关于温度传感器的文献综述

关于温度传感器的文献综述
关于温度传感器的文献综述

温度传感器简单概述

摘要

温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量始终占据着重要的地位。温度传感器应用范围之广,使用数量之大,也高居各类传感器之首。且它的发展大致经历了传统的分立式温度传感器,模拟集成温度传感器/控制器,智能温度传感器这三个阶段。目前,温度传感器正向着单片集成化、智能化、网络化和单片系统化的方向发展。

关键词温度温度传感器传感器智能化

目录

摘要 ......................................................................................................................... I 目录 ......................................................................................................................... I 1前言 (1)

2 传感器的介绍 (2)

2.1传感器的概念 (2)

2.2传感器的分类 (2)

3 温度传感器的发展阶段 (3)

3.1分立式温度传感器 (3)

3.2模拟集成温度传感器 (3)

3.3模拟集成温度控制器 (4)

3.4智能温度传感器 (4)

4 温度传感器的发展趋势 (5)

5 结语 (7)

参考文献 (8)

1 前言

蔬菜的生长与温度息息相关,对于蔬菜大棚来说,最重要的一个管理因素是温度控制。温度太低,蔬菜就会被冻死或则停止生长,所以要将温度始终控制在适合蔬菜生长的范围内。如果仅靠人工控制既费时费力, 效率低,又容易发生差错,为此,在现代化的蔬菜大棚管理中通常有温度自动控制系统,来监控采集大棚内各个角落的温度变化情况,以控制蔬菜大棚温度,适应生产需要。要时刻对蔬菜大棚的温度进行测量,就离不开温度传感器。

在20世纪90年代中期最早推出的智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5 ~0.0625℃。由美国DALLAS半导体公司新研制的 DS1624型高分辨力智能温度传感器,能输出13位二进制数据,其分辨力高达0.03125℃,测温精度为±0.2℃。为了提高多通道智能温度传感器的转换速率,也有的芯片采用高速逐次逼近式

A/D转换器。

进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、2I C总线、SMBus总线和SPI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。

温度传感器的应用范围很广,它不仅广泛应用于日常生活中,而且也大量应用于自动化和过程检测控制系统。温度传感器的种类很多,根据现场使用条件,选择恰当的传感器类型才能保证测量的准确可靠,并同时达到增加使用寿命和降低成本的目的。

2 传感器的介绍

随着现代科技的发展,传感器技术的应用越来越广泛。其中,在传感器家族中占有重要地位的成员---温度传感器的应用也深入了各个领域。

2.1 传感器的概念

从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以传感器由信号感受器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号(如电信号和光信号),有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。

2.2 传感器的分类

传感器分类方法很多,常用的有两种。

第一种温度传感器按传感器于被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。

接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。这种测温方法精度比较高,并在一定程度上还可测量物体内部的温度分布,但对于运动的、热容量比较小的、或对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。

非接触测温的测温元件与被测对象互不接触。目前最常用的是辐射热交换原理。此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。

第二种按照温度传感器输出信号的模式,可大致划分为三大类:数字式温度传感器、逻辑输出温度传感器、模拟式温度传感器。

3 温度传感器的发展阶段

温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下三个阶段:传统的分立式温度传感器,模拟集成温度传感器/控制器,智能温度传感器。

3.1 分立式温度传感器

传统的热电偶、热电阻、热敏电阻及半导体温度传感器,均属于分立式温度传感器,传感器本身就是一个完整的、独立的感温元件。此类传感器通常要配温度变送器,以获得标准的模拟量(电压或电流)输出信号。使用时还需配上二次仪表,才能完成温度测量及控制功能。其主要缺点是外围电路比较复杂、测量精度较低、分辨率不高、需经行温度校正,如热电偶传感器。热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量。这类传感器输出模拟电压或电流信号,信号范围各异,要经过复杂的调理电路和A/D 转换才能与单片机相连接。另外它们的体积较大,使用也不够方便。因此,分立式温度传感器逐渐被淘汰。

3.2 模拟集成温度传感器

模拟集成温度传感器是采用硅半导体集成工艺制成的,因此又称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。这类温度传感器也输出模拟电压或电流,但输出信号比较规范,一般经过简单处理和A/D转换就可以与单片机相连接。它是目前国内外应用最普遍的一种集成传感器。典型产品有AD590,AD592,LMP17,LM135等。

根据输出方式的不同,模拟集成温度传感器可以划分5类:

(1)电流输出式集成温度传感器的特点是输出电流与热力学温度成正比,电流温度系数K的单位是μA/K。典型产品有AD590、AD592、HTS1和TMP17。

(2)电压输出式集成温度传感器的特点是输出电压与热力学温度成正比,电压温度系数KV的单位是μV/K。典型产品有LM334、LM35和LM34A。

(3)周期输出式集成温度传感器的特点是输出方波的周期与热力学温度成正比,周期温度系数KT的单位是us/K。典型产品有MAX6576。

(4)频率输出式集成温度传感器的特点是输出方波频率与热力学温度成正比,频率温度系数Kf的单位是Hz/K。典型产品有MAX6577。

(5)比率输出式集成温度传感器的特点是输出电压不仅与温度有关,还与电源电压的实际值与标称值的比率成正比,因此可以消除因电源电压存在偏差或在工作过程中发生波动而引起的误差。典型产品有AD22100和AD22103。

其中后三者属于增强型模拟集成温度传感器。

3.3模拟集成温度控制器

模拟集成温度控制器主要包括温度开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处,但它自成系统,工作时并不受微处理器的控制,这是二者的主要差别。

3.4 智能温度传感器

智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。智能温度传感器是微电子技术、计算机技术和自动测试技术的结晶,它也是集成温度传感器领域中最具活力和发展前途的一种新产品。且它输出的是数字信号,可以直接同单片机相连接,具有克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端的优点。

智能温度传感器内部都包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器、随机存取存储器和只读存储器。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器,并且可通过软件来实现测试功能,其智能化取决于软件的开发水平。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。

4 温度传感器的发展趋势

进入21世纪之后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

(1)提高测温精度和分辨力

21世纪90年代中期最早推出的智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。目前,国外已相继推出多种高速度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5~0.0625℃。为了提高多通道智能温度传感器的转换速率,也有的芯片采用高速逐次逼近式A/D转换器。

(2)不断增加测试功能

新型智能温度传感器的测试功能也在不断增强。例如,DS1629型单线智能温度传感器增加了实时日历时钟,使其功能更加完善。DS1624还增加了存储功能,利用芯片内部256字节的E2PROM存储器,可存储用户的短信息。另外,智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。

智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机还可以通过相应的寄存器来设定其A/D转换速度、分辨率及最大转换时间。

(3)总线技术的标准化与规范化

与此同时,智能温度传感器的总线技术也实现了标准化、规范化。目前所采用的总线主要有单线(1-Wire)总线、2I C总线、SMBus总线和SPI总线。第一种属于一线串行总线,第二、三种属于二线串行总线,第四种则为三线串行总线。上述温度传感器作为从机,可通过专用总线接口与主机经行通信,由于它们的总线接口符合标准化、规范化设计,使用户操作起来更加简便。

(4)可靠性及安全性设计

传统的 A/D转换器大多采用积分式或逐次比较式转换技术,其缺点是噪声容限低,抑制混叠噪声及量化噪声的能力比较差,分辨率较低、成本较高,线性度也不够理想。

为了提高传感器的抗干扰能力,新型智能温度传感器普遍采用了高性能的∑-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波器技术,来提高有效分辨力。∑-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。

(5)开发虚拟温度传感器和网络温度传感器

虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,病因B&K 公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。

(6)研发单片机测温系统

单片系统是21世纪一项高新科技产品,它是在芯片上集成以个系统或子系统,这将给IC产业及IC应用带来划时代的进步。最近,ADI公司已在单片机系统芯片的研究上取得突破性的进展,开发出精密数据采集系统级芯片。它把微控制器8051/8052、高精度数模/模数转换器,山素存储器,随机存取存储器以及通信电路等集成在单一芯片上,可广泛应用于工业控制、仪器、仪表和通信等领域。

5 结语

随着工业生产效率的不断提高,自动化水平与范围的不断扩大,对温度传感器的要求也越来越高,归纳起来有以下几个方面:

(l) 扩展测温范围:目前工业常用的测温范围为-200℃~3000℃,随着工业的发展,对超高温、超低温的测量要求越来越迫切,如在宇宙火箭技术中常常需要测量几千度的高温。

(2) 提高测量精度:随着电子技术的发展,信号处理仪表的精度有了很大的提高,特别是微型计算机的使用使得对信号的处理精度更加提高。

(3) 扩大测温对象:随着工业和人们日常生活要求的提高,现在已由点测量发展到线、面测量。在环境保护、家用电器上都需要各种各样的测温仪表。

(4) 发展新产品,满足特殊需要:在温度测量中,除了进一步扩展与完善管缆热电偶、热电阻,以及晶体管测温元件、快速高灵敏度的普通热电偶外,而且根据被测对象的环境,提出了许多特殊的要求。如防硫、防爆、耐磨的热电偶,钢水连续测温,火焰温度测量等。

(5) 显示数字化:温度仪表不但具有读数直观、无误差、分辨率高、测量误差小的特点,而且给温度仪表的智能化带来很大方便。

(6) 检定自动化:由于温度校验装置将直接影响温度仪表质量的提高,值得在这方面花大力气进行研究。我国已研制出用微型机控制的热电偶校验装置。

参考文献

[1] 张毅刚. 单片机原理及应用[M]. 北京:高等教育出版社,2003.

[2] 万光毅. 单片机实验与实践教程[M]. 北京:北京航空航天大学出版社,

2003.

[3] 付家才. 单片机控制工程实践技术[M]. 化学工业出版社,2004.

[4] 张毅刚.单片机原理及应用[M].北京:高等教育出版社,2004.

[5] 于还业.温室环境自动监测系统[J].农业工程学报,1997,13:262—169.

[6] 刘士光. 温室大棚多功能测试仪的智能化自校方法[J].农业工程学报,

2000,16(3):135—137.

[7] 张毅坤.单片微型计算机原理及应用[M].西安:西安电子科技大学出版社,

1998.

[8] 李朝青.单片机原理及接El技术[M].北京:航空航天大学出版社,I999.

[9] 何立民.单片机应用系统设计[M].北京:北京航空航天大学出版社,1990.

[10] 李华.MSC一51系列单片杌实用接口技术(第1版)[M].北京:北京航空航天

大学出版社,1993.

[11] 胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社.1996.

[12] 王泽保. 新型单片机在集成电路测试中的应用[J]. 微型机与应用, 1997,

(5): 42—43.

[13] 彭佳文,姚志成,彭佳红.一种单片机多机通信系统的设计[J].微计算机

信息,2008,24(2):131—133.

[14] 郑文争,王旭阳.基于Rs485串行1:3的远程实时信号传输设计[J].通

信技术,2007,5(5):16—18.

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

光纤温度传感器工作原理及实际应用分析

光纤温度传感器工作原理及实际应用分析 摘要:文章在分析DTS分布式光纤传感器系统的逻辑组成和工作原理后,详细介绍了基于分布式光纤温度传感器和光纤光栅温度传感器测温系统对在电力系统各重要电气设备进行温度安全监测中的应用。 关键词:光纤温度传感器;DTS;电力温度监测 温度是工程应用领域中重要的检测和监控对象,对于一个内部结构复杂、涉及点面较多的复杂系统而言,要获得一个准确且具有一定监测对象范围跨度的实时温度信息(或监测对象分布的应用应变特性),采用常规的单点移动式或由多个独立单点相互结合组成的准分布式温度传感器侧空虚体统,不仅会由于数据采集的延时性降低温度测量数据的准确度,同时还会由于复杂的接线使整个系统布线变得非常困难,这时选用分布式光纤温度传感系统(Distributed Temperature Sensing,DTS)就是一种非常有效的方法,非常适合冶金、化工、电力等恶劣环境场合中的实时温度测量和监控,具有相当大的研究意义。 1DTS分布式光纤传感器系统 DTS 分布式光纤传感器系统是一款结构较为复杂的工业应用领域温度在线检测和控制产品,其非常适用于环境较为恶劣、干扰对象较多、监测范围跨度较大的重要工农业应用产生中的温度实时准确检测和控制。 1.1DTS系统组成 DTS分布式光纤传感器系统主要包括传感光纤、光路模块、电路模块、高级应用软件、以及一些辅助的外围集成电路设备,其逻辑组成结构如图1所示。 从图1可知,DTS系统在运行时,首先由电路模块中得控制及信号处理电路将对应的控制信号通过驱动电路驱动半导体激光器发生对应的高速脉冲信号,然后经过光路模块中得激光脉冲耦合形成对应的光纤信号,并经分光光路转换后进入到传感光纤中,再经探测器、探测电路、高速采集电路等将光纤传感器中的温度信号返回到系统的控制及信息处理电路中,完成对监测对象温度信号的采集。通过半导体激光器产生的激光脉冲在进入到传感光纤后,就会通过分光耦合特性发生背向散射光,其所产生散射光主要有三个波长的背向散射光,分别为Anti-Stokes(反斯托克斯)光、Rayleigh(瑞利)光、以及Stokes(斯托克斯)光。三种背向散射光中,Anti-Stokes具有温度敏感个性,为温度信号光;而Stokes 光对温度信号不敏感,为系统中得参考光。从系统传感光纤中返回的探测器中的背向散射光经分光光路、光滤波器滤波后,可以将Stokes光波和Anti-Stokes光波有效分离,然后再经APD 探测器接收后,经探测电路等放大电路处理后由高速数据采集模块进行自动采集,并经接口电路上传到客户PC机上,完成对系统温度信号、温度分布曲线、波动曲线等的动态显示。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

光纤温度传感器在电力系统中的应用现状综述

光纤温度传感器在电力系统中的应用现状综述 摘要:首先介绍了光纤温度传感器的优点及发展现状,并重点介绍了应用最为广泛的分布式光纤温度传感器与光纤光栅温度传感器的基本原理。概述了当前光纤温度传感器在电力系统中基本的应用模式,并综述了光纤温度传感器对电力系统主要设备进行温度监测的现状与意义。针对光纤温度传感器在电力系统中应用存在的问题与不足,提出了相应的解决方案并对其前景进行了展望。 关键词:分布式光纤温度传感器;光纤光栅;温度监测;故障诊断;电力系统 Application situation of temperature monitoring of optic fiber sensor in power system LI Qiang1,WANG Yan-song2,LIU Xue-min2 (https://www.360docs.net/doc/c016237311.html,OC Research Center, Beijing 100027, China; 2.College of Information and Control Engineering, China University of Petroleum,Dongying 257061,China) Abstract:The advantages and development of temperature monitoring of optic fiber sensor is presented, and the working principle of fiber optic distributed temperature sensor,f iber grating sensor are respectively introduced,which are most popular in industry use .I n the paper, the basic application model of temperature monitoring of optic fiber in power system are presented.

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景 温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用 光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。 2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。 3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。 4、传感器的小尺寸在医学应用中是非常有意义的, 光纤光栅传感器是现今能够做到最小的

温度传感器DS18B20的概述

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。 单片机温度检测系统 摘要:该温度检测系统是以AT89S52单片机为核心,采用新型可编程温度传感器DS18B20进行温度检测,具有抗干扰能力强、温度采集精度高、不需要复杂的调理电路和AD转换电路等特点,该系统是由主机和从机两部分组成,从机的AT89S52单片机完成数据采集、处理和LCD显示,并通过串口与主机进行通信,主机(电脑)实时监控从机采集的数据状况、通过液晶显示温度和时间图形,同时将数据存储在电脑中,因而在掉电的情况下,系统同样能够记录每一时刻的数据,从而轻松地实现温度的检测。 关键词:AT89S52单片机,可编程温度传感器DS18B20,实时检测。 方案的选择及简绍 目前使用的接触式比较多,主要有热点式传感器,吧温度变化转换为电阻变化的叫做热电阻传感器,把温度变化转换为热电势变换的叫做热电偶传感器。 方案一:热电阻传感器具有高温系数,高电阻率,物理特性稳定,良好的线性输出等优点。 方案二:热电偶传感器具有结构简单,测量范围广,热惯性小,精准度高,输出信号远等优点,但价格比较高。 方案三:新型可编程温度传感器DS18B20,精度高,成本低,易于采集信号。 利用热电偶或热电阻作为温度传感器,这类传感器至仪表之间通常要用专用的温度补偿导线,而温度补偿导线的价格比较高,并且线路太长会影响到测量的精度,这是直接以模拟量形式进行采集的不可避免的问题。采用新型可编程温度传感器DS18B20进行温度检测可以避免热电阻或热电偶作为温度传感器所造成的测量精度误差过大等问题,同时DS18B20只需要一个I/O口便可以进行通信,它可以以更低的成本和更高的精度实现温度的检测,所以我们选择了方案三。 各部分显示内容简介 温度数据的显示: 采用LCD显示器显示,采用数码管显示时间温度的数据操作方便,但是需要用到的数码管数量过多,占用的I/O口比较多,浪费了I/O的利用率,而是用LCD显示虽然在编程上有一定程度的比数码管显示的复杂性要高,但其占用的I/O资源比较少,而且能显示的内容比

光纤传感器的综述

现代传感器论文 题目:光纤传感器综述 姓名:张艳婷 学院:物理与机电工程学院 系:机电系 专业:精密仪器与机械 年级:2013级 学号:19920131152905 指导教师:吴德会老师 2014 年2月18日

光纤传感器综述 [摘要] 光纤传感器是一种有广泛应用前景的新型传感器。本文对光纤传感器的原理、特点、分类和发展历程进行了详细综述,介绍了光纤温度传感器、光纤陀螺仪这两种典型光纤传感器的应用,指出了这类光纤传感器在应用过程中存在的问题,并提出光纤传感器今后的发展趋势, 为光纤传感器的深入研究提供了有益参考。 [关键词]:光纤传感器原理特点发展历程发展趋势 一、引言 传感器在当代科技领域及实际应用中占有十分重要的地位,各种类型的传感器早已广泛应用于各个学科领域。近年来,传感器朝着灵敏、精巧、适应性强、智能化和网络化方向发展。光纤传感技术是20世纪70年代末新兴的一项技术[1],在全世界成了研究热门,已与光纤通信并驾齐驱。光纤传感器作为传感器家族的一名新成员,由于其优越的性能而备受青睐,其具有体积小、质量轻、抗电磁干扰、防腐蚀、灵敏度高、测量带宽、检测电子设备与传感器可以间隔很远等优点,优良的性能使得光纤传感器具有广泛的应用前景。本文从光纤传感器的基本原理及特点、光纤传感器的发展历程、光纤传感器的分类及应用原理、光纤传感器的应用及存在问题以及光纤传感器的发展趋势五大方面对光纤传感器进行介绍。 二、光纤传感器的基本原理及特点 光纤( Optical Fiber) 是光导纤维的简称,光纤的主要成份为二氧化硅,由折射较高的纤芯、折射率较低的包层及保护层组成。纤芯为直径大约0.1 mm 左右的细玻璃丝,把光封闭在其中并沿轴向进行传播的导波结构。光纤传感器的发现起源于探测光纤外部扰动的实践,在实践中,人们发现当光纤受到外界环境的变化时,会引起光纤内部传输光波参数的变化,而这些变化与外界因素成一定规律,由此发展出光纤传感技术。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

常用温度传感器比较(2)

常用温度传感器比较 一.接触式温度传感器 1. 热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测 量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到- 269C(如金铁镍铬),最高可达+28000(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。 2. 热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化 而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: R=R o [1+ a(t-t 0)] 式中,R为温度t时的阻值;R o为温度t o (通常10=00 )时对应电阻值;a为温度系数。半导体热敏电阻的阻值和温度关系为: R =Ae B/t 式中R为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围:

金属热电阻一般适用于-200~5000范围内的温度测量,其特点是测量准确、 稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上) 。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。 中国最常用的有R°=10Q、R°=100Q和R°=1000Q等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R o=50Q和R o=100Q两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200 C ~850C,允许温度偏差值0.15+0.002|t| ,最小置入深度200mm最大允许电流5mA详细信息见Pt100 实例。 3. 集成温度传感器: <1>模拟式温度传感器: (1)原理: 将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具 有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。 (2)常见模拟式温度传感器: 电压输出型: LM3911、LM335 LM45 AD22103 电流输出型: AD590。 (3)实例: LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Q的动态阻抗,工作电流范围从400^A 到5mA,精度为1C,LM135的温度范围为-55 C?+150C,LM235的温度范围为-40 C ?+125C,LM335 为-40C ~+100°C。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见 LM135,235,335.pdf。 AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55 C?+150C,输出电流为223卩 A~423卩A,输出电流变化1卩A相当于温度变化1 C,最大非线性误差为土03C,响应时间仅为20卩s,重复性误差低至土0.05C,功耗约为2mW, 输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达 20血,所以它不必考虑选择开关或CMO多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。详细信息见AD590.pdf。 <2>数字式温度传感器: (1)原理: 将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的

相关文档
最新文档