图像置乱

图像置乱
图像置乱

1.什么是图像置乱

概述:所谓“置乱”,就是将图像的信息次序打乱,将a像素移动到b像素的位置上,b像素移动到c像素的位置上……使其变换成杂乱无章难以辨认的图像。

数字图像置乱加密技术是指发送方借助数学或其他领域的技术,对一幅有意义的数字图像作变换使之变成一幅杂乱无章的图像再用于传输;在图像传输过程中,非法截获者无法从杂乱无章的图像中获得原图像信息,从而达到图像加密的目的;接收方经去乱解密,可恢复原图像。为了确保图像的机密性,置乱过程中一般引入密钥。

定义:

定义1:给定图像A=[a(i,j)]n*m,变换矩阵是T=[t(i,j)]n*m,是1,2,?,n×m的一种排列,用T作置乱变换,得到图像B。其变换方法如下:

将A与T按行列作一一对应,将A中对应位置1的像素灰度值(或RGB分量值)移到对应位置2,对应位置2的像素灰度值移到对应位置3,??以此类推,最后将对应n*m位置的像

素灰度值移到对应位置1,就得到了按T置乱后的图像B。图像A经置乱变换T变换到了图像B,记为B=TA。

定义2:给定图像A=[a(i,j)]n*m,设变换T是{(x,y):1≤x≤n,1≤Y≤m'且x,y均为整数}到自身的1-1映射,即:

将图像A中位置(x,y)处的元素变换到位置(x',y’)处,得到图像B,则称变换T是图像A的置乱变换,仍记为B=TA。

从数学本质上看,定义1和2投有实质的区别,只是使用场合不同。从定义1可以看出,构造置乱变换等价于构造矩阵T。不同的T则形成了不同的置乱变换。从定义2可以看出,构造置乱变换就是构造{(x,y):1≤X≤n,1≤Y≤in,且x,y均为整数}到自身的1-1映射。

若C=TB=T(TA)=T2(A),则称C为A迭代置乱两次的图像。

以此类推,可以进行多次迭代置乱。

一般认为,置乱变换应该满足以下两个条件:

(1)变换是离散点域{(x,y):0≤x,y≤N·1}到其自身的一一映射;

(2)(2)变换是离散点域{(x,y):0≤x,y≤N—I}到其自身的满映射,即变换是可逆的。

这两个条件是置乱变换可完成有效置乱的必要条件,即是说只有一—对应的,变换结果可遍历图像所有像素点,而且反变换存在的置乱变换才是实际中有效可用的。

原理:变化模板形状的图像置乱算法的思想如下:

(1) 对原图像取一个固定模板,模板中像素位置排列(如图1所示);

图1 原图模板图2 置乱模板图3 置乱后模板

(2)做一个与原图像模板不同的置乱模板(如图2),在置乱模板中把图像模板中的像素位置按一定次序填入(图4.11的模板中按从上到下,从左到右的次序依次填入);

(3)将置乱模板中的像素位置再按一定的次序填回到原图像模板中就得到了置乱后的图像模板(图3的模板是按从左到右,从上到下的次序依次读取置乱模板中像素位置)。

图像置乱变换的周期

图像置乱变换的目的在于把图像变为一幅“混乱不堪”的图像,但置乱后如何对图像进行恢复也是一个需要考虑的问题。置乱的恢复一般有两种方法,一种是利用置乱变换的逆变换,另一种是利用置乱变换的周期。如果用逆变换来进行恢复,置乱的图像经过一步逆变换就可恢复为原图像,恢复过程较为简捷,但对逆变换的计算一般都比较困难,同时还要考虑置乱的迭代次数,计算过于复杂,因此一般不考虑用逆变换来恢复。而用变换的周期进行恢复因为不涉及求逆计算,只需对图像重复迭代置乱就可恢复图像信息,成为置乱恢复常用的方法,对置乱变换周期性的研究是置乱技术研究的一个重要方面。置乱变换的周期是指对图像A运用变换T进行置乱,可使置乱结果恢复为A最小迭代变换次数。文献给出了变换T具有周期的充要条件,同时也指出变换T具有周期与变换T的逆变换存在是互为充要条件的。

定义3若存在一个大于I的正整数N,使得T“A=A,则称最小的正整数N为置乱变换T的周期。作用:

置乱实际上就是图像的加密,与加密保证安全性不同的是,将置乱的图像作为秘密信息再进行隐藏,可以很大限度的提高隐蔽载体的鲁棒性。所以图像置乱是信息隐藏中非常常用的一项技术。

首先,将图像置乱后,将得到一幅杂乱无章的图像,这个图像无色彩、无纹理、无形状,从中无法读取任何信息,那么,将这样一幅图嵌入到另一幅普通图像时就不易引起那幅图色彩、纹理、形状的太大改变,甚至不会发生改变,这样人眼就不易识别,从而逃出了第三方的视线。其次,由于秘密图像是置乱后的图像,根据上述的图像的“三无”特征,第三方根本不可能对其进行色彩、纹理、形状等的统计分析,即便他们截取到了秘密图像,也是无能为力。而且,如果第三者企图对秘密图像进行反置乱,这也是不可能的,由于图像置乱有很多种方法,每种方法又可以使用不同的置乱模板算法,设置不同的参数,使用者有很大的自由度,他可以根据自己的想法得到不同的结果,相反,这给企图截获秘密信息的第三方带来了很大的困难,使他们需要耗费巨大的计算量来穷举测试各种可能性。最后,可以抵抗第三方的恶意攻击。这是因为对秘密图像进行反置换的过程,就使得第三方在图像上所涂、画的信息分散到画面的各个地方,形成了点状的随机噪声,对视觉影响的程度不大。当然,为了使提取的信息更为清晰,最好对破坏严重的图像进行边界保持的中值滤波等方面的处理,以去除随机噪声。

2.图像置乱的方法

数字图像置乱加密技术是一种重要的数据加密技术和有效的安全增强手段,对于提高网络信息传输的安全性具有重要意义。该文解析了图像置乱变换的定义、周期和图像置乱程度的衡量方法。阐述了图像置乱加密技术研究进展情况,指出了置乱技术今后将继续研究的方向。

随着互联网技术的迅速发展,当今社会已经进入了一个全新的网络信息时代。通过网络,数字多媒体信息得到了广泛的传播,与此同时,网络安全由于涉及个人隐私、商业利益乃至国家机密等问题日益备受关注。对传输的数字图像进行可靠的加密处理,已成为当前信息加密领域中重要的研究方向之一。传统的密码学着眼于文本资料的加密处理,为数字图像的加密技术提供了最直接的理论依据,但是它的对象是二进制数据流,忽略了图像的数字生产和视觉效果,同时,由于数字图像数据量大,要求加密具有实时性,传统的加密方法难以实现。置乱技术早期是对模拟图像的位置空间做置换,可看作是从经典密码学中的单表系统扩展而来,而对于数字化的图像,置乱加密过程不仅可以在数字图像的空间域(包括位置空间和颜色空间)上进行,还可以在其频率域上进行,以及空频域同时进行,合法使用者通过自由控制算法的选择、参数的选择以及使用随机数技术,从而使非法使用者无法破译图像内容。

图像置乱变换的主要方法和研究进展:

目前研究使用较多的置乱变换主要有:Arnold变换、Fibonacci与Fibonacci-Q变换、幻方变换、正交拉丁方变换、Hilbert曲线变换、Gray码变换、仿射变换、混沌置乱变换等。 Arnold变换是俄国数学家Vladimir I.Arnold在研究遍历理论时提出的一种置乱变换,邹建成等人对Arnold变换进行了深入的研究,给出了多种改进的置乱算法,得出一系列有用的结论,主要在于:讨论了平面上Arnold变换的周期性,计算了不同阶数N下Arnold变换的周期;把Arnold变换应用于数字图像置乱,对位置空间和彩色空间做了实验测试:把二维Arnold变换推广到了三维空间嘲:给出了一般的非线性模变换有周期性的充分必要条件,讨论了平面上Arnold变换的周期性问题,给出了判别周期的一组必要条件,从理论上对Arnold 变换的周期性有了更深的认识;将Arnold变换推广到高维,给出了高维变换具有周期性的充分必要条件,并讨论了该变换的置乱效果。

Gray码变换是一种数论变换,它可以用于二进制数据的纠错与校验。丁伟等讨论如何给出Gray码的矩阵定义形式并将之推广并讨论如何利用Gray码变换进行数字图像置乱。

朱桂斌等在文献【13】加中提出了一种仿射变换的置乱技术,该技术避免了取模运算,且其逆变换有简洁的解析表达式,无需进行周期次数的迭代即可恢复图像,其置乱效果好且计算时间复杂度低。文献【14】还进一步研究了基于几何中仿射变换思想的亚仿射变换,给出了

亚仿射变换的性质,讨论了亚仿射变换的周期性,得出了亚仿射变换构成变换群、亚仿射变换具有周期性等结论。该置乱技术不仅增加了置乱时的参数选择,而且有很好的置乱效果,对于机密图像的置乱加密有一定的应用价值。

柏森等在文献【15】中给出了骑士巡游矩阵的概念,并提出了—种基于骑士巡游变换将图

像进行置乱的方法,同时分析了该变换方法隐藏图像细节的原理,对骑士巡游变换在图像信息隐藏方面的特性进行了分析,表明该变换具有较高的保密度和较强的免疫性。

混沌现象是非线性动态系统中出现的确定性伪随机过程,使用混沌动力系统产生的混沌序列具有可控的低通性和很好的相关特性,因此,利用混沌信号来对图像进行置乱加密亦被

广泛研究使用。文献【l6】叫提出了一种基于混沌序列和幻方变换的数字图像加密算法,该算法对密钥敏感,具有较好的统计特性和较强的抗干扰能力。文献【17】提出了一种基于混合混沌序列的多级图像加密方法,这种混合混沌序列具有随机性好,实现容易,周期长等

优点。TD-ERCS系统是专门为混沌加密理论而设计的混沌系统,文献【18】即提出了一种基于

TD-ERCS离散混沌序列的数字图像加密算法,该算法具有可靠的安全性。

图像置乱变换的置乱程度

数字图像置乱的目的在于打乱图像,使攻击者不能识别其内容。一般来说,置乱后的图像相对于原始图像越"乱"表明该置乱算法就越有效,将其隐藏在公开图像中后,其安全性越高。然而,“乱”是人的视觉效果,带有一定主观性,不同的观察者评价结果可能不同。为此,提出了用置乱程度来量化置乱效果的思想,给出了图像置乱程度的几个定义。

所谓置乱程度,主要是指相对于图像信息的直观杂乱效果而言的,而与解密的难易程度无关。从直观上讲,作置乱变换时,原图像的像素位置移动得越远,则其置乱程度越大。因此

提出可以用各像素点移动的平均距离来定义置乱程度。

快速数字图像修复技术

快速数字图像修复技术

用高斯内核卷积图像(即计算相邻像素的加权平均数),相当于各向同性扩散(线性热传导方程)。我们的算法使用加权平均的内核,只考虑相邻像素的贡献(即内核中心为零)。图2显示了伪码算法和两个扩散内核。本文中所有重建图像是通过该算法获得,或者是该算法经过轻微的变化获得,将在3.1节解释。 3.1保留边缘 当Ω跨越高对比度边缘的边界时(图3(前左)),该算法最简单版本,会带来附加效果(明显的模糊)。在实践中,只有在Ω和高对比度边缘的相交处,需要各向异性扩散,这些区域通常只占整个区域内很小比例。 创建指定待修复区域的遮盖是修复过程中最耗时的步骤,需用户干预。由于我们的算法可以在短短几秒钟内修复图像,它可用于遮盖互动创建。我们利用这个互动通过扩散障碍进行边界重联,这是Ω内扩散过程的边界。这完成一个边界重建和各向异性扩散类似的的结果,但没有相关的开销。在实践中,扩散屏障是两个像素宽的线段。当扩散过程中达到一个障碍,达到像素进行颜色设定,进程终止。图3进行了说明,图3中(左后方)明显的交叉线代表修复区域。简单扩散修复算法在Ω和高对比度边缘之间的相交处产生模糊点(参见图3中的小圆圈(前左))。通过适当增加扩散屏障(整个遮盖线段图3(右后)),用户停止遮盖两边混合信息的扩散过程。由此产生的直线如图3(前右)所示。 4结果 我们已经在C + +中实施了图2描述的算法,并尝试了两种不同的扩散内核。在这两种情况下的结果相似。文中所有的图片都使用128 MB的内存运行Windows98450兆赫奔腾III 电脑和使用图2所示的最左边内核生成。在图5,8,9和10所示的结果是使用无扩散障碍最简单的版本的算法得到。对于图1,使用了遮盖,两个扩散障碍(图4)。三个女孩的例子,使用了四个扩散障碍,以及有遮盖穿过高对比度边缘的区域(图6(右))。在所有情况下,都用100扩散迭代。 所有修复和线装饰删除系统需要手动遮盖。鉴于有一套功能的绘图系统,创建一个遮盖所需的时间,只依赖于可用的功能,也不受所使用修复算法的影响。对于交互式应用程序,在同一系统中拥有屏蔽功能和修复算法是可取的,以避免在不同的环境之间切换。在我们目前的原型中,我们已经实现了一个简单的绘图系统以及导入和导出JPEG文件的功能。 恢复林肯的画像和三个女孩的图片(图4和6(右),分别)使用的遮盖,是我们的绘画系统创建的。在新奥尔良的例子(图5)所使用的遮盖,通过使用Photoshop中选择颜色

一种图像置乱算法及其在数字电视中的应用研究

通讯作者:JongWeon KIM ,jwkim@smu.ac.kr 基金项目:2009年度MCST&韩国著作权委员会技术开发项目结果 一种图像置乱算法及其在数字电视中的应用研究 崔基哲 1 张波1 JongWeon KIM 2 1 (延边大学经济管理学院 信息管理与信息系统 延吉 133002) 2 (韩国祥明大学 著作权保护专业 教授 Seoul, KOREA 100080) (cuijizhe@https://www.360docs.net/doc/c038139.html, ;zhangbo0037@https://www.360docs.net/doc/c038139.html,; jwkim@smu.ac.kr ) 【摘要】 本文阐述了数字电视加解密原理,并介绍了图像置乱算法及其它在数字电视行业中的应用。我国的数字电视行业已经迈入高清时代,但收费节目的管理、卫星传播与有线传播的协调等问题上,还需要成熟的解决方案。本文提出了基于离散余弦变换的图像置乱算法,可适用于收费电视节目的安全管理。 通过本算法可以简化原数字电视加解密系统的两端间的交互流程,增加CA 共享所带来的安全性。经测试发现,提出的图像置乱算法抑制了其他置乱算法中存在的块效应,算法基本满足数字电视的管理及播放要求,无需增加硬件费用。 【关键词】 图像加密;置乱算法;数字电视;条件接收系统;离散余弦变换 【中图分类号】TN05 【文献标识码】A 【文章登记号】7-16 An Image Scrambling Algorithm and The Application in Digital TV Cui Jizhe 1, JongWeon KIM 2, Zhang Bo 1 1 (College of Economic and Management, Yanbian University , Yanji 133002) 2 (Dept. of Copyright Protection Sangmyung University, Seoul, 110743) Abstract This paper elaborates the theory of encryption and decryption about digital television, then gives an introduction of the image scrambling algorithm and the application in digital television industry. In china, the digital TV has stepped into the high definition age, while there also need the mature solution in the management of fee programmers, as well as the balance of satellite transmission and cable transmission. This paper puts forward to the image scrambling based on the Discrete Cosine Transform (DCT), it can be used in managing the security of fee-TV programmers. By means of this algorithm, it can simplify the Interactive process between original digital TV encryption and decryption, and increase the security bringing by CA share. By test, it is founded that the image scrambling algorithm promoted by this paper restrain blocking effects existing in other scrambling algorithm. The algorithm can content the demand of managing and playing of digital TV , dispense with increasing the hardware costs. Keywords Image encryption; Image Scrambling; Digital TV; CAS ;Discrete Cosine Transform 1 引言 2009年8月,广电总局发布促进高清电视发展的《通知》,要求现阶段要采取高清、标清同播过度发射,并要求卫星传输的高清节目必须进行加密[1] 。相继CCTV1等九套高清同播节目上星播出,标志着我国电视播出进入高清时代[2]。 数字电视是将传统的模拟信号经过采样、量化和编码等过程转化为数字信号,然后进行各种 功能的端到端的系统。数字电视不仅包括数字电视接收机、电视台,还包括信号的产生、处理、传输、接收和重现的全过程。在数字电视网上还可以接入电视会议、可视电话、视频点播、按次付费、网络游戏等传统业务外的增值业务。为了确保增值业务的实现,除安全可控的综合管理业务平台之外还需要条件接收系统,简称为CAS(Conditional Access System)。 为防止未授权的用户违法窃取业务,在数字电视传播过程中需要对数据进行加密。图像或视频信息的

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序 一.设计目的 图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重 要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 .设计内容和要求 使用混沌序列图像加密技术对图像进行处理使加密后的图像 使用matlab将图像信息隐藏,实现信息加密。 三.设计思路 1. 基于混沌的图像置乱加密算法 本文提出的基于混沌的图像置乱加密算法示意图如图1所示 加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。再次,将所

产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合 {t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。将等差序列D做相同置换,得到D'。 最后,B'是一个MX N 的矩阵,B' (i ,j)=C ' ((i-1) X M+j),其中i=1 , 2, A, M j=i=1 , 2, A, N,则B'就是加密后的图像文件。 解密算法与加密算法相似,不同之处在于第3步中,以序列C'代替随机序列{k1, k2, A, kMX N},即可实现图像的解密。 2. 用MATLAB勺实现基于混沌的图像置乱加密算法 本文借助MATLAB^件平台,使用MATLAB!供的文本编辑器进行编程实现加密功能。根据前面加密的思路,把加密算法的编程分为三个主要模块:首先,构造一个与原图a等高等宽的矩阵b加在图像矩阵a后面形成复合矩阵c: b=zeros(m1, n1); ifm1>=n1 ifm1> n1 fore=1: n1 b=(e,e); end else fore=1: n1 end fore=1:( n1-m1) b((m1+e-1),e)=m1+e-1 end end c=zeros(m1*2, n1); c=zeros(m1*2,1); c=[b,a]; 然后,用Logitic映射产生混沌序列:

数字图像处理

信息工程学院实验报告 课程名称:数字图像处理 实验项目名称:数字图像处理的基础实验时间:班级:姓名:学号: 实验目的: 1.通过本次实验熟悉matlab语言 2.学会对图像的放大缩小处理 实验环境: Matlab软件 实验内容及过程: 1.数字图像采样过程 (1)实现图像4倍、16倍的减采样(缩小) 最简单的是减小一半,这样只需取原图的偶(奇)数行和偶(奇)数列构成新的图像。 (2)实现图像4倍、16倍的增采样(放大) 如果需要将原图像放大k*k倍,则将一个像素值添在新图像的k*k的子块中。 注意:减采样或者增采样过程可以使用灰度图像或者彩色图像。编程时候要特别注意灰度图像的数据是2维的,彩色图像的数据是3维的。 2. 数字图像灰度级变换过程 (1)将一幅彩色图像转换为256级灰度图像; (2)将一幅256级灰度图像分别转换为64级、16级、8级、2级灰度图像。 实验结果及分析:

1.数字图像采样过程 (1)实现图像4倍、16倍的减采样(缩小)设计程序 function Iw = resample(I,m) [a,b] = size(I); aa = floor(a/m); bb = floor(b/m); Iw=zeros(aa,bb); for i=1:aa for j=1:bb Iw(i,j)=I(m*(i-1)+1,m*(j-1)+1); end end Iw=uint8(Iw); clc;clear; close all; I=imread('cameraman.tif'); m=4; Iw=resample(I,m); imshow(I); imshow(Iw); n=16; Iw2=resample(I,n); figure:imshow(Iw2); figure:imshow(I); 实验结果 (2)实现图像4倍、16倍的增采样(放大) function Iw = resample2(I,m) [a,b] = size(I); for i=1:a for j=1:b Iw(m*i,m*j)=I(i,j); end end Iw=uint8(Iw);clc; clear; close all; I=imread('cameraman.tif'); m=4; Iw=resample2(I,m); imshow(I); imshow(Iw); figure:imshow(I);

图像置乱

数字图像置乱技术研究 6.3.1图像置乱原理 图像置乱技术属于图像加密技术,它通过对图像像素矩阵的重排,破坏了图像矩阵的相关性,以此实现信息的加密,达到安全传输图像的目的。 图像置乱的实质是破坏相邻像素点间的相关性,使图像“面目全非”,看上去如同一幅没有意义的噪声图像。单纯使用位置空间的变换来置乱图像,像素的灰度值不会改变,直方图不变,只是几何位置发生了变换。置乱算法的实现过程可以看做是构造映射的过程,该映射是原图的置乱图像的一一映射,如果重复使用此映射,就构成了多次迭代置乱。 我们假设原始图像为0A ,映射关系用字母σ表示,得到的置乱图像为1A ,则原图到置乱图像的关系,可简单的表示为: 1 0A A ?→?σ 例如:原始图像用矩阵0A 表示,置乱后的图像为1A , ij a 代表坐标为(),x y 的像素点的灰度: ? ? ?? ?? ??????=3332 31 30 2322212013121110 03020100 0a a a a a a a a a a a a a a a a A ???? ? ???????=1200 21 33 112010 023******* 312322131a a a a a a a a a a a a a a a a A (6.3.1) 置乱映射σ的元素存在两种形式:一种是序号形式,用()j width i +*表示图像中像素的排列序号;一种是坐标形式,()j i ,表示第i 行第j 列。则相应的置乱映射σ可表示如下: ? ? ??? ???????=1253720131011511948614σ或者() () ()()() ()()()()()()()()()() ()????? ????? ??0,31,13,03,12,00,01,32,21,03,33,21,20,10,22,12,3 (6.3.2) 映射τ中的元素表示:原图中该点元素在置乱后图像中的位置。比如坐标为(0,1)的像素点最后变换到(1,2)这个位置上。因此使用置乱映射σ进行迭代置乱,原图0A 应用映射τ迭代适当的次数后,能够得到理想置乱图像。对1A 应用逆置乱映射,还原得到原始图像0A :

数字图像处理

基于MATLAB的数字图像空域平滑法 摘要:本文通过在MATLAB环境下,对比中值滤波与均值滤波处理带有椒盐噪声的图像,中值滤波不同模板处理加入椒盐噪声的图像以及中值滤波处理加入不同噪声图像的效果图,分析中值滤波的优缺点。 1 引言 图像平滑的目的是为了去除或衰减图像中的噪声和假轮廓,它可以分为空域法和频域法.而空域法就是直接对图像的像素灰度值进行处理,以达到滤除或衰减图像中噪声的目的.空域法主要包括基于平均的方法和中值滤波法.本文重点以中值滤波法为主,详细介绍MATLAB环境下,中值滤波相对均值滤波的优缺点,不同模板中值滤波对加入椒盐噪声图像的处理效果以及中值滤波法对加入不同噪声图像的处理效果。 2 中值滤波的概念 中值滤波是一种典型的低通滤波器,属于非线性滤波技术,它的目的是保护图像边缘的同时去除噪声。所谓中值滤波,是指把以某点(x,y)为中心的小窗口内的所有象素的灰度按从大到小的顺序排列,若窗口中的象素为奇数个,则将中间值作为(x,y)处的灰度值。若窗口中的象素为偶数个,则取两个中间值的平均值作为(x,y)处的灰度值。中值滤波对去除椒盐噪声很有效。中值滤波器的缺点是对所有象素点采用一致的处理,在滤除噪声的同时有可能改变真正象素点的值,引入误差,损坏图像的边缘和细节。 3 中值滤波器与均值滤波器的比较 本文采用的图像是一幅多值图像,首先将其灰度化,并加入椒盐噪声,在MATALB环境下,采用3*3窗口的中值滤波器与均值滤波器处理此图像,编写程序如下: A=imread('1.jpg'); h=ones(3,3)/9; A_zh=rgb2gray(A); A_noi=imnoise(A_zh,'salt & pepper',0.02); A_med=medfilt2(A_noi); A_low=imfilter(A_noi,h); subplot(2,2,1);imshow(A_zh);title('灰度图像'); subplot(2,2,2);imshow(A_noi);title('加入椒盐噪声的图像'); subplot(2,2,3);imshow(A_med);title('中值滤波图像'); subplot(2,2,4);imshow(A_low);title('均值滤波图像'); 程序运行结果如图2所示。图像文件1.jpg中存储着一幅彩色图像,把该文件读入后使用函数imadjust进行调整。调整后的范围是默认的范围【0 0 0;1 1 1】,

最新数字图像置乱

全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):福州大学 参赛队员(打印并签名) : 1. 詹小青031201206 2. 郑雅娟031201207 3. 陈丹凡031201208 指导教师或指导教师组负责人(打印并签名):王宏健 日期: 2014 年 4 月 26 日

数字图像置乱 [摘要] 把一幅数字图像变换为一幅杂乱无章的加密图像的过程就是数字图像的置乱。把置乱后的图像恢复为原始图像的过程为图像复原。这是一个加密———解密过程。 加密过程可以描述如下:明文→加密器→密文,我们采用HILL 密码,因为所提供图像为256*256的,所以可以用MATLAB 将其转化成在模256下的矩阵256256G ? ,为了计算方便把它分割成32个8*8的小矩阵88G ? 。然后选取可逆整数矩阵 88 1120121100 11210221103012021300222031221132132122320012012 2 1 1A ??????????? ??=?????????????? 为加密过程的密钥,其中239A = 与256互质。再将32个八阶方阵分别左乘“密钥”88A ? ,则8888mod(256)B AG ??=,再将32个88B ? 整合在一起即可得到B (其中B 为置乱后图像的明文信息)。用MATLAB 编程后就可以得到置乱后的图像。 解密过程可以描述如下:密文→普通信道→解密器→明文,解密过程是加密过程的逆过程。先将B 分割成32个8*8的小矩阵88Q ?,用MATLAB 计算出矩阵A 的逆 1 -0.117 2 -0.3389 0.2762 0.0502 0.1506 -0.2050 0.075 3 0.326 4 -0.8577 0.0544 -0.192 5 0.5105 0.5314 -0.2510 0.7657 -0.6820 -0.8661 -0.1841 0.1130 0.A -=6569 0.9707 -0.7657 0.4854 -0.2301 -0.6067 0.2092 -0.355 6 0.1172 0.3515 0.1883 0.175 7 -0.2385 -0.267 8 0.3682 -0.225 9 -0.3138 0.0586 0.5314 0.0293 -0.5397 0.8870 0.2803 -0.3766 -0.5230 -0.5690 0.5523 -0.2845 0.1004 1.6402 -0.2552 0.1339 -0.7029 -1.1088 0.8703 -1.0544 0.4310 0.5607 -0.0209 0.5356 0.1883 -0.4351 -0.5188 -0.2176 0.7238?? ????????? ??????????????? 。然后由8888mod(256)B AG ??=可得:1 8888mod(256)G A B -??=,根据该公式可以用MATLAB 计算出88G ? 。再将解出来的32个88G ? 整合起来得到数字矩阵256256G ?即为复原后图像的明文信息。

一种基于混沌序列的数字图像加密算法

一种基于混沌序列的数字图像加密算法 周焕芹 (渭南师范学院数学与信息科学系,陕西渭南714000) 摘 要:基于混沌序列给出了一种图像加密算法.借助Logistic混沌动力学系统过程既非周期又不收敛,且对初始条件敏感性,生成混沌矩阵,对原图像进行融合操作,实现了对图像的加密过程.实验结果证明,算法简单易行,安全性好. 关键词:数字图像;混沌序列;图像加密;迭代;置乱 中图分类号T N911.73 文献标志码:A 文章编号:1009—5128(2008)02—0011—04 收稿日期:2007—05—31 基金项目:陕西省基础教育科研“十一五”规划课题(SJJY B06297);渭南师范学院科研基金资助项目(06YKF011);渭南师范学院教学改革研究项目(JG200712) 作者简介:周焕芹(1962—),女,陕西澄城人,渭南师范学院数学与信息科学系副教授 20世纪60年代人们发现了一种特殊的自然现象———混沌(chaos),混沌是一种非线性动力学规律控制的行为,表现为对初始值和系统参数的敏感性、白噪声的统计特性和混沌序列的遍历特性,其吸引子的维数是分维,有十分复杂的分形结构,具有不可预测性.由于混沌序列有如此优良的密码学特性,混沌密码学成为现代密码学的重要研究内容.最早将离散混沌动力学系统应用于加密算法的是M atthe w s[1],1990年,他给出了一种一维的混沌映射.该映射根据初始条件产生的具有混沌特性的伪随机序列可以直接应用于一次一密的加密算法中,但是该混沌映射在使用计算机实现时会退化成周期序列,而且该序列的周期一般较小.1990年,Habutsu等人也给出了一种基于线性的Tent映射的混沌加密系统[2],该方法保留了混沌系统对于初始条件的敏感性.1994年,B iance利用Logistic映射产生实数序列,应用范围较广[1-4]. 随着网络技术的发展,大量个人和公众信息在网络上传播.信息的安全问题成为人们关注的热点,而信息安全中图像安全是众所关心的.对于图像信息,传统的保密学尚缺少足够的研究.随着计算机技术与数字图像处理技术的发展,对此已有一些成果[6].近年来,相继召开了关于数据加密的国际学术会议,图像信息隐蔽问题为其重要议题之一,且有关的论文以数字水印技术为主.数字图像置乱技术,可以看做数字图像加密的一种途径,也可以用做数字图像隐藏、数字水印图像植入、数值计算恢复方法和数字图像分存的预处理和后处理过程.作为信息隐藏的基础性工作,置乱技术已经取得了较大的发展,提出了很多有效的方法如:基于A rnold变换,F ASS曲线,分形技术,幻方,正交拉丁方,骑士巡游,仿射变换,原根,Gray码变换的置乱方法[7]. 本文应用离散混沌动力系统设计了一种图像加密/解密算法.该方法的特点是:无论从加密还是解密算法的设计都是由不同的动力系统提供的.本文依赖于随机密钥的非线性迭代完成图像的像素融合,其中所用的子密钥由离散混沌系统产生.分析和仿真结果表明,经过这样的融合,算法具有良好的安全性及鲁棒性. 1 算法原理 由混沌矩阵对图像置乱.从构成图像的像素角度考虑,一幅图像大小为M×N,具有256级灰度的图像,设图像为I m age,对应于像素点(i,j)的灰度值记为I m age(i,j),其中1≤i,j≤L,Endi m age(i,j)为(i,j)坐标处融合操作后图像的像素灰度值,即要设计映射f,使得 f:I m age(i,j)→End i m age(i,j)(1)为了使得融合后的像素灰度值Endi m age(i,j)具有不可预测性,本文采用离散混沌映射生成离散混沌矩阵Keyi m age(i,j)来达到这个目的.生成Keyi m age(i,j)的方法如下:采用目前广泛研究的Logistic映射构造混沌序列.混沌系统表述为 α k+1=μ?αk?(1-αk),k=0,1,2, (2) 2008年3月第23卷第2期 渭南师范学院学报 Journal of W einan Teachers University M arch2008 Vol.23 No.2

基于混沌系统的图像加密算法研究[开题报告]

开题报告 通信工程 基于混沌系统的图像加密算法研究 一、课题研究意义及现状 意义: 随着计算机技术和网络通信技术不断发展和迅速普及,通信保密问题日益突出。信息安全问题已经成为阻碍经济持续稳定发展和威胁国家安全的一个重要问题,而密码学是用来保证信息安全的一种必要的手段,现代密码学便应运而生,如经典的私钥密码算法DES、IDEA、AES和公钥密码算法RSA、EIGamal等,新颖的量子密码、椭圆曲线密码算法等,在信息安全的保密方面都发挥了重要作用。图像信息生动形象,它已经成为人类表达信息的重要手段之一,网络上的图像数据有很多是要求发送方和接收方要进行保密通信的,信息安全与保密显得越来越重要。目前,国际上正在探讨使用一些非传统的方法进行信息加密与隐藏,其中混沌理论就是被采纳和得到广泛应用的方法之一。混沌加密是近年来兴起的一个研究课题,基于混沌理论的保密通信、信息加密和信息隐藏技术的研究已成为国际非线性科学和信息科学两个领域交叉融合的热门前沿课题之一,也是国际上高科技研究的一个新领域,基于混沌理论的密码学近来成为很热门的科学。对于数字图像来说,具有其特别的一面就是数字图像具有数据量大、数据相关度高等特点,用传统的加密方式对图像加密时存在效率低的缺点;而新型的混沌加密方式为图像加密提供了一种新的有效途径。基于这种原因,本论文主要探讨基于混沌理论的数字图像加密算法。 混沌现象是在非线性动力系统中出现的确定性、类似随机的过程,这种过程既非周期又非收敛,并且对初值具有极其敏感的依赖性,混沌系统所具有的这些基本特性恰好能够满足保密通信及密码学的基本要求。图像加密过程就是通过加密系统把原始的图像信息(明文),按照加密算法变换成与明文完全不同的数字信息(密文)的过程。 国内外现状: 1963年,洛伦兹发表论文“决定论非周期流”,讨论了天气预报的困难和大气湍流现象,给出了著名的洛伦兹方程,这是在耗散系统中,一个确定的方程却能导出混沌解的第一个实例,从而揭歼了对混沌现象深入研究的序幕。混沌出现,古典科学便终止了。 1975年,美籍华人李天岩和美国数学家约克(Yorke)一篇震动整个学术界的论文“周期3

数字图像处理

数字图像处理又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。图像处理的基本目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。 数字图像处理技术,主要研究的内容:图像变换、图像编码压缩、图像增强和复原、图像分割、图像分类(识别)等。 (1) 图像变换。由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效地处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 (2)图像编码压缩。图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 (3)图像增强和复原。图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化

基于混沌理论的图像置乱算法

龙源期刊网 https://www.360docs.net/doc/c038139.html, 基于混沌理论的图像置乱算法 作者:杨勃葛学锋解海燕 来源:《电子技术与软件工程》2017年第23期 摘要图像置乱技术作为一种图像加密处理的方法,越来越多的应用于图像在网络的传播当中。本文分析了置乱算法的研究现状,对Logistic混沌算法进行了研究,并通过MATLAB 仿真实验对该算法进行了验证分析。 【关键词】图像加密图像置乱 Logistic混沌算法 1 引言 随着“互联网+”时代的来临,越来越多的图像信息在网络中进行着传播。这些图像信息有可能涉及到个人隐私或者是商业机密甚至是国家安全问题,所以如何保证这些信息的安全,越来越多的受到了人们的关注。图像置乱技术作为一种有效的保护图像安全传输的方法被专家学者们所研究。 2 图像置乱技术研究现状 图像置乱技术是通过相关算法将图像的空间域或频率域进行改变,从而达到图像加密目的的一种有效的加密方式。目前经过专家学者们的研究,图像置乱技术主要为基于空间域的置乱和基于频率域的置乱。基于空间域的置乱方法是通过某种算法将图像的像素坐标位置进行改变,从而改变图像的样貌,达到置乱的效果。此方法只是将图像的像素坐标位置进行了打乱,并没有改变图像的信息(直方图),所以容易被破解,安全性低。常见的算法有Arnold 变换、Hilbert 曲线变换和Fibonacci变换等。基于频率域的置乱方法是通过相关算法将图像的像素值进行改变,从而达到置乱效果。该方法不仅改变了图像的样子,还改变了图像的信息,所以加密效果更好,安全性更高。常见的算法有混沌变换、Gray 码变换。 3 混沌理论 混沌是曲线性稳定运动中的一类看似没有稳定运动轨迹可循的、看似随机的现象。混沌理论具有非线性特性、不确定性、不可重复、不可预测、对初始条件敏感等特性,对于需要加密文件的处理有很好的应用,所以混沌理论被越来越多的运用到图像置乱算法中。由于混沌理论的复杂性和不确定性,所以至今还没有一个标准的定义被所有人所公认,每位专家学者都有自己对于混沌的定义。Logistic混沌映射定义是由R·May于1976年提出的,因其表达式简单且 性能优良,被广泛运用到混沌映射中。Logistic混沌映射定义为: f(x)=μx(1-x),x∈[0,1] (1) 公式(1)中μ是分支参数,取值范围:0≤μ≤4,x为初始值,取值范围0≤x≤1。

基于Arnold变换的数字图像置乱技术

第13卷第4期2001年4月 计算机辅助设计与图形学学报 JOU RNAL O F COM PU T ER 2A I D ED D ES IGN &COM PU T ER GRA PH I CS V o l .13,N o.4 A p r .,2001 基于Arnold 变换的数字图像置乱技术 丁 玮1) 闫伟齐1) 齐东旭 1,2) 1) (中国科学院计算技术研究所CAD 开放研究实验室 北京 100080) 2) (北方工业大学CAD 研究中心 北京 100041) 摘要 针对近年来兴起的数字图像信息安全问题,从A rno ld 变换出发,给出了在位置空间和色彩空间上对数字 图像进行置乱的方法.这些方法简便易行,可以用来作为数字图像隐藏和伪装的预处理.关键词 A rno ld 变换,数字图像置乱,数字图像隐藏,数字图像伪装中图法分类号 T P 391 D ig ita l I mage Scram bl i ng Technology Ba sed on Arnold Tran sforma tion D I N G W ei 1) YAN W ei 2Q i 1) Q IDong 2Xu 1,2 ) 1) (CA D L aboratory ,Institu te of Co mp u ting T echnology ,Ch inese A cad e my of S ciences ,B eij ing 100080) 2) (CA D R esearch Center ,N orth Ch ina U niversity of T echnology ,B eij ing 100041) Abstract A i m ing at en su ring digital i m age info rm ati on secu rity ,and starting from A rno ld tran sfo rm ati on ,w e p u t fo rw ard severalm ethods fo r scram b ling digital i m age in the po siti on sp ace and co lo r sp ace .T hese app roaches are easy to realize ,and can be u sed as p re 2p rocesso r fo r digital i m age h iding and covering . Key words A rno ld tran sfo rm ati on ,digital i m age scram b ling ,digital i m age h iding ,digital i m age covering 原稿收到日期:2000203207;修改稿收到日期:2000209205.本课题得到国家“九七三”计划(G 1998030608)和国家自然科学基金(69873001)资助.丁 玮,男,1971年生,博士研究生,主要研究方向为计算机图形学、数字图像处理.闫伟齐,男,1968年生,博士研究生,主要研究方向为计算机图形学、数字图像处理.齐东旭,男,1940年生,教授,博士生导师,主要研究方向为计算机图形学、数值计算、数字图像处理. 1 引 言 图像作为人类认识和表达世界的基本方法,应用极为广泛,从古老的壁画、象形文字到今天的数字化视频,图像一直伴随着人类历史的发展.人们也期望从图像中得到直观的信息,“眼见为实”是再自然不过的事情.但是,在信息膨胀和普及的今天,事情并不是这么简单. 随着多媒体技术的迅速发展和网络带宽限制的放松,越来越多的数字化图像在网络上传输.这些图像信息有些无关紧要,有些却至关重要,它们有可能 涉及到个人的隐私、公司的利益、国家的安全,其价 值无法衡量.另一方面,网络的普及使得任何人都有可能接触到其中的信息,并从中搜集,而无论这种搜集是善意还是恶意、合法还是非法.这就使得在网络上传输图像的安全性倍受关注,对图像进行加密也就成为重要的研究方向. 古老的藏宝图可以被随意添加一些无用的信息和标注来增加破译的难度,而今天我们面对的是数字化的图像,能做的应该更多.图像作为直观的信息表达方式,具有很大的迷惑性.如果我们把数字化图像做一些“扰乱”,得到一幅完全杂乱无章、面目全非的图像,那么即使非法截获者注意到它,如果不知道

数字图像修复技术的研究与应用

西安建筑科技大学硕士学位论文 数字图像修复技术的研究与应用 专 业:信号与信息处理 硕 士 生:李苏莉 指导教师:王慧琴 教授 摘要 数字图像修复可以对局部区域内有数据丢失或损坏的数字图像按照某种特定规则进行修复,使其恢复图像的完整性。该技术在修复文物字画、修复由网络传输等原因引起的残缺图像、去除图像及视频中的文字和划痕、以及移除图像中的目标物等方面得到广泛应用。 本文概述了数字图像修复技术的基本原理和研究现状,分析了多种典型的数字图像修复算法的优缺点及其适用范围。在此基础上,提出了两种数字图像修复算法: (1) 基于p-Laplace算子的CDD图像修复算法。该算法利用图像的局部正交坐标系,分析其扩散能力。利用了p-Laplace算子的可变参数p值介于1与2之间时既能克服由CDD模型引入的阶梯效应,又能杜绝由调和模型引入的边缘模糊的优点来填充受损区域,采用半点差分格式,设计图像修补的数值算法。该算法主要修复有划痕的旧照片和被文字覆盖的图像。仿真实验表明,该算法能快速收敛,图像边缘过渡更加自然,修复效果得到改善。 (2) 自适应模板的图像修复算法。该算法在进行搜索匹配时采用自适应模板,即匹配模板的大小可根据图像的局部块均匀度而自适应地变化;在更新置信度时,为了避免“累计误差”导致错误匹配的持续发生,取“累计误差”的双曲正切函数作为更新后的置信度,从而可以截断错误匹配。仿真实验结果证明,该方法比基于样本的图像修复方法能更好地修复图像边缘和复杂纹理,减少了因“累计误差”而产生的“垃圾物”。 关 键 词:数字图像修复;曲率驱动扩散;p-Laplace算子;块均匀度;置信度; 优先值

扩散映射置乱与超混沌系统组合图像加密算法

扩散映射置乱与超混沌系统组合图像加密算法 扩散映射置乱与超混沌系统组合图像加密算法首先由Logistic系统构造的二维非线性动力系统产生的混沌序列形成扩散矩阵和Arnold映射矩阵,然后在基色上对彩色图像进行扩散,并在不同的位平面对彩色图像进行置乱,最后用Chen系统产生的混沌序列对置乱后的图像文件加密。该加密算法实现简单,能够抵御多种攻击,且容易用硬件实现。 一、图像置乱 在图像文件加密系统中,采用非线性函数映射置乱和线性变换进行扩散,可以有效抵御对加密系统进行的统计分析攻击。为此,扩散算法和映射算法被引进对图像进行置乱。 1、扩散置乱 所谓扩散置乱,是指把图像中像素的灰度值用某种算法扩散到相邻的若干个像素上的图像置乱操作。对于一幅大小为N×N的彩色图像G,采用两邻点相互扩散的线性变换算法: 对图像像素的灰度值进行扩散。其中称为2×2扩散矩阵,gij和gij+1分别为原图像点(i,j)和(i,j+1)处的三基色值,gij’和gij+1’分别为扩散后的三基色值,K为图像的 基色级,mod为模运算(下同)。为简化逆扩散运算,通常取|D|=1,且令d11=1、d12=as、d21=bs,则d22=asbs+1,称它们为扩散加权系数,取整数,由参数序列{(as,bs)}(s=1,2,…,r)决定,其中r为扩散置乱次数。那么其逆扩散为:

其中m和n为能使得0≤gij

数字图像修复技术在文物保护中的应用

数字图像修复技术在文物保护中的应用 【摘要】当今信息化的时代,计算机技术的快速发展,极大的促进了社会的进步。文物保护在文艺复兴时期就已经开始,对文物进行修复对当时的修复工作者提出了巨大的技术要求,稍有疏忽便会造成巨大的损失。随着科学技术的进步,数字成像技术逐渐应用到文物保护当中来,许多有价值的文物因此得到保护。本文将重点论述数字图像修复技术在文物保护中的应用,针对数字图像修复文物虚拟图片的概念及意义进行讲述,同时为大家呈现运用数字图像修复技术保护文物的历史和方式方法,最后还将展现这一前沿科技在实际实践当中的运用,展示数字图像修复技术在文物保护当中的巨大作用。 【关键词】数字图像;文物保护;虚拟修复;计算机技术 当今信息化的时代,计算机技术的快速发展,极大的促进了社会的进步。目前,数字图像随处可见,随着数码相机、数字摄像机等设备的发展,越来越多的实体被转化为数字图像,这些图像经过计算机的加工、创造与设计,最后在多种媒体上展示给人们。 同时,文物实体修复的研究和应用已经非常普遍,文物是人类在历史发展过程中遗留下来的产物,它从不同程度上反映了人类社会生活的状态,是人类研究自身文化进步的宝贵遗产。 但是,经过历史的侵蚀,遗留下来的文物并不是所有的都会完整的保留下来,很大一部分信息都会在历史的冲刷中丢失。文物修复贯穿整个文物的研究和交流,经过文物修复可以满足文物研究和保护的需求,也更能满足文物观赏上的视觉要求。文物修复和图像修复存在共性,早期文艺复兴时期艺术品的修复就是运用图像修复对文物进行还原。 当今世界,结合数字图像修复技术,可以将文物领域的修复通过计算机在电脑上实现虚拟修复。这一项应用在国内都处于起步阶段,本文也将首先这一技术概念与意义,方式方法以及技术运用进行一些论述。 一、数字图像文物虚拟修复的概念和意义 “基于数字图像修复技术的文物虚拟修复技术就是针对文物数字图像损失和损坏的部分,利用现存的图像信息,按照一定规则对其进行修补,其目的是恢复已有信息损的图像,使修补后的数字图像接近或者达到原图视觉效果”。[1]我们没有足够的信息能够保证被损毁的部分能够被完整的正确的修复,只能从人类心理这一角度进行完善,提出各种可能的方案来处理这个问题。 在文物领域,由于很多不可抗拒的因素,出土时期的文物不可避免会存在一些物理或者化学上的反应,致使文物无法完整的呈现在我们的面前,文物的缺失和不完整,极大的影响了文物的交流和欣赏。长期以来,文物的修复都是通过文

相关文档
最新文档