b ∑则级数收敛. +=≤∑3. n p k k k n a b M ε(阿贝尔引理条件(ii)). 应用(19)式得到这就说明级数收敛. n n a b ∑

数项级数敛散性判别方法

华北水利水电 大学 课题 : 数项级数敛散性判别方法(总结) 专业班级:水利港航39班 成员组成:丁哲祥 201203901 联系方式: 2012.05.23

数项级数敛散性判别法(总结) 摘要:数项级数是逼近理论中的重要内容之一,也是高等数学的重要组成部分。本章我们先介绍数项级数的一些基本性质和收敛判别方法然后讨论函数的幂级数展开和三角级数展开。我们这学期学习过的数项级数敛散性判别法有许多,本文对数项级数敛散性的判别方法进行了分析归纳总结,得到的解题方法。以便我们更好的掌握它。 关键词:数项级数敛散性判别方法总结 Several series gathered of the criterion scattered method (summary) Abstract:The sequence series is one of the main contents in the mathematical analysis. We learn this semester the several series gathered of the criterio n has many scattered method, this paper folding a series of logarithm scat tered discriminant method is analyzed sum-up, get the problem solving m ethod. Key words: Several series; Gathered scattered sex; Identifying method; a nalysis summary

08第八讲 积分判别法

数学分析第十二章数项级数积分判别法 第八讲

数学分析第十二章数项级数 定理12.9(积分判别法) 积分判别法由于比式和根式判别法的比较对象是几何级数,局限性较大,所以还需要建立一些更有效的判别法. 设[1,)f +∞为上非负减函数,+1()d f x x 与反常积分∞ ?同时收敛或同时发散. 证由假设[1,)f 为+∞上非负减函数, f 在[1, A ]上可积,于是 对任何正数A ,那么正项级数()f n ∑

数学分析第十二章数项级数-≤≤-=?1()()d (1),2,3,. n n f n f x x f n n 依次相加可得1 122 1()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?若反常积分收敛,有 111()(1)()d (1)()d . m m m n S f n f f x x f f x x +∞==≤+≤+∑?? 根据定理12.5, 级数()f n ∑收敛. 则由(12)式左边, 对任何正整数m ,

数学分析第十二章数项级数反之, 若()f n ∑为收敛级数, 一正整数m (>1)有 -≤≤=∑?11()d (). (13)m m f x x S f n S 1 0()d , 1.A n f x x S S n A n ≤≤<≤≤+?因为f (x )为非负减函数, 法, 可以证明+1()()d f n f x x 与∞∑? 是同时发散的.112 21()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?则由(12)式右边,对任故对任何正数A ,都有111.2,()d .f x x +∞ ?根据定理反常积分收敛用同样方

无穷积分敛散性判别法

无穷积分敛散性的判别法 郑汉彬 摘 要:无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的—个先决条件。由于判别方法比较多,学生不易掌握,从而是数学分析的一个难点,也一直是一个重要的研究课题。本文就一些常见和不常见的判定方法做一个归纳,这样将有助于我们灵活地运用各种判别法判定无穷积分的敛散性。 关键词:无穷积分;瑕积分;收敛性;判别法 无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件。由于判断方法比较多,不易掌握,从而是数学分析和高等数学的一个难点。最原始的判别方法是对积分区间无穷型的反常积分先将积分限视为有限的积分区间,按常义积分处理,待积分求出原函数后再考查其极限是否存在,再用极限去判定原积分是否收敛。 本文以文献中相关定理为基础,并对相关的文献资料中给出的无穷积分敛散性判定方法的相关理论进行总结及一定的改进和补充,使之能够更广泛地应用于无穷积分敛散性判定中,对比了各种类型的无穷积分敛散性判定方法的应用以及在应用过程中应注意的一些巧妙方法,不仅使这些原本复杂的问题简单化,而且可避免出现错误。 1 无穷积分的敛散性 定义1 设函数)(x f 在 ),[+∞a 上有定义,且对)(,x f a b >?在上],[b a 可积,当 ()lim b a b f x dx J →+∞=? 存在,称此极限J 为函数)(x f 在区间),[+∞a 上的无穷限反常积分(简称无穷积分),记为 ()a J f x dx +∞ =? 这时称积分 ? +∞ a dx x f )(是收敛的.如果上述极限不存在,为方便起见,并称无穷积分? +∞a dx x f )(发散. 2 无穷积分敛散性的判别法 如何判断一个无穷积分的敛散性,这是无穷积分理论的重要内容之一。对此,我们首先建立一个收敛准则,然后再介绍几种常有的敛散性判别法。 柯西收敛准则 因为无穷积分 ? +∞ a dx x f )(的收敛问题即是极限? +∞→A a A dx x f )(lim 的存在问题,所以由极限的柯西收敛

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

(完整版)《高数》积分判别法

积分判别法 若在[1,∞)上f 减, 非负, 则∑f (n )收敛??∞1f 收敛. 此时?∞1f ≤∑f (n )≤?∞1f + f (1). 证 ?21f ≤f (1) = f (1), ?32f ≤f (2)≤?21f , … ,?+1n n f ≤f (n )≤?-n n f 1, 相加得?+11n f ≤∑-n k k f 1)(≤?n f 1+ f (1). 令n →∞得证. 注. 条件可改为x 充分大时f 减, 非负. 例1(p 级数)∑p n 1当且仅当p > 1时收敛. 证一. p > 0时用积分判别法; p ≤0时由必要条件. 证二 p ≤1时由n -p ≥n -1得发散, p >1时用积分判别法. *证三 p ≤1时由n -p ≥n -1得发散. p > 1时按下列方法加括号: 括号内的项数依次为1, 2, 4, 8, 16, …, 则由1141447141,21223121--=<++=<+p p p p p p p p Λ, … 及比较判别法知加括号后的级数收敛, 故p 级数也收敛. △∑∑∞=∞ =32ln ln 1 ,ln 1n p n p n n n n n , … . 备考. 设f (x ) = (x ln p x )-1 (x ≥2), 则p ≥0时显然f 减. 而p < 0时对充分大的x , f 仍减[p < 0时f ' (x ) = - (x ln p x )-2 ln p -1x (ln x + p )< 0 (x > e -p ), 故可直接应用积分判别法得∑(n ln p n )-1当p > 1时收敛, p ≤1时发散. △∑)1(~ )1(23n n n +. △)1(~ 1n n n ∑-.△)1(~ )1(q q p p n n n ∑++.△∑sin n 1 (~n 1). △∑n n 1 (n n a =n 1→0, 或n n 10) (n n a a 1+=1+n a , 或n n a =n n a ! →0). △∑n n n ! (n n a a 1+→e 1或n n a →e 1(上 册p.40.4(5)). △∑)2()1(n n n n Λ+(n n a a 1+= (1 +n 1)n 4)22)(12()1(2e n n n →+++<1). △∑n ln 1(n ln 1>n 1或1-n a n →∞). △∑p n )(ln 1(1 -n a n →∞). △∑p n n ln (p ≤1时1-n a n →∞,发散; p >1时取q 使p >q >1,, 则q n n a -→0或a n ≤n -q , 收敛). △∑(n a - 1) (a >1) (由 x a x 1-→ln a (x →0)知n a - 1 = O(n 1). p.16.1 (9)类似). *△∑2121)1ln 2(+-++n n n n n (≤n n n n n 21)2(2121≤+-). *△∑n n ln ln )(ln 1(∵x x ln )ln (ln 2→0(x → ∞), ∴n 充分大时(ln n ) ln ln n = exp(ln ln n )2 < e ln n = n , 发散). 例2. 证明: 若a n > 0, ∑a n 收敛, 则∑1+n n a a 与∑a n a n +1收敛. [与∑a n 比较]. 例3(p.16.9(4). 考察∑∞=3)ln (ln )(ln 1n q p n n n 的收敛性. 解 设f (x ) = x (ln x )p (ln ln x ) q , 则f ' (x ) = ln p -1 x (ln ln x ) q -1((ln x + p ) ln ln x + q ), x 充分大时?p , q , f ' (x ) > 0, 故可用积分判别法. ??∞∞==3ln 3ln )(u u du x f dx I q p . p >1时取r 使p >r >1, 由u r u u q p ln 1→0知I 收敛. p =1时I =?∞3ln ln q t dt , 当且仅当q >1时收敛. p <1时由u u u q p ln 1

相关文档
最新文档