淀粉酶固定化实验方案

淀粉酶固定化实验方案
淀粉酶固定化实验方案

实验三、α-淀粉酶的固定化及淀粉水解作用的检测

一、实验背景:

酶:生物体内活细胞产生的具有催化作用的有机物。

在21世纪,酶已经大规模地应用于食品、化工、轻纺、医药等各个领域: ·果汁制作(果胶酶分解细胞壁,促进果汁生成。)

·加酶洗衣粉(某些酶对污渍的作用一般碱性物质更大)

·根据体内酶活性变化检测疾病(淀粉酶的活性大小可体现胰脏、肾脏的功能)

固定化酶:将水溶性酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。

固定化酶载体应具备以下要求大体上有:

1) 在酶催化反应过程的惰性:载体应不与底物、产物及介质发生反应。 2) 有良好的渗透性:制备成柱子后,能使底物和产物能快速通过减少吸附。 3) 有生物亲和性和相容性,有利于酶活力发挥和稳定。

4) 有较高酶负载量,载体表面能提供多个活性位点利于酶分子偶联。

二、实验原理:

一般酶的固定化方法:吸附法、共价偶联法、交联法、包埋法。 1、一般酶固定化的传统:吸附法、共价偶联法、交联法、包埋法。 吸附法

利用各种吸附剂将酶或含酶菌体吸附在其表面上而使酶固定的方法。通常有物理吸附法和离子吸附法。

常用吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。

采用吸附法固定酶,其操作简便、条件温和,不会引起酶变性或失活,且载体廉价易得,可反复使用。 包埋法

包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,酶生物活性被破坏的程度低,但此法对大分子底物不适用。包埋法制备固定化酶除包埋水溶性酶外还常包埋细胞,制成固定化细胞,例如可用明胶及戊二醛包埋具有青霉素酰化酶活力的菌体,可连续水解帤基青霉素,工业生产6-氨基青霉烷酸。 结合法

酶蛋白分子上与不溶性固相支持物表面上通过离子键结合而使酶固定的方法,叫离子键结合法。其间形成化学共价键结合的固定化方法叫共价键结合法。共价键结合法结合力牢固,使用过程中不易发生酶的脱落,稳定性能好。该法的缺点是载体的活化或固定化操作比较复杂,

直接使用酶缺点

固定化酶优点

通常对强酸、强碱、高温和有机溶剂等条件

非常敏感,容易失活 固定化酶提高了酶的稳定性,可较长时间地储存和使用;(更能耐受温度、PH 的变化) 溶液中的酶很难回收,不能被再次利用,提

高了生产成本 固定化酶可以被反复使用,更经济,更利于

生产 反应后会混在产物中,可能影响产品质量(难

分离)

酶既能与反应物接触,又能与产物分离纯化

反应条件也比较强烈,所以往往需要严格控制条件才能获得活力较高的固定化酶。 交联法

依靠双功能团试剂使酶分子之间发生交联凝集成网状结构,使之不溶于水从而形成固定化酶。常采用的双功能团试剂有戊二醛、顺丁烯二酸酐等。酶蛋白的游离氨基、酚基、咪唑基及巯基均可参与交联反应。

交联法是用多功能试剂进行酶蛋白之间的交联,使酶分子和多功能试剂之间形成共价键,得到三向的交联网架结构,除了酶分子之间发生交联外,还存在着一定的分子内交联。多功能试剂制备固定化酶方法可分为:( 1) 单独与酶作用;( 2) 酶吸附在载体表面上再经受交联;( 3) 多功能团试剂与载体反应得到有功能团的载体,再连接酶。交联剂的种类很多,最常用的是戊二醛,其他的还有异氰酸衍生物、双偶氮二联苯胺、N ,N-乙烯马来酰亚胺等。交联法的优点是酶与载体结合牢固,稳定性较高;缺点是有的方法固定化操作较复杂,进行化学修饰时易造成酶失活。

各类固定化方法的特点比较:

2、淀粉酶催化反应:

淀粉酶:淀粉酶是指一类能催化分解淀粉(包括糖原、糊精等)的糖苷键的酶之总称。

淀粉酶包括:α—淀粉酶、β—淀粉酶、葡萄糖淀粉酶、脱支酶、麦芽寡糖生成酶等水解酶类和葡萄糖苷转移酶、环状糊精葡萄糖苷转移酶等。

α—淀粉酶是一种内切酶,它随机地从分子内部切开α—1.4糖苷键(水解中间的α—1.4

比较项目 吸附法 结合法 交联法 包埋法 物理化学方法分类 物理吸附 化学共价键结合 物理离子键结合 化学键连接 物理包埋 制备难易 易 难 易 较难 较难 固定化程度 弱 强 中等 强 强 活力回收率 较高 低 高 中等 高 载体再生 可能 不可能 可能 不可能 不可能 费用 低 高 低 中等 低 底物专一性 不变 可变 不变 可变 不变 适用性 酶源多 较广 广泛 较广 小分子底物、药用酶

键比分子末端的α—1.4键概率大),遇到分支点的α—1.6键不能切,但能跨越分支点而切开内部的α—1.4糖苷键,由于产物的还原性末端葡萄糖残基上的C1碳原子呈α—构型(光学),故称这种酶为α—淀粉酶。

α—淀粉酶的水解反应:淀粉在α—淀粉酶的作用下很快被切割成分子较小的糊精、低聚糖、麦芽糖、葡萄糖等,引起粘度下降,对碘呈色反应为篮-紫-红-无色,又叫液化酶。

α—淀粉酶的水解产物:水解直链淀粉,首先将淀粉降解为寡糖、麦芽三糖和麦芽糖,然后将寡糖、麦芽三糖进一步降解为麦芽糖和葡萄糖;水解支链淀粉,由于不能水解α-1.6糖苷键,产物除麦芽糖、少量葡萄糖外,还有带α-1.6键的小分子极限糊精。

糊精:分子式为(C6H10O5)n?H2O,为白色或类白色的无定形粉末;无臭,味微甜。在沸水中易溶,在乙醇或乙醚中不溶。

直链淀粉显蓝色,据认为这是由于葡萄糖单位形成六圈以上螺旋所致。其分子量约1万-200万,250-260个葡萄糖分子,以(1 4)糖苷键聚合而成.呈螺旋结构。一个螺旋圈所含葡萄糖基数称为聚合度或重合度,当淀粉形成螺旋时,碘分子进入其中,糖的羟基成为供电子体,碘分子成为受电子体,形成络合物.

而支链淀粉除了(1 4)糖苷键构成糖链以外,在支点处存在(1 6)糖苷键,分子量较高.遇碘显紫红色.遇碘显紫红色。

淀粉水解时一般先生成淀粉糊精(遇碘呈蓝色),进而生成红糊精(遇碘显红色),再生成无色糊精(遇碘不显色)及麦芽糖,最终生成葡萄糖。

糖元遇碘显红色。

总结一下:

当链长小于6个葡萄糖时,不能形成一个螺旋圈.

当聚合度为20左右时,碘遇淀粉显红色

当聚合度为20~60时,碘遇淀粉显紫红色

当聚合度大于60时,碘遇淀粉显蓝色)

α-淀粉酶β淀粉酶糖化淀粉酶

淀粉糊精麦芽糖葡萄糖

遇碘显蓝色遇碘显红色

(淀粉遇碘显色原理:淀粉、糊精等与碘结合为淀粉/糊精-碘包合物显色。分子结构不同,结合方式不同,颜色不同。)

3.石英砂的吸附作用

石英砂吸附酶的物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力所引起,此力也称作范德华力。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气

体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。

同一物质,可能在低温下进行物理吸附而在高温下为化学吸附,或者两者同时进行。吸附作用的大小跟吸附剂的性质和表面的大小、吸附质的性质和浓度的大小、温度的高低等密切相关。如活性炭的表面积很大,吸附作用强;活性炭易吸附]沸点高的气体,难吸附沸点低的气体。

吸附质分子与吸附剂表面原子或分子间以物理力进行的吸附作用。这种物理力是范德瓦耳斯力,它包括色散力、静电力和诱导力。对于极性不大的吸附质和吸附剂,色散力在物理吸附中起主要作用。当极性分子与带静电荷的吸附剂表面相互作用,或因吸附质与吸附剂表面分子作用,使二者的电子结构发生变化而产生偶极矩时,定向力和诱导力在物理吸附中也有重要作用。有时吸附质分子与吸附剂表面以形成氢键的形式发生物理吸附。

(总体来说)实验原理:本实验是用吸附法将a-淀粉酶固定在石英砂上,一定浓度的淀粉溶液经过固定化酶柱后,可使淀粉水解成糊精,用淀粉指示剂溶液测试,流出物呈红色表明水解产物糊精生成。

这里使用的是枯草杆菌的a-淀粉酶,其作用的最适pH范围:pH5.5-7.5,最是温度为50-75℃

三、实验材料:

1、a-淀粉酶:容易购买,价格适宜。

2、石英砂:坚硬、耐磨、性能稳定、危险性低、易寻便宜,适用于a-淀粉酶的固定。

3、淀粉:在a-淀粉酶促进反应前后都可与碘液反应产生不同颜色,易被碘液检测观察。

四、实验器材:

物品准备表

总准备用量

药品名称小组用量总准备用量物品名称小组用

α—淀粉酶 5mg 70mg 层析柱1个12个

石英砂 5g 70g 滤布1张12张

淀粉 25mg 400mg 50ml烧杯2个24个

KI-I2溶液 1ml 15ml 200ml烧杯1个3个

蒸馏水——3000ml 5ml指形管3个36个

50ml量筒1个12个

胶头滴管 -- 12个

玻璃棒1个12个

电子天平——1个

电炉——1个

试管支架1个4个

废液桶——4个

实验试剂的配制方法:

0.5 mmol/L KI-I2溶液:先在烧杯中用少量水溶解0.83g碘化钾,然后再加入0.127克碘,待溶解后,用玻璃磁漏斗过滤,完全溶解后装入深棕色瓶中,用水稀释到100mL.温度为20-25℃,阴凉且通风良好环境下保存。(KI的作用:碘在水中的溶解度不大,加入KI后,

发生可逆反应,使碘的溶解度增大,可得到较浓的碘水同时,碘溶液中的碘容易被氧化,加入碘化钾可还原,并抑制其继续氧化)

五、实验步骤:

1、配制可溶性淀粉溶液。用电子天平称取25mg可溶性淀粉溶于50ml沸水(可溶性淀粉先用冷水调成糊状,再加入沸水中至50ml)。将配制好的淀粉溶液放置在60℃的水浴锅中备用。(注意:此数据为一组实验的用量,若配全班用量乘以实验小组数即可,可由授课教师配制全班用量以节省时间。)【方案改进:淀粉溶液在70℃水浴锅中保温,且在水浴锅中已为学生准备好用100ml烧杯装的配制好的淀粉溶液,注意嘱咐学生要在用层析柱反应时才拿出来,勿提前拿;而之前检测石英砂固定a-淀粉酶的上清液所用淀粉于水浴锅中大烧杯中取,避免小烧杯中淀粉溶液取出来之后温度降低致使反应结果不佳。】

2、a-淀粉酶的固定化。在50ml烧杯中将电子天平称取的5mg a-淀粉酶溶于4ml蒸馏水中,由于酶不纯,可能有些不溶物,再加入电子天平称取的5g石英砂,不时搅拌,固定化15分钟。(注意:搅拌时用力不可太猛及搅拌时间不易过长,以免石英砂被磨细穿过滤布带入到流出液中,搅拌的速度应是缓慢的,搅拌时间过长也不易酶的固定,这里授课老师可以做示范动作让学生来体会。)【方案改进:由于实验时间不足的问题,此步骤由教师准备。】

3、小心倒掉上清液后,(每次)用10-15ml的蒸馏水小心清洗石英砂2-3次,每次取其上清液0.5ml于试管中,同时滴加淀粉溶液充分混匀。再加入1-2滴KI-I2 溶液,若溶液变为蓝色,说明中已无游离a-淀粉酶,如果溶液为红色,继续用蒸馏水清洗,直至淀粉溶液变为蓝色为止。(检测未吸附的游离淀粉酶是否洗涤干净)

4、先把滤布放入固定化酶装柱中,再装入固定有a-淀粉酶的石英砂约4ml,装柱过程中可在装有石英砂的烧杯中加入少量蒸馏水,便于石英砂流入层析柱,同时适当打开层析柱的调节装置,使多余的液体可以流出。(加入少量蒸馏水的目的是让固定好a-淀粉酶的石英砂尽量全部装进柱中,装柱时应尽量使石英砂的表面平整,这样可以使淀粉溶液充分与酶反应。流出的液体主要是加入的蒸馏水)

5、将灌注了固定化酶的层析柱放在支架上,用滴管加淀粉溶液后,调节层析柱的调节装置使淀粉溶液约以0.3ml/min(6滴/min)的流速过柱,在流出1-2ml反应液后(让塑料管中的水流出),转动关闭层析柱的调节装置,放置5min(让淀粉液充分与酶反应)。

6、打开调节装置,0.3ml/min(6滴/min)的流速过柱,在流出1-2ml反应液后(1-2ml液为:装柱下面塑料管中未充分反应的淀粉液),用两支试管分别接收约0.5ml流出液(10滴,20滴为1ml),按以下表格在试管中加入相应试剂,观察结果。

实验记录表

样品0.5ml

水0.5ml淀粉溶液0.5ml流出液0.5ml流出

液(稀释1

倍)

1滴KI-I2

溶液

参考结果

对照+ ———+ 碘色对照—+ ——+ 蓝色样品1 ——+ —+ 红色样品2 ———+ + 浅红色

固定后的a-淀粉酶可以重复使用,实验后用10倍柱体积蒸馏水洗涤固定化酶柱,然后放置4℃冰箱保存。

注意事项:

1、a-淀粉酶的固定化过程中,用力不易过猛,搅拌时间不易过长。

2、加固定好酶的石英砂入层析柱时,勿先加液体,应直接用玻璃棒将石英砂弄入层析柱。

3、在层析柱中加入溶液不要过快,防止石英砂表面不平整。

我们小组对方案的改进(预实验后确定):

1.可溶性淀粉浓度:可设置可溶性淀粉浓度梯度,确定最适淀粉浓度

溶液名称浓度(mg/mL) 配制方法

可溶性淀粉溶液0.3 15mg可溶性淀粉溶于50mL沸水0.5 25mg可溶性淀粉溶于50mL沸水0.7 35mg可溶性淀粉溶于50mL沸水

(根据预实验结果,0.7mg/ml浓度太高,会使结果的颜色参杂蓝色,而0.3mg/ml浓度太低,颜色没有0.5mg/ml浓度的淀粉溶液好,故仍用原方案)

2.反应时间:可将第5步步骤改为流出1-2ml后,直接放置10min.(原因:简易步骤,增加酶与淀粉的反应时间)

实验对比方案:

编号方案

1 以0.3ml/min(6滴/min)的流速过柱,在流出1-2ml反应液后,转动关闭层析柱

的调节装置,放置5min后,打开调节装置,0.3ml/min(6滴/min)的流速过柱,

在流出1-2ml反应液后,用两支试管分别接收约0.5ml流出液

2 以0.3ml/min(6滴/min)的流速过柱,在流出1-2ml反应液后,转动关闭层析柱

的调节装置,放置10min后,打开调节装置,用两支试管分别接收约0.5ml

流出液

(据预实验结果,用0.3ml/min流速过柱比不过柱好,不流动的实验组结果不理想,推测应因淀粉未与a-淀粉酶充分接触。)

最终改进方案:1、由于实验时间不足的问题,步骤1、2由教师准备。2、淀粉溶液在70℃水浴锅中保温,且在水浴锅中已为学生准备好用100ml烧杯装的配制好的淀粉溶液,注意嘱咐学生要在用层析柱反应时才拿出来,勿提前拿;而之前检测石英砂固定a-淀粉酶的上清液所用淀粉于水浴锅中大烧杯中取,避免小烧杯中淀粉溶液取出来之后温度降低致使反应结果不佳。

思考:

1.与游离酶相比,固定化酶有哪些优缺点?

(l)极易将固定化酶与底物、产物分开;

(2)可以在较长时间内进行反复分批反应和装柱连续反应;

(3)在大多数情况下,能够提高酶的稳定性;

(4)酶反应过程能够加以严格控制;

(5)产物溶液中没有酶的残留,简化了提纯工艺;

(6)较游离酶更适合于多酶反应;

(7)可以增加产物的收率,提高产物的质量

(8)酶的使用效率提高,成本降低。

2.选择固定化方法时要注意哪些基本原则?

1)必须注意维持酶的催化活性及专一性,保持酶原有的专一性、高效催化能力和在常温常压下能起催化反应的特点

2)固定化应该有利于生产自动化、连续化

3)固定化酶应有最小的空间位阻

4)酶与载体必须结合牢固,从而使固定化酶能回收贮藏,利于反复使用

5)固定化酶应有最大的稳定性,在制备固定化酶时,所选载体不与废物、产物或反应液发生化学反应

6)固定化酶应易与产物分离

7)固定化酶成本要低,应为廉价的、有利于推广的产品,以便于工业使用

8)充分考虑到固定化酶制备过程和应用中的安全因素

3.为什么固定化后酶的稳定性得以提高?

①定化后酶分子与载体多点连接,增加了酶活性构象的牢固程度,可防止酶分子伸展

变形。

②阻挡了不利因素对酶的侵袭。

③抑制酶的自降解。将酶与固态载体结合后,由于酶失去了分子间相互作用的机会,从

而抑制了自降解。

4.经过固定化后,酶的特性有哪些改变?

1)酶的催化活力变化:固定化酶的活力在多数情况下比天然酶小,其专一性也能发生改变2)稳定性的影响(热稳定性、对各种有机试剂、对酶抑制剂、对不同pH、对蛋白酶、储存稳定性、操作稳定性

3)最适pH变化.:由于固相化后酶蛋白电荷状态变化和受载体表面电荷的影响,使得对底物作用的pH活性曲线和最适pH都将发生变化,最适pH可能将酸性或碱性方向移动,不同酶与pH有关的变化需通过实验来确定。

4)最适温度的变化(提高,少数不变或下降)

5、新型酶固定化技术有哪些,各有什么优缺点?

酶固定化的新技术、新方法

微波/超声辅助固定化

微波是一种电磁波,波长为0.1~100 cm。微波加热的主要原理是介质材料的极性分子在微波高频电场的作用下反复快速取向转动而摩擦生热,是从物质内部开始,瞬时达到需要的温度。微波加热具有许多传统加热不具备的优点,包括:加热迅速、均匀,不需要热传导过程,内外同时加热,加热时间短;加热质量高,营养破坏少;节能高效;易于控制功能等超声波是指振动频率大于20 kHz以上的一种纵波,在介质中传播时,使介质发生物理的和化学的变化,从而产生一系列超声效应,包括热效应、机械效应、空化效应和化学效应[10]。

研究认为,超声波对液体化学反应速度和产率的影响主要是超声波在液体介质中的空化作用,超声可使液体介质中形成微泡,其破裂伴随能量的释放,可以提高许多化学反应的速度。到目前为止,超声波技术对物质提取,高分子降解,酶解反应等都有很好的促进作用。其中超声波酶解反应具有高效、廉价、无污染,可提高酶促反应速度和有效成分的产率。

无载体固定化

交联酶晶体(cross-linked enzyme crystals,CLECs)是指通过交联剂,如:戊二醛,将在水溶液中的酶晶体交联成一种稳定结构及性能的晶态物质,其既具有酶的高活性、高选择性、反应条件温和等特点,又具有固相催化剂的环境适应性强、易回收等优势,从而使其在有机合成中应有较广。CLECs是一种无需载体、既有纯蛋白的高度特异活性又对有机溶剂具有高度耐受性的生物催化剂。由于CLECs需要高纯度酶结晶,实验室难以实行,所以其发展受到很大限制。

交联酶聚集体(Cross-linked Enzyme Aggregates,CLEAs)技术是一种将蛋白质先沉淀后交联形成不溶性的、稳定的固定化酶,是通过基本纯化的、高浓度的蛋白质样品的共价交联来实现的。具有对酶的纯度要求不高、不需要结晶等复杂步骤、可可获得稳定性好、活性高、成本低、易于推广、空间效率高等特点,因此是一个很有发掘潜力的固定化方法。

高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版选修1

第4课时α-淀粉酶的固定化及淀粉水解作用的检测 [学习目标] 1.尝试用吸附法制作固定化α-淀粉酶。2.运用固定化α-淀粉酶进行淀粉水解的测定。3.说明酶固定化的方法及制作原理。4.通过此实验探讨固定化酶的应用价值。 一、固定化技术的基础知识 1.酶 (1)作用:酶是生物体内各种化学反应的催化剂。 (2)特点:它有高度的专一性和高效性。 2.固定化酶 (1)概念:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。 (2)方法:吸附法、共价偶联法、交联法和包埋法。教材实验中用的是吸附法。 特别提醒图示解读:酶固定化的方法 ①是吸附法:是将酶吸附到载体表面。 ②是共价偶联法:是将酶通过共价键结合到载体的表面。 ③是交联法:通过把酶交互连接、相互结合而将酶固定。 ④是包埋法:是将酶或者细胞包埋在细微的网格里。 3.将酶改造成固定化酶的原因:酶在水溶液中很不稳定,且不利于工业化使用。 4.固定化酶作用的机理:将固定化酶装柱,当底物经过该柱时,在酶的作用下转变为产物。归纳总结直接使用酶和固定化酶的比较

例1 (2019·嘉兴一中月考)下列不属于固定化酶在使用时的特点的是( ) A.有利于酶与产物分离 B.可以被反复利用 C.能自由出入依附的载体 D.一种固定化酶一般情况下不能催化一系列酶促反应 答案 C 解析 固定化酶由于酶被固定在不溶性的载体上,很容易与产物分离,同时酶也能反复使用,这是固定化酶的主要优点;通常固定化酶的种类单一,所以不能催化一系列酶促反应。 例2 下列与固定化酶相关的叙述中正确的是( ) A.固定化酶是将水不溶性酶固定于某种介质上,使之成为易溶于水,而又具酶活性的制剂 B.将固定化酶装柱,当酶流过该柱时,可催化柱内底物转变为产物 C.酶固定的方法有吸附法、共价偶联法、交联法和包埋法等 D.固定化酶的缺点是酶在水溶液中很不稳定,且易与产物混在一起不易分离 答案 C 解析 固定化酶就是将水溶性的酶用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂;与普通酶相比,固定化酶易与产物分离,且固定化酶反应柱中酶已被固定,不能从柱内流出;酶的固定化方法有吸附法、共价偶联法、交联法和包埋法等。 二、α-淀粉酶的固定化及淀粉水解作用的检测实验 1.枯草杆菌的α-淀粉酶的固定化 (1)枯草杆菌的α-淀粉酶作用的条件:最适pH 为5.5~7.5;最适温度为50~75_℃。 (2)固定化方法——用吸附法将α-淀粉酶固定在石英砂上。 在烧杯中将5mg α-淀粉酶溶于4mL 蒸馏水中,再加入5g 石英砂,不时搅拌,30min 后,装入1支下端接有气门心并用夹子封住的注射器中(石英砂体积约4mL)。用10倍体积的蒸馏水洗涤注射器以除去未吸附的游离淀粉酶。 (3)淀粉水解作用的检测原理 淀粉――――→α-――――β-――→糖化葡萄糖 遇碘显蓝色 遇碘显红色 遇碘不显色 2.α-淀粉酶固定化实验步骤

糖化酶的固定化

糖化酶的固定化及其在葡萄糖生产中的应用工艺 姓名:吴启华 12生物工程1班学号:1214200027 指导老师:柯德森、姚焱;同组者:严少杰,李海毅;时间:2015/11/30---2015/12/14 摘要:利用有关固定化酶的理论和方法,研究固定化糖化酶的效率与糖化酶的浓度的关系。 本实验中测定固定化糖化酶偶联率、相对活力、活力回收来衡量其生产工艺的优劣,并探讨糖化酶的浓度对固定化效果及结合牢固程度的影响和验证固定化糖化酶催化生产葡萄糖的重复使用能力及其效率。制备固定化糖化酶的方法为离子吸附法,并且使用DNS法测定固定化酶的活力。结果显示:在该次实验中,固定化的效果较好;加入20g离子交换剂固定化酶的活力回收为79.1%,偶联率为90.46%,相对活力为82.58%,加入25g离子交换剂固定化酶的活力回收为85.2%,偶联率为92.76%,相对活力为92.54%。重复使用葡萄糖固定化酶的过程中,固定化酶的利用效率降低。酶与载体的浓度比例较高固定化酶葡萄糖生产效率高。 关键词:固定化,糖化酶,葡萄糖,酶活力 1、前言: 糖化酶也称葡萄糖淀粉酶(glucoamylase, EC.3.2.1.3)(淀粉-α-1,4-葡聚糖葡萄糖水解酶),它能够催化淀粉液化产物---糊精及低聚糖进一步水解成葡萄糖。糖化酶对底物的作用是由非还原端开始,将α-1,4-键和α-1,6键逐一水解,酶作用时糖苷键在C1-6间断裂,所产生的葡萄糖为 构型,几乎100%转变为葡萄糖。工业生产使用的糖化酶主要来自曲霉、根霉及拟内孢霉,它被广泛应用于酿酒、制糖等行业,是非常重要的酶制剂。 酶的固定化方法通常按照用于结合的化学反应的类型进行分类,大致有三种:非共价结合法(结晶法、分散法、物理吸附法及离子结合法);化学结合法(包括共价结合法及交联法);包埋法(包括微囊法及网络法)。 本实验利用离子结合法制备固定化糖化酶。离子结合法就是酶通过离子键结合于具有离子交换基的不溶性载体的固定化方法,常用的载体有:葡聚糖凝胶、离子交换树脂、纤维素等。本实验以离子交换树脂为载体,应用离子交换结合法制备固定化酶,该法操作简便,处理条件温和,酶的高级结构和活性中心的氨基酸残基不易被破坏,酶的活性回收率高,可反复连续生产,对稀酶有浓缩作用,载体可再生使用。其缺点是:载体和酶的结合力弱,容易受缓冲液种类或pH的影响,在高离子强度下进行反应时,酶易从载体上脱落。使用共价结合法不会使酶容易脱落,国外研究者已研究出用氧化锆涂层多孔玻璃或多孔陶瓷,然后硅烷化,最后用重氮基、醛基和异硫氰基衍生物偶联糖化酶,结果使酶活较高,并且能连续生产3个酶半衰期。在此次实验中还使用用DNS法测定固定化酶、残留酶、原酶的活力。 2、材料与方法: 2.1材料:(1)糖化酶液,GF-201大孔强碱阴离子交换剂,葡萄糖,可溶性淀粉(20g/L),CuSO4.5H2O,次甲基兰,酒石酸钾钠,氢氧化钠,亚铁氰化钾,乙酸,乙酸钠(配制pH4.6

测定α淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响

酶的固定化

酶的固定化 固定化酶是酶工程的核心,利于实现酶的重复利用及产物与酶的分离。下面以酶的固定化方法为核心,介绍一些有关固定化技术的研究新进展。 1 吸附法 利用多种固体吸附剂将酶或含酶细胞吸附在其表面上而使酶固定方法。该方法最显著的优点是操作简便,条件温和,不会引起酶的变异失活,且载体价廉易得,可反复使用。但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制。因此,人们不断尝试使用新的载体来解决这易脱落的问题。 通常,吸附法分为物理吸附法和离子吸附法。 酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。纵伟、刘艳芳等(2008)以磁性壳聚糖微球作为新型载体,并采用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,同时比较了游离酶和固定化酶的pH值和热稳定性。结果表明,固定化的适宜条件为:加酶量600 U/g,温度5℃,pH 7.0,固定化时问2 h。固定化酶的pH值和热稳定性都优于游离酶,

固定化酶连续使用5次后,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性。近年来,随着介孔分子筛制备技术的日臻成熟,人们正在考虑用其担当固定化酶的载体。与其他材料相比,介孔分子筛规则的孔道、大的比表面积、极强的吸附性能、稳定的结构等特点,使其具有担当固定化酶载体得天独厚的优势。 王炎等(2008)以介孔分子筛MCM一41作为载体,采用物理吸附法对漆酶进行了固定化,考察了时间、pH和给酶量对固定化效果的影响,并对固定化酶的活性及其稳定性进行了研究,讨论了影响固定化过程和固定化酶性质的主要原因。结果显示,在pH为3.0时,酶和载体比例为62.5 mg/g时吸附12 h固定化效果最好,固定化酶活性回收率为50%。与游离漆酶相比,MCM一41固定化漆酶的最适反应pH略有升高,最适温度没有变化,其pH稳定性和热稳定性都显著优于游离漆酶。固定化漆酶具有可重复操作的性质,与底物反应反复操作1O批次后剩余活性为4O%。 将酶与含有离子交换基团的水不溶性载体以静电作用力相结合 的固定化方法。该方法的处理条件温和,且酶的高级结构和活性中心的氨基酸很少发生变化,因而可以得到较高活性的固定化酶。采用此法固定的酶有葡萄糖异构酶、糖化酶、淀粉酶、纤维素酶等。陈姗姗等(2008)以阴离子交换树脂为载体、戊二醛为交联剂,对果胶酶进行固定化分析,探讨了温度、pH值、时间、加酶量、戊二醛浓度、交联温度、交联时问对果胶酶固定化效果的影响,同时对固定化果胶酶的酶学特性进行研究。研究结果表明,果胶酶的最佳固定化条件为:温

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告 淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告 实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热 恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至 1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6

的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用 0.1mol/L氢氧化钠溶液调节pH值至 6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70?士0.5? 恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40?士 0.5? 恒温水浴中保温15min ,再向各管分别加入40?下预热的1,淀粉溶液 2m1,摇匀,立即放入40?恒温水浴准确计时保温 5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶 活动,准备测糖。

α-淀粉酶的固定化以及淀粉水解作用的检测

《α-淀粉酶的固定化与淀粉水解作用的检测》 实 验 方 案 第二实验班一组 组长:张金昌 组员:胡建军、朱恩梅、石仙竹、谢娟丽、李昀奕、郭天天 2013.10.15

α-淀粉酶的固定化与淀粉水解作用的检测 一、实验背景资料: 1、酶:活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质;具有高效性、 专一性,同时,也有高度不稳定性,因为绝大多数酶的本质是蛋白质,凡是能使蛋白 质变性的因素,如高温、高压、强酸、强碱等都会使酶丧失活性。 2、酶促反应:指由酶作为催化剂进行催化的化学反应; 3、α-淀粉酶:为枯草杆菌的α-淀粉酶,其作用的最适PH为5.5~7.5,最适温度为50~70℃。 广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。此酶既作用于直 链淀粉,亦作用于支链淀粉,其特征是引起底物溶液粘度的急剧下降和碘反应的消失, 最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖;在分 解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。 4、固定化酶:借助于物理和化学的方法把酶束缚在一定的空间内并仍具有催化活性的酶 制剂。酶更适合采用化学结合和物理吸附法固定化。吸附法是酶分子吸附于水不溶性 的载体上,它的优点是操作简便,条件温和,不会引起酶变性或失活,且载体廉价易 得,可以反复使用。 5、吸附剂:常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。 活性炭:活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优 良的吸附剂, 每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由 物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、 氧及灰份,其結构则为炭形成六环物堆积而成。由于六环炭的不规则排列,造成了活 性炭多微孔体积及高表面积的特性。 硅胶:硅胶是由硅酸凝胶mSiO2·nH2O适当脱水而成的颗粒大小不同的多孔物质。具 有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很 好的干燥剂、吸附剂和催化剂载体。硅胶的吸附作用主要是物理吸附,可以再生和反 复使用。在碱金属硅酸盐(如硅酸钠)溶液中加酸,使之酸化,再加入一定量的电解 质进行搅拌,即生成硅酸凝胶;或者在较浓的硅酸钠溶液中加酸或铵盐也能生成硅酸 凝胶。将硅酸凝胶静置几小时使之老化,然后用热水洗去可溶性盐类,在60~70℃下烘

固定化技术应用-酶和细胞的固定化

固定化技术应用-酶和细胞的固定化 试题中出现固定酶能不能催化一系列反应,查找资料,没有权威 资料认为已经存在催化系列反应的酶,应该是研究方向。 选修知识的考查已经出现应用方向,也拓展到了技术的前景。也就 是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学 会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。 问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固 定化细胞? 01 1.固定化酶技术 固定化酶技术是用物理或化学手段。将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。 酶的固定化技术已经成为酶应用领域中的一个主要研究方向。经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。 2.固定化酶技术的发展 以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。

1916年Nelson和GrImn最先发现了酶的固定化现象。科学家们就开始了同定化酶的研究工作。 1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。 我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。 当今,固定化酶技术发展方向是无载体的酶固定化技术。 邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。 Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。 3.现阶段固定化酶技术存在的缺点 (1)一种酶只能催化一种化学反应,而在生产实践中,很多产物的形成都是通过一系列的酶促反应才能得到的。 (2)固定化酶一般只适用于水溶性的小分子底物;大分子底物常受载体阻拦,不易接触酶,致使催化活力难以发挥。 (3)首次使用时投入成本较高。

酒精发酵实验报告课件

生物工程专业综合(设计)性大实验 报告书 (酒精发酵实验) 学生姓名:吴丁柱 学号:3102106216 班级:生工2102 专业:生物工程 指导教师:魏胜华

生物工程专业设计(综合)实验 安徽工程大学实验报告书 学生姓名:吴丁柱学号:3102106216 专业班级:生工2102 实验类型:□验证■综合□设计□创新实验日期:2013.12.17 实验成绩: 一、当前酒精生产工艺的技术进展及现状 1.1现状 酒精是广泛应用在食品、化工、医药、国防和科研等各个领域的重要有机工业原料。 中国工业化生产酒精始于1900年俄国人在哈尔滨建的酒精厂,但发展非常缓慢,新中国成立时,我国酒精产量不到1万吨,专业性酒精厂生产规模大都是千吨小厂,基础十分薄弱。 五十多年来,特别是改革开放以来,随着国民经济的发展,我国酒精生产取得了巨大的发展。现有酒精生产企业450多家,产量在3万吨以上的共26家,其中30万吨以上的3家、10~20万吨7家、3~5万吨9家。2005年酒精产量达368.13万千升(按年销售收入500万元以上的企业计)(不包括自产自用的酒精),比2004年增长33.6%,居世界第三位。 2004年出口酒精74.44万吨比2003年增2.28倍,每吨酒精创汇418.73美元。进口3433吨,其中变性酒精1802.18吨,用汇686.03美元/吨。酒精生产实现了连续化、使用专用酶制作和商品酒精酵母,固定化酒精酵母,淀粉利用率达到90%以上,淀粉出酒率好的企业可以达到55~56%,(96°V/V)原料出酒率可到40~40.88%。随着食用酒精和工业酒精国家标准的4次制订、修订和实施,高纯度特级酒精企业的日益增多,标志着我国酒精生产技术和产品质量水平得到了很大的提高。但是,国外酒精生产技术自石油危机和美国大力发展汽油醇以来,有了更快的进步,特别是在节能、综合利用和自动化等方面,与我国拉开了差距。我国每吨酒精平均能耗酒精800公斤以上,世界水平为300~400公斤。随着我国燃料乙醇的发展,引进、消化、吸收、创新,我国酒精生产技术正在得到飞跃发展和提高,深信21世纪初期一定可以赶上世界先进水平。 1.2国内酒精蒸馏流程的进展 淀粉质原料→ 蒸煮→ 发酵→ 蒸馏→ 酒精 (糖质含糖蜜)(糖质原料无需蒸煮) 1.2.1两塔 (1)50年代初,天津、地方国营哈尔滨(顾乡屯)等酒精厂采用的两塔间断蒸馏流程。 (2)50年代初间歇流程生产能力低、消耗大,相继改为连续蒸馏。上海新亚酒精厂采用的两塔液相过塔流程。 (3)山东黄台酒精厂采用的两塔半液相过塔流程。 (4)1953年南阳酒精厂为降低煤耗采用了两塔气相过塔蒸馏流程生产95%(V)酒精。 (5)1956年部颁医药用酒精标准实施后,上海酒精厂、资中糖厂采用的两塔气相 1

实验七尿淀粉酶活性测定

实验七尿淀粉酶活性测定 淀粉酶(AMY或AMS在体内的主要作用是水解淀粉,它随机地作用于淀粉分子内的 a—1, 4糖苷键生成葡萄糖、麦芽糖、寡糖及糊精。血清中的淀粉酶主要有胰型(P型)和 唾液型(S型)及其亚型同工酶组成,P型淀粉酶主要来源于胰腺,S型淀粉酶主要来源于唾 液腺。正常淀粉酶因分子量小,故可从肾小球滤过而由尿中排出。 【目的】 1、验证淀粉酶的催化作用。 2、观察淀粉及其水解产物分别与碘反应呈现的颜色变化。 【原理】血清及尿中的淀粉酶来源于胰腺和唾液腺,正常血清与尿中有一定活性。 Winslow 氏法测定尿和血清中淀粉酶活性是将试样作等比稀释,观察一系列试样在规定的 37C、30分钟的条件下,恰好能将0.1%淀粉溶液1ml水解(指加入碘液后不再呈蓝色)的 酶量定为淀粉酶的一个活性单位,乘以尿的稀释倍数,即可得知每项ml 尿液中的淀粉酶活性。 【器材】 试管(10mn X 100mr)、试管架、电热恒温水浴箱、吸管、洗耳球、滴管。 【试剂】 1 、 9%NaCl 2、0.3%碘液 3、0.1%淀粉溶液 【操作】 1 、准备尿液(自备)。 2、取 10支试管,编号,用吸管向管中加入0.9%NaCl 1ml。 3、用1ml吸管(注意应用刻度到头的)向第一管加尿液1ml,混合,再将试管中的液 体吸起,然后任其流回试管,如此重复三次,以便全管混匀,并借此冲洗吸管内壁。吸出此混合液1ml 移入第二管中。 4、用同法处理第二管使之混匀,并取出1ml 置于第三管中。依此类推,如此继续稀释 至第九管后,吸出1ml混合液弃之,这样既可获得分别含原尿液为1/2ml,1/4ml,1/8ml, ... 1/512ml 的不同浓度的尿稀释液。第十管不加尿液作为对照管。 5、从第十管起依次向各管迅速准确加入0.1%淀粉液2ml,迅速摇匀(是否充分混匀往

固定化α-淀粉酶及活性测定

固定化α-淀粉酶及活性测定 一、实验目的:学会交联法制备固定化酶的操作技术 二、实验原理:制备固定化酶的方法很多,利用双功能试剂或多功能试剂在酶分子间,酶分子与惰性蛋白间,或酶分子与载体间进行交联反应,以共价键制备固定化酶的方法称为交联法,本实验即采用这种方法。交联剂为戊二醛,载体为甲壳素。 三、实验器材: 1.恒温水浴锅 2.恒温振摇仪 四、实验试剂 1. 5%戊二醛 2. 甲壳素 3. 碘原液:称取碘1.1g。碘化钾2.2g,臵于小烧杯中,加10ml蒸馏水使之溶解,然后转入容量瓶中。再加少量的蒸馏水洗涤烧杯数次,洗涤液均转入容量瓶中,最后定容至50ml。摇均后放于棕色试管中备用。 4. 比色稀碘液:取碘原液2ml,加碘化钾20g,再用蒸馏水定容至5000ml。 5. 2%淀粉溶液:称取2g可溶淀粉,放入小烧杯中,加少量蒸馏水做成悬浮液。然后在搅拌下注入沸腾的蒸馏水中,继续煮沸一分钟,冷却后加蒸馏水定容至100ml。 6. pH6磷酸氢二钠——柠檬酸缓冲液:称取磷酸二氢钠(Na 2HPO4.12H 2 O)45.23g, 柠檬酸(C 6H 8 O 7 .H 2 O)8.07g,先在烧杯中使之溶解,然后转入容量瓶中定容至 1000ml。 7. 标准终点色溶液, A液:精确称取氯化钴(CoCl.6H 2O)40.2493g和重洛酸钾(K 2 GrO 7 )0.4878g, 用蒸馏水定容至500ml. B液::精确称取络黑T40mg,用蒸馏水定容至100ml. 同时取A液40ml、B液5ml、混合后臵于冰箱中待用。混合液在15天内使用有效。

五、实验操作 1. 酶液的制备: 精确称取α-淀粉酶2g,先用少量40℃pH6的磷酸二氢钠——柠檬酸缓冲液溶解,溶解过程中轻轻用玻璃棒捣研。将上层液小心倾入100ml容量瓶,沉渣部分再加入少量上述缓冲液,如此反复捣研3—4次。最后,将溶液与残渣全部移入容量瓶中,用缓冲液先定容摇匀后,通过四层纱布过滤,溶液供测定使用。 2.固定化酶的制备 (1) 称取50mg粉末甲壳素,加入5%戊二醛10ml,调节pH=8.5,搅拌均匀后,于25℃,恒温振摇1小时。取出后,倾去戊二醛,然后以蒸馏水洗涤,倾去清夜,以除去多余的交联剂。 (2) 取前面制备的酶液10ml,与上述处理的甲壳素混合均匀,25℃,恒温振摇1小时,然后4℃冰箱放臵过夜。 (3)取出后,4000rpm离心分离,倾去清液,蒸馏水洗涤,可得固定化酶 3.固定化α-淀粉酶活力测定及活力回收率的计算 (1)首先用吸管取1ml的标准终点色溶液,加至白瓷板的空穴内,作为终点参照的标准。 (2)固定前总酶活力测定:取20ml 2%的可溶淀粉液与5mLpH6的磷酸氢二钠——柠檬酸缓冲液,加入一支大试管中。将试管臵于60℃水浴5分钟。然后加入前面制备的酶液0.5ml。摇匀后,立即用秒表记录时间。此后,每经一段时间,用吸管吸出0.2ml反应液,加入预先盛入稀碘液的白瓷板中。当穴内颜色反应由紫色逐渐变为红棕色并与标准色相同时,即为反应终点,记录反应到达终点时的时间。 (3)固定化酶活力测定:取20ml 2%的可溶淀粉液与5mLpH6的磷酸氢二钠——柠檬酸缓冲液,加入一支大试管中。将试管臵于60℃水浴5分钟。然后加入前面制备的固定化酶。摇匀后,立即用秒表记录时间。此后,不断振摇,每经一段时间,用吸管吸出0.2ml反应液,加入预先盛入稀碘液的白瓷板中。当穴内颜色反应由紫色逐渐变为红棕色并与标准色相同时,即为反应终点,记录反应到达终点时的时间。

实验三、淀粉酶活性的测定实验报告

实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70℃ 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液:取磷酸二氢钾6.8g,加水500ml使溶解,用0.1mol/L氢氧化钠溶液调节pH值至6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70℃士0.5℃恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40℃士 0.5℃恒温水浴中保温15min ,再向各管分别加入40℃下预热的1%淀粉溶液2m1,摇匀,立即放入40℃恒温水浴准确计时保温5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶

唾液淀粉酶实验(借鉴文章)

唾液淀粉酶最适pH值的测定实验 实验目的 1.掌握设计性实验的基本思路,并完成设计报告。 2.掌握唾液淀粉酶最适PH的测定原理和方法。 3.熟悉影响酶促反应速度的因素。 实验原理 1.酶促反应速度受到许多因素的影响,如温度、PH、激动剂和抑制剂等。上述诸因素对唾液淀粉酶催化淀粉水解反应速度的影响,可用定性或定量的反应来观察。利用碘与淀粉机器不同程度纾解产物反应的颜色,来衡量酶促反应的速度的快慢。蓝色—紫红色—黄色,颜色由蓝变黄,表示酶促反应速度由慢到快。此为定性观察。 2.进一步利用郎伯—比尔定律来判定溶液的吸光度与溶液的浓度符合一定的比例关系。由于在被水解的程度也不一样。当唾液淀粉酶不能将完全水解时,淀粉遇碘呈蓝色,吸收波长位于660nm处。不同PH环境中唾液淀粉酶与淀粉的反应程度不同,吸光度值也不同。因此,通过测量660nm处的吸光度值,可以了解PH对酶促反应的影响,吸光度最小的溶液其PH即为唾液淀粉酶的最适PH。

实验器材 仪器材料:方盘,试管架,中试管,毛刷,吸耳球,玻璃铅笔,小烧杯,白瓷板,坐标纸,漱口杯。0.1ml、0.5ml、1.0ml、2.0ml、5.0ml、10.0ml刻度吸管,胶头滴管,37 C恒温水浴箱,分光光度计,电磁炉。 试剂药品:0.02%淀粉溶液. 0.2mol/L磷酸二氢钠溶液、0.2mol/L 磷酸氢二钠溶液碘液;称取碘1g,碘酸钾2g,溶于300ml蒸馏水中。

实验步骤: 1、缓冲液的配置 pH 0.2mol/L 0.2mol/L NaH2PO4(ml) Na2HPO4(ml) 5.7 93.5 6.5 5.8 92.0 8.0 5.9 90.0 10.0 6.0 8 7.7 12.3 6.1 85.0 15.0 6.2 81.5 18.5 6.3 7 7.5 22.5 6.4 73.5 26.5 6.5 68.5 31.5 6.6 62.5 3 7.5 6.7 56.5 43.5 6.8 51.0 49.0

糖化酶研究进展

酶学 糖化酶的研究进展 2013年

糖化酶的研究进展 摘要:糖化酶是世界上生产量最大和应用范围最广的酶制剂,在工业中具有重要的应用价值。本文从微观学角度出发,主要介绍了糖化酶的结构和催化作用机制;另外介绍了糖化酶的分离纯化手段及其功能应用;最后提出了研究中存在的问题以及解决办法,并对糖化酶应用研究的前景进行了展望。 关键词:糖化酶;结构;催化机制;分离纯化;功能

STUDYING STRUCTURE AND FUNCTION OF GLUCOAMYLASE Abstract:Glucoamylase is the enzyme which has the most output and the vastest application in the world . From the perspective of microscopic science, This review introduces the structure and catalytic mechanism of glucoamylase; additionally introduced separation and purification methods and application of glucoamylase; In the end, put forward the application, the problems and solutions of glucoamylase research, provide future application prospect. Keywords: glucoamylase;structure ;Catalytic mechanism;Purification;function

淀粉酶活性测定实验报告

班级:植物092 姓名:徐炜佳学号:03 淀粉酶活性的测定 一、研究背景及目的 酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。 α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法。这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延迟(内 二、实验原理 萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在下则发生钝化。本实验的设计利用β-淀粉酶不耐热的特性,在高温下(70℃)下处理使得β-淀粉酶钝化而测定α-淀粉酶的酶活性。 酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定,由于麦芽糖能将后者还原生成硝基氨基水杨酸的显色基团,将其颜色的深浅与糖的含量成正比,故可求出麦芽糖的含量。常用单位时间内生成麦芽糖的毫克数表示淀粉酶活性的大小。然后利用同样的原理测得两种淀粉酶的总活性。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。 在实验中要严格控制温度及时间,以减小误差。并且在酶的作用过程中,四支测定管及空白管不要混淆。

糖化酶的固定化及其在葡萄糖生产中的应用工艺研究实验设计

糖化酶的固定化及其在葡萄糖生产中的应 用工艺研究实验设计 生工(1)班第七组 要求:理解固定化效果与固定化条件密切相关,根据自己的理解选择一项与固定化效率及固定化产品质量密切相关的关键因素,并推测该因素发生变化时会对固定化酶的质量及固定化效率造成什么影响。 我们的思路:当酶的浓度低,载体多时,固定化效果固然好,大部分酶都能固定化,但是成本高了,效率也降低,而当酶的浓度高了,载体不是很多的情况下,酶的固定化效果又不好。时间、温度等对酶的固定化也是有一定影响的。但是经过我们的讨论,我们觉得pH 对酶的固定化过程是由一定影响的,所以我们决定以pH的改变为方向,设计实验。 设计原理:每个蛋白质都有其等电点(pI),蛋白质即含有酸性的,也含有碱性的官能团。组成蛋白质的氨基酸可能是带正电荷的、带负电荷的、中性的或者本生是两性的。它们的电荷加在一起是蛋白质的电荷。被称为两性离子的两性分子(如蛋白质)同时含有带正电荷和负电荷的官能团。整个分子的总电荷则由其周围环境的pH值决定,根据pH值的不同整个分子可能带正电荷,也可能带负电荷。其原因是因为这样的分子在不同的pH值环境中可能会吸收或者丧失质子(H+)。在pH值等于等电点时这样的分子所带的正电荷和负电荷互相抵消,使得整个分子不带电。当pH>pI时,溶液中负离子增多,会“抢走”蛋白质的质子而使蛋白质带负电荷,或中和更多蛋白质的正电荷而使整个蛋白质带负电;而当pH

唾液淀粉酶的实验

例题1:生物课外小组的同学,在探究“馒头在口腔中的变化”时,进行了如下处理: 1)将馒头碎屑与唾液放入1号试管中充分搅拌; 2)将馒头碎屑与清水放入2号试管中充分搅拌; 3)将馒头快与唾液放入3号试管中不搅拌; 4)将馒头碎屑与唾液放入4号试管中不搅拌;(以上试管中馒头碎屑与馒头块、唾液、清水均等量) 其中第1种处理是模拟口腔中的牙齿,舌和唾液的作用,第2.3.4种处理都是1的对照实验。回答问题: ①当以“舌的搅拌”为变量时,应选取___________两种处理进行对照实验。 ②1与2对照进行实验是为了探究__________________________的作用。 ③在以上三种对照实验中,哪种处理不妥,请指出__________________________________。 ④在设计此探究方案时,有的同学建议:“除了以上四种处理外,还要进行第五种处理, 即将馒头块与清水放入试管中不搅拌。”你认为这种处理有必要吗为什么______________________________________________________________。 例题2:下表表示某同学在进行“馒头在口腔中的变化”实验时,设计的部分实验,请根据他的实验设计和加碘液后应出现的现象,加以分析说明: (1)在1—4号试管中分别加入实验材料后,为使实验现象更加明显,应采取的操作方法是 __________________________________________________________________________; (2)表中C现象为______________________________,原因是 _______________________________________________________。 (3)表中A和B现象都可能____________________________,原因是

2013浙科版选修1第二部分《实验六 α-淀粉酶的固定化及淀粉水解作用的检测》word学案3

高中生物实验6α-淀粉酶的固定化及淀粉水解作用的检测 浙科版 核心解读HEXINJIEDU 1.酶与固定化酶一样吗?相对酶而言,固定化酶有什么优点呢? 不完全相同,固定化酶是酶的衍生物。酶是活细胞产生的具有催化作用的一类有机物,它是生物体内各种化学反应的催化剂,而固定化酶是将水溶性的酶用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。 固定化酶的优点: ①使酶固定化后有一定的机械强度,催化反应的过程可管道化、连续化和自动化。 ②酶不溶解在催化反应的溶液中,产物更易纯化。 ③固定化酶可反复使用,更经济,更利于工厂化生产。 ④固定化酶提高了酶的稳定性,可较长时间地贮存和使用。 固相酶是在20世纪60年代发展起来的一项技术,很快就得到了广泛的应用。 2.如何证明洗涤固定化淀粉酶柱的流出液中没有淀粉酶? 可在试管中加入1 mL可溶性淀粉溶液,再加入几滴淀粉酶柱的流出液,混合后用手握住试管增加温度,几分钟后加1~2滴KI—I2指示剂,如仍显蓝色,即流出液中没有淀粉酶了。用固定在石英砂上的淀粉酶柱再作用于淀粉溶液,使其自柱中流出,作用的结果才能表明是淀粉酶的固相酶作用的结果。 3.固定化酶有哪些用途呢? (1)固相酶在工业上的应用 ①氨基酸酰化酶固相酶可使D型和L型氨基酸拆分,用于生产L型氨基酸。 ②柚苷酶固相酶用于果汁脱苦。 ③蛋白酶固相酶用于制造蛋白水解液。 ④木瓜蛋白酶固相酶用于啤酒澄清。 ⑤葡萄糖异构酶固相酶用于制造果糖,果糖是最甜的糖,制备的糖溶液可大大提高糖液的甜度。 (2)固相酶在化学分析和临床诊断上的应用 用尿酶固相酶可测定血液或尿中的尿素含量。 (3)固相酶在医药上的应用 ①苯丙酮尿症患者是由于体内缺少苯丙氨酸羟化酶,不能使苯丙氨酸转变成氨基酸,使苯丙氨酸变成苯丙酮酸和苯乳酸而随尿排出。这种病人智力发育迟缓,又称精神幼稚病。如将苯丙氨酸羟化酶及其辅酶制成不溶酶,注射到患者体内,可有效治疗苯丙酮尿病。 ②亚洲有15%的人体内缺少乳糖酶,不能水解牛乳中的乳糖,乳糖进入肠道后异常发酵,引起腹泻腹痛。这种现象大约在饮用后十几小时发生。有的人进入老年后缺少乳糖酶,也会发生上述现象。因此,可以用乳糖酶固相酶在体外或体内水解乳糖。 4.耐高温的淀粉酶有哪些可能的用途? 在实际生产中,总希望反应的时间愈短愈好,这就要提高反应温度。通常生产上淀粉酶是一次性使用的,加温虽在短时间内会使酶变性失活,但没有关系,只要使淀粉在短时间内水解即可。寻找耐高温的淀粉酶的目的是在高温下使淀粉水解快,而且酶不会因高温而在短时间内变性。在发酵生产中使用的往往是植物淀粉,如青霉素发酵、

相关文档
最新文档