幂法是求方阵的最大特征值及对应特征向量

幂法是求方阵的最大特征值及对应特征向量
幂法是求方阵的最大特征值及对应特征向量

幂法是求方阵的最大特征值及对应特征向量

幂法

设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足 |λ1| > |λ2| ≥ …≥ |λn | (3.2.1)

1. 基本思想

因为{v 1,v 2,…,v n }为C n 的一组基,所以任给x (0)

≠ 0,∑==

n

i i

i

v

a x 1

)

0( —— 线性表示

所以有

]

)(

[)(2

1

1111

11)

0(∑

∑∑====+

==

=

=n

i i i k

i k

n

i k k

i i n

i i k

i

n

i i i k

k v a v a v a v A a

v a A x

A λλλλ

若a 1 ≠ 0,则因

11

<λλi 知,当k 充分大时 A (k )x (0) ≈ λ1k

a 1v 1 = cv 1 属λ1的特征向量

另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,

1111

1

111111

1

111)

0(1)

0()

max()max()

max()max()

max()max(λλλλλ==

---v a v a v a v a x

A

x A k k

k k

k k

若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。 2. 规范化

在实际计算中,若|λ1| > 1则|λ1k a 1| →∞,若|λ1| < 1则| λ1k a 1| → 0都将停机。 须采用“规范化”的方法

??

??

?==+)()1()

()

()()max(k k k k k Ay x x x

y , k = 0,1,2,… 定理3.2-1 任给初始向量0)

0(≠x

有,???

??==∞

→∞

→特征值

特征向量

1)(11)

()max(lim )max(lim λk k k k x v v y

证明:

?

???

??+

+

=

=

==

=

=

==-------n

i i k

i

i k

n

i i k

i i k

k

k

k k k k k k k k k v a v a v a v a x A x

A x

x

A

x

x

A

Ay

Ay

x

x

y

2

1

1112

1

111)

22.3()

0()0()

1()

1()1()

1()

1()

1()

()

()

(])(

[max ])(

[)

max()

)max(max()max()

max()

max(λλλλλλ

)

max()

max(])(

[max ])(

[1111112

1

112

1

11v v v a v a v a v a v a v a k n

i i k

i

i n

i i k

i i =

?

???

??

+

+=

→==∑

λλλλ

而 1

111111)

1()

()

max()max()

max()

max())max(max()max()max(λλ==

=

→=∞

→-v v v Av v v A Ay

x

k k k

注:若A 的特征值不满足条件(3.2.1),幂法收敛性的分析较复杂,但若λ1 = λ2 = … = λ r 且|λ1| > |λ r +1| ≥ …≥ |λn |则定理结论仍成立。

此时不同初始向量的迭代向量序列一般趋向于λ1的不同特征向量。 3. 算法

求maxa(x )的流程,设数组x (n )数向量x 的n 个分量

幂法流程:

例1,用幂法求???

?

?

?

?=3616

41593

642A 的最大模特征值及对应特征向量 见P312

function y = maxa(x) k=1;n=length(x);

for i=2:n

if (abs(x(i))>abs(x(k)),k=i; end; end; y=x(k);

A=[2,4,6;3,9,15;4,16,36]; x0=[1;1;1]; y=x0/maxa(x0)

x1=A*y

while(abs(maxa(x1)-maxa(x0)))>0.001 x0=x1; y=x0/maxa(x0) x1=A*y end; y

maxa(x1)

幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 —一 .幂法 1. 幕法简介: 当矩阵A 满足一定条件时,在工程中可用幕法计算其主特征值 (按模最大) 及其特征向量。矩阵A 需要满足的条件为: ⑴I 1 I I 2|n |- 0, i 为A 的特征值 (2)存在n 个线性无关的特征向量,设为 X i ,X 2,…,X n 1.1计算过程: n 对任意向量x (0),有x (0)八:-M —不全为0,则有 i 4 X (k 岀)=Ax (k)= = A k 岀乂。) n n A k 1 aq a 扌1 5 i =1 i =1 ■k 1 2 可见,当 1 — 1 越小时,收敛越快;且当k 充分大时,有 ? "1 2算法实现 ⑶.计算x Ay,… max(x); ⑷若| ?一十:;,输出-,y,否则,转(5) (5)若N ,置k 「k 1^ -,转3,否则输出失败信息,停机. 3 matlab 程序代码 (冲1 %叫 x (k 1) [x (k) k 二 u x (k) > (k+1) 1,对应的特征向量即是 x (1).输入矩阵A ,初始向量X ,误差限 最大迭代次数N (k) 0; y (k) max(abs(x (k ))

k=1; z=0; y=x0./max(abs(x0)); x=A*y; % z相当于■ %规范化初始向量%迭代格式 b=max(x); % b相当于: if abs(z-b)eps && k> y]=lpower (A, xO, eps, X)

矩阵的特征值与特征向量 习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)???? ? ??=931421111) , ,(321a a a (2)?????? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令HE 2xx T 证明H 是对称的正交阵 3 求下列矩阵的特征值和特征向量: (1)???? ? ??----20133 5212; (2)???? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设0是m 阶矩阵A mn B nm 的特征值 证明也是n 阶矩阵BA 的特征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 27A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A *3A 2E | 8 设矩阵???? ? ??=50413102x A 可相似对角化 求x 9 已知p (1 1 1)T 是矩阵???? ? ??---=2135 212b a A 的一个特征向量

(1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵???? ? ??----020212022化为对角阵. 11 设矩阵????? ??------=12422421x A 与???? ? ??-=Λy 45相似 求x y 并求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为12 22 31 对应的特征向量依次为p 1(0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值16 23 33 与特征值16对应的特征向量为p 1(1 1 1)T 求A . 14 设????? ??-=340430241A 求A 100

线性代数中关于特征值和特征向量的方法(刘妍原创)

线性代数中关于特征值和特征向量的方法 万学教育 海文考研 考研教学与研究中心 刘妍 基础阶段的复习我们一般在进入4月份以后,很多同学都开始启动线性代数的复习了。有些同学对于线代总是感觉知识点很散,对于一些解题的方法感觉学起来不容易记。其实线性代数是方法性比较强的一门学科,如果能把各个章节串联的去学习,那么对于线性代数的学习可能会更加的游刃有余一些。下面我就特征值,特征向量这一部分给大家说几种结题方法: 一、方法一: (1) 取定数域P 上的线性空间n V 的一个基, 写出线性变换T 在该基下的矩阵A ; (2) 求出A 的特征多项式?λ()在数域P 上的全部根, 它们就是T 的全部特征值; (3) 把求出的特征值逐个代入方程组, 解出矩阵A 的属于每个特征值的全部线性 无关的特征向量; (4) 以A 的属于每个特征值的特征向量为n V 中取定基下的坐标, 即得T 的相应特征 向量. 例1 求矩阵 ?? ??? ?????=A 122212221, 的特征值与特征向量. 解 容易算出A 的多项式 )(det A -I λ= 12 2 2 1 22 21 ---------λλλ) 5()1(2-+=λλ, 所以T 的特征值是11-=λ(二重)和.52=λ 特征方程0)(=-I x A λ的一个基础解系为T -)1,0,1(, T -)1,1,0(. T 的属于1λ的两个线性无关的特征向量为,311x x y -= 322x x y -=. 所以T 的属于1λ的全部特征向量为2211y k y k + (其中k k k ∈21,且不同时为零). 特征方 程的一个基础解系为T )1,1,1(. 记3213 λλλ++=y , 则T 的属于2λ 的全体特征向量为33y k (k k ∈3且不为零).

关于特征值与特征向量的求解方法与技巧

关于特征值与特征向量的求解方法与技巧 摘 要:矩阵的初等变换是高等代数中运用最广泛的运算工具,对矩阵的特征值与特征向量的求解研究具有一定意义。本文对矩阵特征值与特征向量相关问题进行了系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值及特征向量的结论。文章给出求解矩阵特征值与特征向量的两种简易方法: 列行互逆变换方法与列初等变换方法。 关键词: 特征值,特征向量; 互逆变换; 初等变换。 1 引言 物理、力学、工程技术的许多问题在数学上都归结为求矩阵的特征值与特征向量问题,直接由特征方程求特征值是比较困难的,而在现有的教材和参考资料上由特征方程求特征值总要解带参数的行列式,且只有先求出特征值才可由方程组求特征向量。一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。本文对此问题进行 了系统的归纳,给出了两种简易方法。 一般教科书介绍的求矩阵的特征值和特征向量的方法是先求矩阵A 的特征方程()0A f I A λλ=-=的全部特征根(互异) ,而求相应的特征向量的方法则是对每个i λ 求齐次线性方程组()0i I A X λ-=的基础解系,两者的计算是分离的,一个是计算行列式,另一个是解齐次线性方程组, 求解过程比较繁琐,计算量都较大。

本文介绍求矩阵的特征值与特征向量的两种简易方法, 只用一种运算 ——矩阵运算, 其中的列行互逆变换法是一种可同步求出特征值与特征向量的方法, 而且不需要考虑带参数的特征矩阵。而矩阵的列初等变换法, 在求出特征值的同时, 已经进行了大部分求相应特征向量的运算, 有时碰巧已完成了求特征向量的全部运算。两种方法计算量少, 且运算规范,不易出错。 2 方法之一: 列行互逆变换法 定义1 把矩阵的下列三种变换称为列行互逆变换: 1. 互换i 、j 两列()i j c c ?,同时互换j 、i 两行()j i r r ? ; 2. 第i 列乘以非零数()i k kc , 同时第i 行乘11i c k k ?? ?? ? ; 3. 第i 列k 倍加到第j 列()j i c kc +, 同时第j 行- k 倍加到第i 行 ()i j r kr -。 定理1 复数域C 上任一n 阶矩阵A 都与一个Jordan 标准形矩阵 1212,,....r k k kr J diag J J J λλλ? ? ???????? ??? ? ?? ?? ? ? ? ?? ? ?=相似, 其中 111110...0001...00..................000...1000...0ki ki J λλλλ?? ?? ?? ??=????????称为Jordan 块, 12r k k k n ++ +=并且 这个Jordan 标准形矩阵除去其中Jordan 块的排列次序外被矩阵A 唯一确定, J 称为A 的Jordan 标准形。 定理2 A 为任意n 阶方阵, 若T A J I P ?? ????????→ ? ????? 一系列列行互逆变换其中

幂法求矩阵主特征值

!程序说明:幂法求矩阵主特征值 !日期:2010年11月30日 PROGRAM Matrix_EigenValue PARAMETER(N=3) REAL ARR(N,N) CALL INPUT(ARR,N) CALL MATEV(ARR,N) END PROGRAM SUBROUTINE INPUT(ARR,N) REAL ARR(N,N) OPEN(1,FILE='MAT.TXT') READ(1,*)((ARR(I,J),J=1,N),I=1,N) END SUBROUTINE SUBROUTINE MATEV(ARR,N) PARAMETER(EPS=1E-7) REAL :: ARR(N,N),X(N),X1(N),MAX=0 INTEGER :: K=0,P=0 X=RESHAPE((/1,1,1/),(/3/)) WRITE(1,*) ' 迭代次数 U(规范化向量) & & MAX(V)(主特征值)' DO WHILE(P/=N) WRITE(1,'(I6,A,F12.6,A,F12.6)') K,' (',X,' )',MAX P=0 MAX=0 DO I=1,N X1(I)=0 DO J=1,N X1(I)=X1(I)+ARR(I,J)*X(J) !迭代过程 ENDDO ENDDO DO I=1,N IF(ABS(X1(I))>ABS(MAX)) MAX=X1(I) !选取主特征值 ENDDO DO I=1,N IF(ABS(X(I)-X1(I)/MAX)

ENDDO K=K+1 ENDDO END SUBROUTINE 输出结果: 1 1 0.5 1 1 0.25 0.5 0.25 2 迭代次数 U(规范化向量) MAX(V)(主特征值) 0 ( 1.000000 1.000000 1.000000 ) 0.000000 1 ( 0.909091 0.81818 2 1.000000 ) 2.750000 2 ( 0.837607 0.743590 1.000000 ) 2.659091 3 ( 0.799016 0.703035 1.000000 ) 2.604701 4 ( 0.77741 5 0.680338 1.000000 ) 2.575267 5 ( 0.765108 0.66740 6 1.000000 ) 2.558792 6 ( 0.758025 0.659963 1.000000 ) 2.549406 7 ( 0.753925 0.655655 1.000000 ) 2.544003 8 ( 0.751544 0.653153 1.000000 ) 2.540876 9 ( 0.750158 0.651697 1.000000 ) 2.539060 10 ( 0.749351 0.650848 1.000000 ) 2.538003 11 ( 0.748880 0.650354 1.000000 ) 2.537387 12 ( 0.748606 0.650065 1.000000 ) 2.537028 13 ( 0.748445 0.649897 1.000000 ) 2.536819 14 ( 0.748352 0.649799 1.000000 ) 2.536697 15 ( 0.748298 0.649741 1.000000 ) 2.536626 16 ( 0.748266 0.649708 1.000000 ) 2.536584 17 ( 0.748247 0.649688 1.000000 ) 2.536560 18 ( 0.748236 0.649677 1.000000 ) 2.536546 19 ( 0.748230 0.649670 1.000000 ) 2.536537 20 ( 0.748226 0.649667 1.000000 ) 2.536533 21 ( 0.748224 0.649664 1.000000 ) 2.536530 22 ( 0.748223 0.649663 1.000000 ) 2.536528 23 ( 0.748222 0.649662 1.000000 ) 2.536527 24 ( 0.748222 0.649662 1.000000 ) 2.536527 25 ( 0.748222 0.649662 1.000000 ) 2.536526 26 ( 0.748221 0.649661 1.000000 ) 2.536526

幂法求矩阵A按模最大的特征值及其特征向量

数值分析 幂法求矩阵A按模最大的特征值及其 特征向量

幂法的主要思想 设 n n ij R a A ?∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i =,且 x 1,······,x n 线性无关。求矩阵A 的主特征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量 v 0 ∈R n 且v 0≠0, 由矩阵A 的乘幂构造一向量序列: 称{ v k }为迭代向量, A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏, {x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一 个基,于是对任意的初始向量v 0 ∈R n 且 v 0≠0有展开式。 (v 0 用{x i } 的线性组合表示) (且设01≠α) 则 当k =2,3,… 时,v k = A v k-1 = A k v ? ?? 1Av v =0 212v A Av v ==01 1 v A Av v k k k ++==) ,,1,0(n k =∑==n i i i x v 1 α)(221101n n x x x A v A v ααα+++==n n x A x A x A ααα+++=2211n n n x x x λαλαλα+++=222111) (111 +≡x k αλk ε

其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。 所以有 说明,当k 充分大时,有1 11 x v k k αλ≈,或 k k v 1λ 越来越接近特征 向量 规范化幂法的算法 ①输入矩阵 A 、初始向量v (0),误差 eps ,实用中一般取 v (0)=(1,1,···,1)T ; ②k ←1; ③计算 v (k) ←Au (k-1); ④m k ←max{ v (k) },m k-1 ←{ v (k-1) }; ⑤u (k) ←v (k)/ m k ; ⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征 向量x (1),终止; ⑦k=k+1,转③。 n k n n k k x x )()(1 2122λλαλλαε++=),,2(1||1 n i i =<λλ ),,,2(0)(lim 1n i k i k ==∞→λλ111 lim x v k k k αλ=∞ →。 11x α

雅克比过关法求特征值和特征向量

1.////////////////////////////////////////////////////////////////////// 2.// 求实对称矩阵特征值与特征向量的雅可比法 3.// 4.// 参数: 5.// 1. double dblEigenValue[] - 一维数组,长度为矩阵的阶数,返回时存放特征值 6.// 2. CMatrix& mtxEigenVector - 返回时存放特征向量矩阵,其中第i列为与 7.// 数组dblEigenValue中第j个特征值对应的特征向量 8.// 3. int nMaxIt - 迭代次数,默认值为60 9.// 4. double eps - 计算精度,默认值为0.000001 10.// 11.// 返回值:BOOL型,求解是否成功 12.////////////////////////////////////////////////////////////////////// 13.BOOL CMatrix::JacobiEigenv(double dblEigenValue[], CMatrix& mtxEigenVector, int nMaxIt /*= 60*/, double eps /*= 0.000001*/) 14.{ 15.int i,j,p,q,u,w,t,s,l; 16.double fm,cn,sn,omega,x,y,d; 17. 18.if (! mtxEigenVector.Init(m_nNumColumns, m_nNumColumns)) 19.return FALSE; 20. 21.l=1; 22.for (i=0; i<=m_nNumColumns-1; i++) 23.{ 24.mtxEigenVector.m_pData[i*m_nNumColumns+i]=1.0; 25.for (j=0; j<=m_nNumColumns-1; j++) 26.if (i!=j) 27.mtxEigenVector.m_pData[i*m_nNumColumns+j]=0.0;//单位矩阵 28.} 29. 30.while (TRUE) 31.{ 32.fm=0.0; 33.for (i=1; i<=m_nNumColumns-1; i++) 34.{ 35.for (j=0; j<=i-1; j++) 36.{ 37.d=fabs(m_pData[i*m_nNumColumns+j]); 38.if ((i!=j)&&(d>fm)) 39.{ 40.fm=d; 41.p=i; 42.q=j; }//取绝对值最大的非对角线元素,并记住位置

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业 计算机学院信计1102班姜圣涛 (1)幂法求矩阵最大特征值及特征向量: 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0;

while(1){ max=X[0]; for(i=0;i

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

幂法反幂法求解矩阵大小特征值及其对应的特征向量

幂法反幂法求解矩阵大小特征值及其对应的特征向量

————————————————————————————————作者:————————————————————————————————日期:

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)11 11)11111λαλαλ=??????==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

特征值和特征向量的物理意义

特征向量体现样本之间的相关程度,特征值则反映了散射强度。 特征向量的几何意义.矩阵(既然讨论特征向量的问题.当然是方阵.这里不讨论广义特征向量的概念)乘以一 个向量的结果仍是同维数的一个向量.因此.矩阵乘法对应了一个变换.把一个向量变成同维数的另一个向量.那么变换的效果是什么呢?这当然与方阵的构造有密切关系.比如可以取适当的二维方阵.使得这个变换 的效果就是将平面上的二维向量逆时针旋转30度.这时我们可以问一个问题.有没有向量在这个变换下不 改变方向呢?可以想一下.除了零向量.没有其他向量可以在平面上旋转30度而不改变方向的.所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量).所以一个变换的特征向量 是这样一种向量.它经过这种特定的变换后保持方向不变.只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx.你就恍然大悟了.看到了吗?cx是方阵A对向量x进行变换后的结果.但显然cx和x的方向相同).而且x是特征向量的话.ax也是特征向量(a是标量且不为零).所以所谓的特征向量不是一个向量而是一个向量族. 另外.特征值只不过反映了特征向量在变换时的伸缩倍数而已.对一个变换而言.特征向量指明的 方向才是很重要的.特征值不是那么重要.虽然我们求这两个量时先求出特征值.但特征向量才是更本质的 东西! 比如平面上的一个变换.把一个向量关于横轴做镜像对称变换.即保持一个向量的横坐标不变.但纵坐标取相反数.把这个变换表示为矩阵就是[1 0,0 -1].其中分号表示换行.显然[1 0,0 -1]*[a b]'=[a -b]'. 其中上标'表示取转置.这正是我们想要的效果.那么现在可以猜一下了.这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变.显然.横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像 对称变换.那镜子表面上(横轴上)的向量当然不会变化).所以可以直接猜测其特征向量是[a 0]'(a不为0).还有其他的吗?有.那就是纵轴上的向量.这时经过变换后.其方向反向.但仍在同一条轴上.所以也被认为是方向没有变化。 综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。 Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: T(V)=λ1(V1.V)V1+λ2(V2.V)V2+λ3(V3.V)V3+... 从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊? 我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。 关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法;近的比如Google公司的成名作PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个Web各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

特征值与特征向量优秀教学设计.docx

特征值与特征向量 【教学目标】 1.亲历矩阵特征值与特征向量意义的探索过程,体验分析归纳得出矩阵特征值与特征向量的存在与性质,进一步发展学生的探究、交流能力。 2.掌握矩阵特征值与特征向量的定义及其性质。 3.能从几何直观上,利用线性变换求特征值与特征向量。 【教学重难点】 重点:掌握阵特征值与特征向量的定义及其性质。 难点:从几何直观上,利用线性变换求特征值与特征向量。 【教学过程】 一、新课引入 教师:对于线性变换,是否存在平面内的直线,使得该直线在这个线性变换作用下保持不变?是否存在向量,使得该向量在这个线性变换的作用下具有某种“不变性”?为了解决我们的问题,我们今天将学习矩阵特征值与特征向量。 二、讲授新课 教师:请同学们回忆一下,我们在前面的课程里面,学过哪些基本的变换? 学生:伸缩变换,反射变换等等。 教师:那下面我们来研究一下伸缩变换,反射变换一些不变的性质,我一起来看例题。 例1:对于相关x 轴的反射变换σ:1001x x y y '???? ??= ? ? ?'-? ?????,从几何直观上可以发现,只有x 轴和平行于y 轴的直线在反射变换σ的作用下保持不动,其他的直线都发生了变化。因此,反射 变换σ只把形如10k α??= ???和20k β?? = ??? 的向量(其中1k ,2k 是任意常数),分别变成与自身共线的 向量。可以发现,反射变换σ分别把向量10k α??= ???,20k β??= ???变成10k α??= ???,20k β?? -= ?-??。特别的,反射变换σ把向量110ξ??= ???变成110ξ??= ???,把向量201ξ??= ???变成01?? ?-?? 。用矩形的形式可表示为

第四章矩阵的特征值和特征向量

第四章 矩阵的特征值和特征向量 例1 求下列矩阵的特征值与特征向量???? ??????----=163053064A ,并判断它能否相似对角化。若能,求可逆阵P ,使∧=-AP P 1(对角阵)。 例2 已知三阶方阵A 的三个特征值为4,3,2-,则1-A 的特征值为_______,T A 的特征值为_______,*A 的特征值为_______,E A A 232 +-的特征值为_______ 例3 设矩阵???? ??????=0011100y x A 有三个线性无关的特征向量,则y x ,应满足条件_______ 例5 已知矩阵??????????=x A 10200002与???? ??????-=10000002y B 相似,则____________==y x 例6 设n 阶方阵A 满足0232 =+-I A A ,求A 的特征值 例7 已知向量T k )1,,1(=ξ是矩阵???? ??????=211121112A 的逆矩阵1-A 的特征向量,求常数k 例8 设A 为非零方阵,且0=m A (m 为某自然数),证明:A 不能与对角阵相似 例9 设n 阶方阵A 满足01072=+-I A A ,求证:A 相似于一个对角矩阵 结 论 总结 1 n 阶方阵A 有n 个特征值,它们的和等于A 的主对角线元素之和(即A 的逆trA ),它们的乘积等于A 的行列式A 2 如果m λλ,,1Λ是方阵A 的特征值,m P P ,,1Λ是与之对应的特征向量,如m λλ,,1Λ互不相等时,m P P ,,1Λ线性无关 3 如果n 阶方阵A 与B 相似,则A 与B 有相同的特征多项式,从而有相同的特征值 4 如果n 阶方阵A 与对角阵∧相似,则∧的主对角线元素就是A 的n 个特征值

特征值和特征向量的物理意义

ABSTRACT: 特征向量:它经过这种特定的变换后保持方向不变。只是进行长度上的伸缩而已。 特征值:一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power)。 内积:内积可以简单的理解为两个函数的相似程度,内积值越大表示两个函数相似程度越大,内积为零表示完全不相似。两个函数内积为零则两个函数正交,在三维空间中它们的夹角为90度,在三维以上不是这样的。 CONTENT 矩阵(既然讨论特征向量的问题。当然是方阵。这里不讨论广义特征向量的概念)乘以一个向量的结果仍是同维数的一个向量。因此。矩阵乘法对应了一个变换。把一个向量变成同维数的另一个向量。那么变换的效果是什么呢?这当然与方阵的构造有密切关系。比如可以取适当的二维方阵。使得这个变换的效果就是将平面上的二维向量逆时针旋转30度。这时我们可以问一个问题。有没有向量在这个变换下不改变方向呢?可以想一下。除了零向量。没有其他向量可以在平面上旋转30度而不改变方向的。所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。所以一个变换的特征向量是这样一种向量。它经过这种特定的变换后保持方向不变。只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx。你就恍然大悟了。看到了吗?cx是方阵A 对向量x进行变换后的结果。但显然cx和x的方向相同)。而且x是特征向量的话。ax也是特征向量(a是标量且不为零)。所以所谓的特征向量不是一个向量而是一个向量族。另外。特征值只不过反映了特征向量在变换时的伸缩倍数而已。对一个变换而言。特征向量指明的方向才是很重要的。特征值不是那么重要。虽然我们求这两个量时先求出特征值。但特征向量才是更本质的东西! 比如平面上的一个变换。把一个向量关于横轴做镜像对称变换。即保持一个向量的横坐标不变。但纵坐标取相反数。把这个变换表示为矩阵就是[1 0;0 -1]。其中分号表示换行。显然[1 0;0 -1]*[a b]'=[a –b]'。其中上标' 表示取转置。这正是我们想要的效果。那么现在可以猜一下了。这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变。显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换。那镜子表面上(横轴上)的向量当然不会变化)。所以可以直接猜测其特征向量是[a 0]'(a不为0)。还有其他的吗?有。那就是纵轴上的向量。这时经过变换后。其方向反向。但仍在同一条轴上。所以也被认为是方向没有变化。 当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。Spectral theorem的核心内容如下:一个线性变换A(用矩阵乘法表示)可表示为它的所

矩阵的特征值和特征向量

线性代数复习总结大全 第五章矩阵的特征值和特征向量 特征值、特征向量 A 是N 阶方阵,若数λ使AX=λX ,即(λI-A )=0有非零解,则称λ为A 的一个特征值,此时,非零解称为A 的属于特征值λ的特征向量。 |A|=n λλλ...**21注:1、AX=λX 2、求特征值、特征向量的方法 0=-A I λ求i λ将i λ代入(λI-A )X=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根(主要学习的) 特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ???? ? ??4、特征值:若)0(≠λλ是A 的特征值 则1-A -------- λ1则m A --------m λ 则kA --------λ k 若2 A =A 则-----------λ=0或1若2 A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹tr(A ):迹(A )=nn a a a +??++2211性质: 1、N 阶方阵可逆的充要条件是A 的特征值全是非零的 2、A 与1 -A 有相同的特征值 3、N 阶方阵A 的不同特征值所对应的特征向量线性无关 4、5、P281 相似矩阵 定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P ,满足B AP P =-1,则矩阵A 与B 相似,记作A~B

性质1、自身性:A~A,P=I 2、对称性:若A~B 则B~A B AP P =-11 -=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB ,则A 与B 同(不)可逆 5、若A~B ,则11~--B A B AP P =-1两边同取逆,1 11---=B P A P 6、若A~B ,则它们有相同的特征值。(特征值相同的矩阵不一定相似) 7、若A~B ,则) ()(B r A r =初等变换不改变矩阵的秩例子:B AP P =-1则1 100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致 2、A~^,则^与P 不是唯一的 推论:若n 阶方阵A 有n 个互异的特征值,则~^A (P281) 定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线。 约当形矩阵 约当块:形如?????? ? ??=λλλλ111J 的n 阶矩阵称为n 阶约当块;

相关文档
最新文档