关于碳化硅的综述

关于碳化硅的综述
关于碳化硅的综述

经济管理学院学院

材料化学

关于碳化硅的综述

学号:2010092122

专业:工商管理

学生姓名:陈昊

任课教师:刘二宝

2011年11月

关于碳化硅的综述

陈昊

哈尔滨工程大学

摘要:碳化硅是用石英砂、石油焦、木屑为原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广

泛、最经济的一种。可以称为金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿

色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化

硅和绿色碳化硅两种,均为六方晶体。

关键词:碳化硅立体结构耐火材料

一、碳化硅概述

碳化硅是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质合金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。碳化硅在大自然也存在罕见的矿物,莫桑石。碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。可以称为金钢砂或耐火砂。[1]碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。

其分子式为SiC,其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。工业用碳化硅于1891年研制成功,是最早的人造磨料。在陨石和地壳中虽有少量碳化硅存在,但迄今尚未找到可供开采的矿源。

纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。

碳化硅的工业制法是用优质石英砂和石油焦在电阻炉内炼制。炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。

碳化硅有黑碳化硅和绿碳化硅两个常用的基本品种,都属α-SiC。①黑碳化硅含SiC 约95%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。②绿碳化硅含SiC约97%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。

碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的

内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。

碳化硅的硬度很大,具有优良的导热性能,是一种半导体,高温时能抗氧化。

二、碳化硅的性质

碳化硅主要有两种结晶形态:b-SiC和a-SiC。b-SiC为面心立方闪锌矿型结构,晶格常数a=0.4359nm。a-SiC是SiC的高温型结构,属六方晶系,它存在着许多变体。碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近,a-SiC一般为3.217g/cm3,b-SiC为3.215g/cm3.纯碳化硅是无色透明的,工业SiC 由于含有游离Fe、Si、C等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为64.4W/(m?K)。常温下SiC是一种半导

碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。

三、碳化硅的合成

①碳化硅的冶炼方法

1.小规模合成碳化硅的方法

合成碳化硅所用的原料主要是以SiO2为主要成分的脉石英或石英砂与以C为主要成分的石油焦,低档次的碳化硅可用地灰分的无烟煤为原料。辅助原料为木屑和食盐。碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中SiO2含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的SiO2可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于1.2%,挥发分小于12.0%,石油焦的粒度通常在2mm或1.5mm

以下。木屑用于调整炉料的透气性能,通常的加入量为3%~5%(体积)。食盐仅在冶炼绿碳化硅时使用。

硅质原料与石油焦在2000~2500℃的电阻炉内通过以下反应生成碳化硅:

SiO2+3C→SiC+2CO↑-526.09Kj

CO通过炉料排出。加入食盐可与Fe、Al等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO气体排出。

碳化硅形成的特点是不通过液相,其过程如下:约从1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成Sic的反应;温度升高至1700~1900℃时,生成b-SiC;温度进一步升高至1900~2000℃时,细小的b-SiC转变为a-SiC,a-SiC晶粒逐渐长大和密实;炉温再升至2500℃左右,SiC开始分解变为硅蒸汽和石墨。[2]

2.大规模生产碳化硅所用的方法有艾奇逊法和 ESK法。

艾奇逊法

传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,通电时下产生很大的热量。炉芯体周围装盛有硅质原料、石油焦和木屑等组成的原料,外部为保温料。

熔炼时,电阻炉通电,炉芯体温度上升,达到2600℃左右,通过炉芯体表面传热给周围的混合料,使之发生反应生成碳化硅,并逸出CO气体。一氧化碳在炉表面燃烧生成二氧化碳,形成一个柔和、起伏的蓝色至黄色火焰毡被,一小部分为燃烧的一氧化碳进入空气。待反应完全并冷却后,即可拆除炉墙,将炉料分层分级拣选,经破碎后获得所需粒度,通过水洗或酸碱洗、磁选等除去杂质,提高纯度,再经干燥、筛选即得成品。艾奇逊法设备简单、投资少,广泛为石阶上冶炼SiC的工厂所采用。但该法的主要缺点在于无法避免粉尘和废气造成的污染,冶炼过程排出的废气无法收集和再利用,无法减轻取料和分级时的繁重体力劳动,同时炉子的长度也不够,通常仅几米至几十米长,生产经济性不高。[3]

ESK法

1973年,德国ESK公司对艾奇逊法进行了改进,发展了ESK法。Esk法的大型SiC 冶炼炉建立在户外,没有端墙和侧墙,直线性或U型电极位于炉子底部,炉长达60m,用聚乙烯袋子进行密封以回收炉内逸出的气体,提取硫后将其通过管道小型火电厂发电。该炉可采用成本低、活性高、易反应的高硫分石油焦或焦炭作为原料,将原料硫含量由原来的1.5%提高到5.0%。[4]

②碳化硅粉末的合成方法

合成碳化硅粉末的方法主要有固相法、液相法和气相法三种。

固相法是通过二氧化硅和碳发生碳热还原反应或硅粉和炭黑细粉直接在惰性气氛中发生反应而制得碳化硅细粉。可以通过机械法将艾奇逊法或ESK法冶炼的碳化硅加工成SiC细粉。目前该方法制得的细粉表面积1~15m2/g,氧化物含量1.0%左右,金属杂质含量1400~2800ppm(1ppm=10-6)。其细度和成分取决于粉碎、酸洗等后续处理工艺和手段。碳化硅粉末也可以由竖炉或高温回转窑连续化生产,可获得高质量的b-SiC粉体。SiO2细粉与碳粉混合料在竖炉的惰性气氛中,在低于2000℃的温度下发生热还原反应,合成b-SiC粉体。所获得的SiC的粒度为微米级。但往往含有非反应的SiO2和C,需进行后续的酸洗和脱碳处理。利用高温回转窑也可生产出高质量的SiC细粉。[5]液相反应法可制备高纯度、纳米级的SiC微粉,而且产品均匀性好,是一种具有良

好发展前景的方法。液相反应法制备SiC微粉主要分为溶胶-凝胶法和聚合物热分解法等。溶胶-凝胶法制备SiC微粉的核心是通过溶胶-凝胶反应过程,形成Si和C在分子水平上均匀分布的混合物或聚合物固体,升温过程中,首先形成SiO2和C的均匀混合物,然后在1400~1600℃温度下发生碳热还原反应生成SiC。

聚合物热分解法主要是指加热聚硅烷等聚合物,放出小单体,形成Si-C骨架。由热解法制备的SiC均为b-SiC。如果热解温度低于1100℃,则为无定形SiC。

气相法是用含硅的原料和含碳的原料通过气相反应生成SiC。[6]根据加热方式的不同可分为电阻炉和火焰加热法、等离子和电弧加热法、激光加热法等。

四、应用领域

4.1磨料磨具领域

主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。

4.2化工领域

可用做炼钢的脱氧剂和铸铁组织的改良剂,可用做制造四氯化硅的原料,是硅树脂工业的主要原料。[7]碳化硅脱氧剂是一种新型的强复合脱氧剂,取代了传统的硅粉碳粉进行脱氧,和原工艺相比各项理化性能更加稳定,脱氧效果好,使脱氧时间缩短,节约能源,提高炼钢效率,提高钢的质量,降低原辅材料消耗,减少环境污染,改善劳动条件,提高电炉的综合经济效益都具有重要价值。

4.3耐磨、耐火和耐腐蚀材料领域

利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。

另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等高级碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、航空飞机跑道太阳能热水器等的理想材料之一。

4.4有色金属领域

利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等.

4.5钢铁领域

利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命.

4.6冶金选矿领域

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道,叶轮.泵室.旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5--20倍&def也是航空飞行跑道的理想材料之一.

4.7建材陶瓷砂轮工业领域

利用其导热系数.热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料.

4.8节能领域

利用良好的导热和热稳定性,作热交换器,燃耗减少20%,节约燃料35%,使生产率提高20-30%,特别是矿山选厂用排放输送管道的内放,其耐磨程度是普通耐磨材料的

6--7倍。[8]

4.9珠宝制作领域

合成碳化硅又名合成莫桑石、合成碳硅石(化学成分SiC),色散0.104比钻石(0.044)大,折射率2.65-2.69(钻石2.42),具有与钻石相同的金刚光泽,“火彩”更强,比以往任何仿制品更接近钻石。这是由美国北卡罗来那州的C3公司制造生产的,已拥有世界各国生产合成碳化硅的专利,正在向全世界推广应用。

参考文献

[1] 秦成娟,王新生,周文孝. 碳化硅陶瓷的研究进展[J]. 山东陶瓷. 2006(04)

[2] 张淑新. 碳化硅的制备[J]. 科技信息(学术研究). 2007(16)

[3] 李缨,黄凤萍,梁振海. 碳化硅陶瓷的性能与应用[J]. 陶瓷. 2007(05)

[4] 王静,张玉军,龚红宇. 无压烧结碳化硅研究进展[J]. 陶瓷. 2008(04)

[5] 杨继光,马丽娟. 日本的碳化硅技术及市场[J]. 佛山陶瓷. 2002(02)

[6] 徐森. 气流粉碎制备碳化硅微粉初探[J]. 中国粉体技术. 2002(06)

[7] 马泉山. 我国碳化硅技术取得重大进展[J]. 辽宁化工. 2002(12)

[8] 任敬文. 碳化硅市场展望[J]. 耐火材料. 2000(04) [9] 任敬文. 碳化硅生产新工艺[J]. 耐火材料. 2000(06)

连续碳化硅纤维测试方法 第3部分:线密度和密度(标准状态:现行)

I C S49.025.99 V13 中华人民共和国国家标准 G B/T34520.3 2017 连续碳化硅纤维测试方法 第3部分:线密度和密度 T e s tm e t h o d s f o r c o n t i n u o u s s i l i c o n c a r b i d e f i b e r P a r t3:L i n e a r d e n s i t y a n dd e n s i t y 2017-11-01发布2018-05-01实施中华人民共和国国家质量监督检验检疫总局

前言 G B/T34520‘连续碳化硅纤维测试方法“共分为7个部分: 第1部分:束丝上浆率; 第2部分:单纤维直径; 第3部分:线密度和密度; 第4部分:束丝拉伸性能; 第5部分:单纤维拉伸性能; 第6部分:电阻率; 第7部分:高温强度保留率三 本部分为G B/T34520的第3部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分由中国航天科技集团公司提出三 本部分由全国宇航技术及其应用标准化技术委员会(S A C/T C425)归口三 本部分起草单位:国防科学技术大学二中国航天标准化研究所三 本部分主要起草人:王军二王浩二简科二王亦菲二宋永才二王应德二邵长伟二苟燕子二王小宙二王兵二胡芸二唐祚姣二陈强三

连续碳化硅纤维测试方法 第3部分:线密度和密度 1范围 G B/T34520的本部分规定了测试连续碳化硅(s i l i c o nc a r b i d e,S i C)纤维线密度和密度的测试环境二试样二测试设备二测试程序二测试结果计算和测试报告三 本部分适用于连续S i C纤维线密度和密度的测试三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T1446纤维增强塑料性能试验方法总则 G B/T3291.3纺织纺织材料性能和试验术语第3部分:通用 G B/T4146.3纺织品化学纤维第3部分:检验术语 G B/T8170数值修约规则与极限数值的表示和判定 G B/T15223塑料液体树脂用比重瓶法测定密度 G B/T18374增强材料术语及定义 G B/T34520.1 2017连续碳化硅纤维测试方法第1部分:束丝上浆率 3术语和定义 G B/T3291.3二G B/T4146.3二G B/T18374和G B/T34520.1 2017界定的术语和定义适用于本文件三 4测试环境 4.1测试环境条件:温度为23??5?,相对湿度为50%?20%三 4.2在其他环境条件下进行测试时,测试环境温度与相对湿度应在测试报告中注明三 5试样 5.1测试线密度时,可不去除试样表面上浆剂,但应在测试报告中说明;未说明时应按G B/T34520.1 2017中7.2的规定去除试样表面上浆剂三 5.2测试密度时,应按G B/T34520.1 2017中7.2的规定去除试样表面上浆剂三 5.3试样在测试前按G B/T1446的规定进行24h状态调节三 5.4试样数量不少于3个三

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

氮化硅结合碳化硅材料的生产与应用_张林

氮化硅结合碳化硅材料的生产与应用 ◆ 张 林 孟宪省 山东工业陶瓷研究设计院 淄博255031 ◆ 赵光华 朱喜仲 水利部丹江口水利枢纽管理局碳化硅总厂 摘 要 阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景。 关键词 氮化硅结合碳化硅,工艺,生产,应用 1 生产工艺与性能 1.1 混料 压制料是按配方称量SiC砂和Si粉,倒入高效混料机,并均匀加入事先称量好且加水稀释的添加剂和临时结合剂。搅拌15~20min,并过筛,放入料仓困料24h以上。 挤出料是根据配方,用上述相似的方法进行混料和困料。并应额外加入可塑剂。 注浆料是先将Si粉放在水池中浸泡48h后,再由泥浆泵抽送到压滤机经压滤处理。根据配方称量SiC砂和Si饼,倒入高速搅拌罐并加入一定量的水、临时结合剂和悬浮剂搅拌2h。 1.2 成型 压制成型是将困好的料准确称量后,均匀布于模具中,振动加压成型,再经真空吸盘转移到储坯车上。 挤出成型是将混合料放入真空练泥机进行真空处理,使泥料均匀混合。泥料用塑料薄膜覆盖严实,困料24h,再经真空挤出成型机挤出。 浇注成型主要是满足异型件要求,由于SiC 砂和Si粉为瘠性料,自身密度大,导致泥浆的悬浮性差,易产生沉淀,使泥浆内颗粒分布不均匀。因此,配方中颗粒不能太粗且比例要适当,同时加入悬浮剂和解胶剂(一般采用明胶),并采用压力注浆。然后把经24h搅拌过的泥浆从储浆罐抽入压力注浆罐中,进行真空处理,注浆罐带有慢速搅拌机,加压后泥浆通过管道输送至浇注台的石膏模内成型;保持一定的压力和时间,待吃浆厚度达到要求后,空浆;坯体巩固后,脱模。 1.3 干燥 成型后粗修和整形的合格坯体,入储坯车至干燥室内。干燥室的热风来自热风炉(或窑炉余热利用),热风温度以100~120℃为好,有条件也可使用电热干燥。应严格控制升温速度,以免坯体出现变形或开裂。坯体干燥3天。达到干燥残余水分(一般<0.5%)后推出冷却,经精修坯体和生坯检查,合格的进入氮化炉烧成。 1.4 烧成 合格干燥品装入窑车进氮化室,对氮化反应空间密封后推入梭式窑,接上充氮管和抽真空管,升温至700~1450℃进行抽真空和氮化烧成。中高温氮化阶段(指1100℃以上),严格控制升温制度及氮气质量,氮气纯度应达到99.99%以上。在1180℃及1280℃两个反应高峰期应增加保温时间,以免反应过速出现“流硅”。 1.5 制品的性能 氮化硅结合碳化硅制品抗折强度随温度升高而提高,至1400℃时,强度开始下降,但到1500℃时仍保持常温抗折强度指标。氮化硅结合碳化硅材质的高温抗折强度是普通耐火材料的4~8倍;热膨胀系数是高铝耐火材料的一半;导热系数是一般耐火材料的7~8倍[1]。 生产应用 NAIHU O CAILIAO 1999,33(3)156~157,175  收稿日期:1998-09-07编辑:徐慧娟156  耐火材料1999/3

第三代半导体面SiC碳化硅器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了

中国新能源的发展现状与趋势

中国新能源的利用现状与趋势 1 引言 随着全球化石能源枯竭供应紧、气候变化形势严峻,世界各国都认识到了发展新能源的重要性,特别是中国长期以来主要依靠煤炭,在一次能源供给中一直保持在2/3以上的比例。而中国的石油进口量连续增长,2009年进口原油约2.04亿吨。据测算,中国石油消费进口依存度已达到50%的“警戒线”。同时随着2000年以来,在国家和地方政府的政策支持下,城镇燃气行业改革加速,燃气行业得到了长足发展,对天然气的需求一直处于高速增长,这种状况将在未来将长时间存在,毕竟中国的人均能源消耗只有的美国的1/11。随着中国的社会经济进一步发展,生活水平的改善意味着人均能源消耗量将有十分巨大的增长,近几年来汽车保量的快速增加即是例证。 随着传统化石燃料,如石油、煤矿、天然气等储存量不断减少,而同时社会经济不断发展,对能源的需求日益增加,以及环境恶化的巨大压力,新能源被提到了更重要的位置。虽然中国还处于工业化、城镇化快速发展的关键阶段,但是仍然在哥本哈根会议上提出努力的方向,“到2020年单位国生产总值二氧化碳排放比2005年下降40%-45%”。新能源是一个有力的工具。 2 新能源的利用现状 2.1 新能源 新能源,是指新的能源利用方式,既包括风电、太阳能、生物质能等,又包括对传统能源进行技术变革所形成的新能源,如煤层气、煤制天然气等。新能源

产业具有资源消耗低、清洁程度高、潜在市场大、带动能力强、综合效益好的优势,正在成为富有活力、最具前景的战略性新兴产业,对推动我国经济社会可持续发展具有重要战略意义。 2.2 太阳能 太阳能利用主要有太阳能的热利用和发电两种途径。热利用以太阳能热水器为代表,主要集中在小城镇和农村地区,由于城市土地紧以及政策、规划和设计等因素,太阳能的热利用在城市属于个案,如位于市龙岗区的振业城是华南第一个大规模应用太阳能技术的社区,整个太阳能中央热水系统采用的是联集式全玻璃真空式太阳能集热器。太阳能板和屋顶结合,与保温水箱分离,这种安装方式达到形式与功能的统一,与建筑较为完美的结合,这些太阳能热水器还设置了电辅助加热设施,即使在阴雨天也可正常使用,能提供适宜身体的水温。而集中利用则较少。 另一种主要的途径就是太阳能光伏发电,虽然近些年来光伏发电技术有了较大的进步,但是与常规发电方式和核发电相比太贵了,经济性不强。 2.3 风能 中国的风能资源丰富和较丰富的地区主要分布在两个大带:一是三北(东北、华北、西北)地区丰富带。风能功率密度在200W/㎡~300W/㎡以上,有的可达500 W/㎡,可利用的小时数在5000h以上,有的可达7000h以上。二是沿海及其岛屿地丰富带。年有效风能功率密度在200W/㎡以上,可利用小时数在7000h~8000h。这一地区特别是东南沿海,由海岸向陆是丘陵连绵,所以风能丰富地区仅在海岸50km之。 《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速,截

碳化硅电子元器件简介

碳化硅材料的优点 ?高电子饱和速度 (2x Si ) ?高击穿电压 (10x Si ) ?Wide band gap (3x Si ) ?大禁带宽度 (3x Si ) ?高熔点 (2x Si ) ?导通电阻低 ?高频特性好 ?耐高压 ?高温特性好 ?可以超高速开关,大大提高产品效率,减小散热设备面积 ?可以实现设备小型化 (如电动汽车充电器) ?可在高压下稳定工作 (高速列车,电力等) ?可在高温环境下稳定使用 (电动汽车等) 材料 器件 应用

碳化硅器件的耐温特性 GPT SIC DIODES VS SILICON FRD( 600V10A ) Company A Company A GPT

SiC SBD 主要产品 政府项目: SiC BJT: 1200V10A SiC MOS: 1200V40m ?/80m? 碳化硅 BJT/MOS 650V200A/1200V450A 碳化硅混合模块 650V: 3A/4A/5A/6A/8A/10A/20A/30A/50A/80A/100A 1200V: 2A/5A/10A/20A/40A/50A 1700V: 10A/30A 3300V: 0.6A/1A/2A/3A/5A/50A 碳化硅肖特基二极管

产品认证 ISO 9001 认证可靠性试验报告Rohs 认证CE 认证

应用市场 PFC EV Car/Train Traction UPS Solar Inverter ? 耐高温 ?使用碳化硅器件使得光伏逆变器输出功率从10kW 提升至40kW ,但是碳化硅器件的高温特性不需要更大体积的散热片系统,从而避免额外增加系统体积和重量。 ? 高开关效率 更高工作频率下使用碳化硅开关器件大大减小每千瓦输出功率所要求的的电容体积。 ? 低传导损耗 ?碳化硅器件可加倍电流输送。同样芯片面积的碳化硅器件即可承担硅器件输出功率的4倍以上。

碳化硅纤维

读书笔记——SiC纤维 通过查找有关资料文献,对作为增强材料的SiC纤维有了一定的了解。在读书笔记中,介绍了SiC纤维材料的特性、SiC纤维的制备方法、SiC纤维的应用以及国内研究现状。重点关注了制备方法中的先驱体转换法(PIP)以及SiC纤维在增强陶瓷材料方面的应用。 1.SiC纤维材料特性: 1)比强度和比模量高。碳化硅复合材料包含35%~50%的碳化硅纤维,因此有较高的比强度和比模量,通常比强度提高1~4倍,比模量提高1~3倍。 2)高温性能好。碳化硅纤维具有卓越的高温性能,碳化硅增强复合材料可提高基体材料的高温性能,比基体金属有更好的高温性能。 3)尺寸稳定性好。碳化硅纤维的热膨胀系数比金属小,仅为(2.3~4.3)×10-6/℃,碳化硅增强金属基复合材料具有很小的热膨胀系数,因此也具有很好的尺寸稳定性能。 4)不吸潮、不老化,使用可靠。碳化硅纤维和金属基体性能稳定,不存在吸潮、老化、分解等问题,保证了使用和可靠性。 5)优良的抗疲劳和抗蠕变性。碳化硅纤维增强复合材料有较好的界面结构,可有效地阻止裂纹扩散,从而使其具有优良的抗疲劳和抗蠕变性能。 6)较好的导热和导电性。碳化硅增强金属基复合材料保持了金属材料良好的导热和导电性,可避免静电和减少温差。 此外,它还具有热变形系数小、光学性能好、各向同性、无毒、能够实现复杂形状的近净尺寸成型等优点,因而成为空间反射镜的首选材料。 2.SiC纤维制备方法 2.1化学气相沉积法 化学气相沉积法(CVD)即在连续的钨丝或者碳丝芯材上沉积碳化硅。通常在管式反应器中用水银电极直接采用直流电或射频加热,把基体芯材加热到1200 ℃以上,通入氯硅烷和氢气的混合气体,经过反应裂解为碳化硅,并且沉积在钨丝或者碳丝表面。目前有美国达信系统公司、法国国营火药炸弹公司、英

中国新能源的发展现状与展望

中国新能源的发展现状与展望 资源与环境学院自地1501 朱楷20152125041 摘要:随着中国经济的快速发展,过分依赖不可再生的化石能源的传统能源结构已经不能完全适应发展的需要。为促进我国经济与能源产业的健康发展和实现可持续发展,寻找和开发清洁高效的可再生新能源已是当务之急,是解决未来能源问题的主要出路。关键词:新能源;可再生能源;可持续发展;现状;展望。引言:本篇文献综述是为了探讨中国在新的发展时期面对的新能源的发展现状与展望。新能源的开发问题已早早引起中国和国际上的关注,关于此类主题的文献在国内外已有较多发表,在未来仍将呈现上升的趋势。 新能源(NE),又称非常规能源,是指传统能源之外的各种能源形式,指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能等。国家通过科技攻关计划,863 计划,973 计划和产业化计划等,使先进的技术和政策支持风力发电、光伏发电、太阳能光热利用、氢能和燃料电池研发的产业化。值得注意的是,中国风电产业链的上游和下游不匹配,上游的生产能力和在世界上的研究和发展水平处于一个较低的水平,而下游的风电建设的发展速度是世界上最高的国家之一。[1] 主体部分 1 国际新能源发展现状 1.1 新能源的发展背景 20 世纪先后爆发了三次石油危机,油价不断上涨,人们开始意识到化石能源供应的不可持续性。同时,以伦敦雾事件为代表的环境公害事件频发,也引发了对化石能源产生的环境污染的担心。化石燃料排放大量温室气体,加速全球变暖,由此促成了《京都议定书》的签订。资源短缺和环境污染造成的双重压力凸显了新能源发展的必要性和紧迫性,最终促成了世界新能源产业的兴起。[2] 1.2 国际新能源发展现状 1.2.1 日本 自身能源缺乏的日本是最早重视发展新能源的国家之一。1973年第一次石油危机后,日本就实施“新能源技术开发计划” (也被称为“阳光计划” ), 其核心是大力推进太阳能的开发利用。1993年,日本政府将“新能源技术开发计划” (阳光计划)、“节能技术开发计划” (月光计划)和“环境保护技术开发计划”合并成规模庞大的“新阳光计划”,目标是实现经济增长、能源供应和环境保护之间的合理平衡。 根据2008 年 3 月修订的《京都目标实现计划》,日本新能源发展的中长期目标是:到2020 年, 可再生能源占比为7 %,水电之外的新能源占比为 4 .3%;到2030 年, 日本的可再 生能源占比大约为11%, 其中, 新能源为7 %, 大约为 3 200 万千升原油当量。[3] 1.2.2 欧美 美国、欧盟等西方发达国家和地区最先开始新能源的大规模开发。美国《2009年美国经济复苏和再投资法》中,明确要求到2020年所有电力公司的电力供应中要有15%来自风能、太阳能等可再生资源。[4] 欧盟于2007年通过“能源和气候变化一揽子计划”,承诺到2020年将可再生能源比例提高20%,温室气体排放减少20%。[5] 到2010年,风电已经满足了欧盟 5.3%的电力消费,其中在丹麦,这一比例已经达到20%。[6] 2 国内新能源发展现状 2.1 国内新能源发展条件及方向 2.1.1 非常规油气资源 (1)油页岩资源丰富 我国油页岩资源丰富,探明资源量315 X 10 8 t ,预测资源量4520 X 10 8 t , 其

碳化硅--复合材料、

复合材料 姓名:黄福明 学号:2015141421022 专业:金属材料工程

碳化硅增强体 碳化硅纤维是典型的以碳和硅为主要成分的陶瓷纤维,在形态上有晶须和连续纤维两种。作为先进复合材料最重要的增强材料之一,它具有高温耐氧化性、高硬度、高强度、高热稳定性、耐腐蚀性和密度小等优点。与碳纤维相比,碳化硅纤维在极端条件下也能够保持良好的性能,故而在航空航天、军工武器装备等高科技领域备受关注,常用作耐高温材料和增强材料。此外,随着制备技术的发展,碳化硅纤维的应用逐渐拓展到高级运动器材、汽车废烟气除尘等民用工业方面。 一、碳化硅纤维的制备方法 碳化硅纤维的制备方法主要有先驱体转化法、化学气相沉积法(CVD)和活性炭纤维转化法三种。三种制备方法各有优缺点,而且使用不同制备方法得到的碳化硅纤维也具有不同的性能。 1、先驱体转化法 先驱体转化法是由日本东北大学矢岛教授等人于1975年研发,包括先驱体合成、熔融纺丝、不熔化处理与高温烧结4大工序。 先驱体转化法制备碳化硅纤维需要先合成先驱体——聚碳硅烷(PCS),矢岛教授以二甲基二氯硅烷等为原料,通过脱氯聚合为聚二甲基硅烷,再经过高温(450 ~500℃)分解处理转化为聚碳硅烷纤维(PCS),,采用熔融法在250 ~350℃下将PCS纺成连续PCS纤维,然后经过空气中约200℃的氧化交联得到不熔化聚碳硅烷纤维,最后在惰性气氛或高纯氮气保护下1300℃左右裂解得到碳化硅纤维。先驱体转化法制备原理其实就是将含有目标元素的高聚物合成先驱体,再将先驱体纺丝成有机纤维,然后通过一系列化学反应将有机纤维交联成无机陶瓷纤维。 随着碳化硅制备技术的不断改进,逐渐形成了 3代碳化硅纤维。第1代碳化硅纤维是以矢岛教授研发的方法制备而成。由于在制备过程中引入了氧,纤维中的氧质量分数为10%~15%,在高温下碳化硅纤维的稳定性变差,影响了纤维在高温环境下的强度和弹性模量。因此,为改善这个问题研制初了第 2代碳化硅纤维。第 2代碳化硅纤维是在无氧气氛中采用电子辐照对原纤维进行不熔化处理,利用这种方式来降低碳化硅纤维中的氧含量,从而保障其在高温环境下的稳定性。同样,为满足航空和军工领域对高温材料性能的更高要求,开发了第3代碳化硅纤维。第3代碳化硅纤维中的杂质氧、游离碳含量进一步降低,接近碳化硅的化学计量比。虽然第3代碳化硅纤维的杂质氧、游离碳含量减少,但是目前控制纤维中

新能源发展现状及方向

“十三五”时期能源发展形势 全球气候变化和新能源发展形势。从2015年全球各国的能源结构来看,煤炭在全球能源消费结构中的占比不足30%,主要是以石油、天然气为主。但包括中国、印度和南非这三个国家的煤炭消费,在一次能源消费中的占比基本为60%或60%以上。能源结构中煤炭比重过高会带来温室气体排放增加、大气污染加重等后果。 我国能源经济发展形势。《能源发展“十三五”规划》明确提出,2020年能源消费总量控制在50亿吨标煤以内,煤炭消费总量控制在41亿吨以内。随着我国经济发展步入新常态,“十三五”时期能源消费总量年均增速与“十二五”时期相比下降1.1个百分点,为2.5%左右。全社会用电量在目前5.9万亿千瓦时的基础上,到2020年预计为6.8到7.2万亿千瓦时左右,比初始预期结果低约0.8万亿千瓦时。“十三五”时期,整个能源结构也将相应进行调整,煤炭依然是我国的基础能源,非化石能源和天然气为主要增量。 可再生能源发展现状及主要问题 当前发展可再生能是全球能源的重要发展方向,无论发达国家还是发展中国家,都将水能、风能、太阳能等可再生能源作为应对能源安全和气候变化双重挑战的重要手段。我国政府非常重视可再生能源发展,提出到2020年非化石能源占能源消费总量比例达到15%、2030年达到20%的宏伟目标。全球主要国家也纷纷提出2050年高比例的可再生能源发展愿景。 可再生能源发展的基础 一是我国可再生能源具有丰富的资源量。其中水电技术开发量为6.6亿千瓦,到“十二五”末只开发了30%;风电技术开发量102亿千瓦,目前已开发量为1.5亿千瓦;截至2016年底,我国太阳能发电662亿千瓦时,仅占到储量的万分之0.16。当然,可再生能源的开发量与煤炭、石油不可直接对比,但通过数据显示,我国可再生能源资源丰富,但目前开发程度较低,具备广阔的发展前景。 二是可再生能源开发建设规模逐步扩大。到2016年底,全国水电装机达到3.3亿千瓦,其中常规水电站30542万千瓦,抽水蓄能2669万千瓦,位居世界首位。风电并网容量连续7年领跑全球,到2016年底,全国风电并网装机1.49亿千瓦,年发电量2410亿千瓦时,占全社会用电量比重达到4个百分点。从2013年起,我国太阳能产业成为全球最大的新增光伏应用市场,2015、2016年连续两年位居世界首位。2016年全国光伏并网装机容量在2015年4300万千瓦的基础上,增加到7818万千瓦,发电量600多亿千瓦时,太阳能热利用面积超过4亿平方米。另外,生物质能利用规模达到3500万吨标准煤,开发建设规模已经走在世界前列。

碳化硅纤维材料的发展趋势及前景应用

碳化硅纤维材料的发展趋势及前景应用: 碳化硅纤维产品的的发展动向。随科技的发展高性能纤维的需求俞显奇缺,尤其在航空、航天、原子能、高性能武器装备及高温工程等诸多领域,迫切需要高比强度、高比模量、耐高温、抗氧化、耐腐蚀的新型材料。出于SiC的宽禁带性质,SiC制备的紫外光电探测器可在极端条件下应用于生化检测、可燃性气体尾焰探测、臭氧层监测、短波通讯以及导弹羽烟的紫外辐射探测等领域,并适用于恶劣环境的光探测器件与光传感器开发。Mn、Co、AI掺杂SiC薄膜具有比SiC 薄膜更优越的光敏性能,是一种在光催化、太阳能电池、紫外光传感器等多个领域具有研究价值的薄膜材料。1) 碳化硅纤维材料特性: 1)比强度和比模量高。碳化硅复合材料包含35%~50%的碳化硅纤维,因此有较高的比强度和比模量,通常比强度提高1~4倍,比模量提高1~3倍。 2)高温性能好。碳化硅纤维具有卓越的高温性能,碳化硅增强复合材料可提高基体材料的高温性能,比基体金属有更好的高温性能。 3)尺寸稳定性好。碳化硅纤维的热膨胀系数比金属小,仅为(2.3~4.3)×10’6/℃,碳化硅增强金属基复合材料具有很小的热膨胀系数,因此也具有很好的尺寸稳定性能。 4)不吸潮、不老化,使用可靠。碳化硅纤维和金属基体性能稳定,不存在吸潮、老化、分解等问题,保证了使用和可靠性。 5)优良的抗疲劳和抗蠕变性。碳化硅纤维增强复合材料有较好的界面结构,可有效地阻止裂纹扩散,从而使其具有优良的抗疲劳和抗蠕变性能。 6)较好的导热和导电性。碳化硅增强金属基复合材料保持了金属材料良好的导热

和导电性,可避免静电和减少温差。2) 此外,它还具有热变形系数小、光学性能好、各向同性、无毒、能够实现复杂形状的近净尺寸成型等优点,因而成为空间反射镜的首选材料。 碳化硅纤维材料的不足之处: 作为一种多相陶瓷,SiC的材质既硬且脆,加工难度很大;从已见报道的SiC反射镜来看,其面形精度尚不能满足高精度光学系统的成像要求,这使得它在应用中受到限制;常规的碳化硅产品在弥补现有常规纤维的在特殊领域的不足之外尚有许多的缺陷。需要长期的完善,以及创新。在缺陷方面需要做如下的改进:(1)低氧化,不采用空气不熔化处理:(2)进行低碳化处理增加纤维的密度和弹性模量;(3)提高耐热性和耐化学稳定性;(4)CVD法制备的纤维直径太粗,柔韧性太差,难以编织,从而不利于复杂复合材料的制备,先驱体法制备的纤维避免了这些不足等。另外纤维可进行创新改善常规碳化硅不足,科技人员尝试着引入某些金属到纤维结构中,开发出Si-Ti-C-O, Si-Zn-C-O, Si-M-C-O, Si-Al-C-O,等金属碳化硅纤维!这些纤维具有很高的高温强度,非常引人注目,即使在高达2000℃,其强度也下降很少。這些金属纤维较常规的碳化硅纤维有更高的耐热温度。3) 参考文献: 1)《先驱体法制备连续碳化硅纤维》李云飞四川大学 2)《碳化硅纤维及其复合材料的进展》赵稼祥中国航天科技集团703所研究员 3)《碳化硅陶瓷纤维的性能及其在航空航天领域的应用》林智群系湖南农业大学讲师雷永鹏系国防科技 大学博士研究生

碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望 摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。 关键词:碳化硅;功率器件;电力系统 1 引言 理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。 然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。 近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了

【CN109957859A】一种碳化硅纤维及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910219241.8 (22)申请日 2019.03.21 (71)申请人 武汉工程大学 地址 430000 湖北省武汉市东湖新技术开 发区光谷一路206号 (72)发明人 曹宏 安子博 薛俊 袁密  郑雨佳 李梓烨 徐慢  (74)专利代理机构 北京轻创知识产权代理有限 公司 11212 代理人 杨立 姜展志 (51)Int.Cl. D01F 9/08(2006.01) (54)发明名称一种碳化硅纤维及其制备方法(57)摘要本发明涉及一种碳化硅纤维制备方法,包括如下步骤:1)以一氧化硅为硅源,碳纤维为碳源制备得到一氧化硅和碳纤维的混合分散液;2)对所述混合分散液进行干燥得到前驱体;3)将所述前驱体在真空度为0.03-0.1MPa,温度为1000-1400℃的条件下煅烧,得到粗产物;4)对所述粗产物进行除硅处理,得到碳化硅/碳混合物,对所述碳化硅/碳混合物煅烧除碳得到碳化硅纤维。根据本发明的方法,可在碳纤维上原位生成碳化硅并最终得到碳化硅纤维,且采用不同规格的碳纤维可制备出不同规格的碳化硅纤维,从而可以根据实际需要选择相应尺寸的碳纤维对碳化硅 进行可控合成。权利要求书1页 说明书5页 附图2页CN 109957859 A 2019.07.02 C N 109957859 A

权 利 要 求 书1/1页CN 109957859 A 1.一种碳化硅纤维制备方法,其特征在于,包括如下步骤: 1)以一氧化硅为硅源,碳纤维为碳源制备得到一氧化硅和碳纤维的混合分散液。 2)对所述混合分散液进行干燥得到前驱体; 3)将所述前驱体在真空度为0.03-0.1MPa,温度为1000-1400℃的条件下煅烧,得到粗产物; 4)对所述粗产物进行除硅处理,得到碳化硅/碳混合物,对所述碳化硅/碳混合物煅烧除碳得到碳化硅纤维。 2.根据权利要求1所述的碳化硅纤维制备方法,其特征在于,所述前驱体的煅烧温度为1050-1250℃,升温速率为3-8℃/min,煅烧时间为1-24h。 3.根据权利要求1所述的碳化硅纤维制备方法,其特征在于,所述前驱体的煅烧真空度为0.03—0.1MPa。 4.根据权利要求1所述的碳化硅纤维制备方法,其特征在于,步骤1)中所述硅源和碳源按照硅元素与碳元素的摩尔比(0.5-3):1进行投料。 5.根据权利要求1所述的碳化硅纤维制备方法,其特征在于,步骤1)中混合分散液的分散溶剂为乙醇溶液,所述乙醇溶液浓度为10%~100%(V/V)。 6.根据权利要求5所述的碳化硅纤维制备方法,其特征在于,步骤1)中碳纤维与乙醇溶液的质量比为1:(9-5)。 7.根据权利要求1所述的碳化硅纤维制备方法,其特征在于,步骤1)的混合分散液中还包括分散剂,所述分散剂选自十二烷基硫酸钠、十二烷基苯磺酸钠、聚乙烯吡咯烷酮或聚乙烯醇中的一种或几种,所述分散剂的加入量为碳纤维质量的0.1%-0.5%。 8.根据权利要求1-7任一所述的碳化硅纤维制备方法,其特征在于,所述除硅处理为氢氟酸浸泡处理,所述氢氟酸溶液的质量分数为10%-40%,浸泡时间为2h-24h。 9.根据权利要求1-7任一所述的碳化硅纤维制备方法,其特征在于,步骤4)中的煅烧温度为500-700℃,煅烧时间为1h-10h。 10.一种碳化硅纤维,其特征在于,由权利要求1-9任一所述的碳化硅纤维制备方法制备得到。 2

第三代半导体面SiC碳化硅器件及其应用修订稿

第三代半导体面S i C碳化硅器件及其应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第三代半导体面-S i C(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用.从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前Si C器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场. S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩc㎡,这是目前SiC肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. SiC功率器件由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应S i器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为

中国新能源的发展现状与未来趋势(精)

中国新能源的发展现状与未来趋势The Current Development Situation and the Future Trend of Chinese New Energy 新能源发展趋势、前景 从新能源行业发展总体情况来看,大部分新能源利用方式始于20世纪70年底,并在90年代开始普及应用,虽然部分技术趋向成熟,但无论从市场扩张速度还是成长前景看,新能源行业仍然处于生命发展周期中的成长期,并将在3年左右的时间内陆续进入成熟期。 由于技术的限制,短期内电力行业没有替代品,电力行业生命周期的问题主要研究对象是各种具体的电源类型,比较的是这些电源类型之间的替代和生命周期。新能源由于具有清洁、可持续的特性,因此新能源行业的成熟期持续时间将较长,即使到了行业的饱和衰退期,其衰退速度也将很慢。 具体来看,水电行业历史悠久,技术已经比较成熟,可以看作是步入成熟期的行业;风电产业在20世纪70年代末起始西欧国家,风电设备行业克服了“能量不稳定”、“转换效率低”等弱点,在丹麦、德国、西班牙、荷兰、美国、日本、印度等国家得 到广泛应用,风电设备产业在部分国家开始饱和,逐步向外技术输出。从这些特征可以确定,风电设备产业在先发国家已经进入了成熟期,但在中国、印度等新兴国家,风电产业仍处于快速成长期;太阳能发电行业目前在技术研发、试点应用等方面取得了显著成效,已经脱离了幼稚期,但由于成本仍然过高,限制了技术的推广应用,可以看作刚刚进入成长期的朝阳产业。 新能源行业目前投资成本仍然较高,尤其是大型风电基地、核电站的投资规模要求很高,行业存在一定风险,但短期来看,国家新能源发电优先上网的政策对新能源行业盈利水平提供了基本的保障。虽然风电设备、多晶硅等部分潜在产能过剩或存在低水平重复建设的行业竞争趋向激烈,部分企业发展面临困难。但在2020年前,在国家节能减排及能源结构调整的大背景下,新能源行业均将保持在景气区间,行业盈利水平有望持续提高。一、中国能源行业发展历史

相关文档
最新文档