建筑室内空气流通质量分析应用

建筑室内空气流通质量分析应用
建筑室内空气流通质量分析应用

建筑室内空气流通质量分析应用

随着人们生活水平和生活质量的不断提高,现代建筑物内部装饰、装修成为时尚。而20世纪70年代的能源危机所引起的节能热潮,使人们在普遍使用保温节能材料的基础上,将房屋尽可能密封。建筑物密闭程度的增加,新风量的不足, 导致了室内空气污染物不容易扩散,增加了室内人群与污染物的接触机会,因此室内空气的污染问题引起人们的极大关注。研究室内有害物产生-扩散及分布的规律,以便对它们进行有效控制,减少对居住者的危害,已经成为环境卫生学领域的一个热门课题。

1 室内空气品质评价

研究发现,病态建筑物综合症(sick building syndrome,SBS)[1]及随之产生的工作效率的下降等都直接或间接地与室内空气品质(indoor air quality,IAQ)有关,所以对室内空气品质进行评价具有非常重要的意义。室内空气品质评价可以做到:①掌握室内空气品质状况和变化趋势,以便有效预测室内空气的污染程度;②评价室内空气污染对人体健康的影响以及室内人员的接受程度,为制订室内空气品质标准提供依据;③弄清污染源与室内空气品质的关系,为建筑设计、卫生防疫、污染控制提供依据。

室内空气品质评价是人们认识室内环境的一种科学方法,它是随着人们对室内环境重要性认识不断加深而提出的新概念。国际上通常选用CO2、CO、甲醛、可吸入性微粒、NOx、SO2、室内细菌总数、温度、相对湿度、风速、照度以及噪声共12个指标[2]来定量地反映室内环境质量。我国则选用温度、相对湿度、空气流速、新风量、SO2、NO2、CO、CO2、NH3、O3、甲醛、苯、甲苯、二甲苯、苯并[a]芘B(a)P、可吸入颗粒物、总挥发性有机物、菌落总数、氡共19项指标。目前国内外普遍运用的室内空气品质评价方法有主观评价法、客观评价法和主客观相结合的综合评价法[3]。其中较为成熟的客观评价法有室内空气污染物的检测评价法和CFD数值模拟法。污染物检测评价法是指选择具有代表性的污染物作为评价指标,通过采样分析测定该污染物浓度,最后对照室内空气质量标准做出检测报告,得出室内环境是否达标。这种方法非常直观,从检测报告中可以看出室内污染物的超标倍数。但是该方法的分析测定结果只能反映室内污染物在极限状态下的平均浓度,而不能反映通风状况下空间各点污染物的浓度分布。

CFD (Computational Fluid Dynamics,计算流体力学)数值模拟法是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。它可以模拟室内空气中气流的运动状态和污染物在空气中的分布状况。简单地说,该方法就是在计算机上虚拟地做实验,依据室内空气流动的数学物理模型,将房间划分为小的控制体,把控制空气流动的连续的微分方程组离散为非连续的代数方程组,然后结合实际的边界条件在计算机上进行数值求解。只要划分的控制体足够小就可认为离散区域上的离散值代表整个房间内空气分布情况[4]。其理论依据是质量、动量以及能量三大守恒定律[5~7]

2 CFD计算方法及模型

室内大部分气流属于湍流,数值计算中湍流粘性占主导地位,仅在壁面附近为层流。由于室内空气流动雷诺数(Re)较大,故通风房间可模拟为一个非稳态的三维湍流问题,一般采用标准的K-ε两方程模型对其进行数学描述。CFD计算方法主要有三种:差分法、有限元法、有限体积法。

描述室内空气环境气流的流动和传热现象以及污染物的扩散传质现象的微分方程包括连续方程、动量方程、能量方程、气体组分方程等,它们可统一写成如下的标准形式:式中,φ为微分方程的因变量,它取1时代表连续方程,取ui, T, k, ε, m,分别对应于速度、温度、湍流动能、湍流动能和气体组分方程,Γφ为扩散系数;Sφ为广义源项。

通常采用有限差分法进行离散,再用某种离散算法,比如SIMPLE方法求解。具体求解时,可借助于功能强大的商用CFD软件(如FLUENT、PHOENICS、CFX、STAR-CD、FIDAP等) [9],

利用它们直观而便捷的操作迅速完成计算,而让专业人员专注于所探讨的问题本身。

3 CFD在室内空气质量评价方面的研究现状与应用

目前国外所从事的室内环境领域的研究开发工作主要集中在病态建筑物综合症(SBS)的成因及预防、氡(Rn)辐射的控制、室内环境污染与人类健康等方面。在西方发达国家,由于呈病态建筑物综合症状(SBS)的人数急剧增加,因此,各国投入了大量的人力和财力从事室内环境问题的研究和开发工作。近年来CFD 技术已成为对室内环境参数(如空气温度、湿度、空气速度、污染物浓度)进行数值模拟和预测的重要工具。由于室内污染物的多样性、微量性和累积性,许多研究机构投巨资建立了专门用于室内环境研究的受控环境舱(Controlled Environment Chamber, CEC),如美国劳伦斯·伯克利实验室(LBNL)的室内环境系和丹麦理工大学的室内环境和能源国际中心(ICIEE)等,因而占据着此领域的地位。目前,劳伦斯·伯克利国家实验室正在使用埃施朗公司的LonWorks技术开发一个供暖、通风和空调(HVAC)系统的原型,以改善加州85000个可移动教室(portable classroom)的室内空气质量。丹麦理工大学的室内环境和能源国际中心的研究主要集中在人体热舒适、室内环境品质对人体健康、舒适和工作效率的影响以及个性化送风系统的设计等几个方面。他们正在用CFD技术模拟室内暖体假人(thermal manikin)周围的流场分布,从事人体对室内环境的感知机理,人体与环境之间的对流、辐射等热交换形式的理论和实验研究,期待得到室内尤其是人体周围的温度和污染物浓度分布。

我国对室内环境的研究的深度和广度上还很有限,大多数研究集中在对燃料燃烧、吸烟以及不同场合的VOC的排放、室内装修及家具带来的污染、室内环境污染的治理、对人体的健康效应的评价以及对氡的检测等几个方面的实验研究上。对室内空气气流的运动状态和污染物在空气中的分布的研究正处于刚刚起步的阶段。目前国内只有几家科研单位和大专院校做了有关室内环境CFD方面的研究工作。通过使用CFD技术可以实现以下目标:结合室内污染源释放扩散模型,利用室内建材和装饰材料源释放数据库,可以掌握室内空气品质状况和变化趋势,预测室内空气的污染程度,评价室内空气品质,指导建材和装饰材料的使用,减少由于室内空气品质低劣导致病态建筑出现的可能性;结合空气净化器模型,优化送回风方式和空气净化器摆放位置,使空气净化器效率达到[10]。

由于数值模拟相对于实验研究有独特的优点,比如成本低,周期短,能获得完整的数据,能模拟出实际运行过程中各种所测数据状态,对于设计、改造等商业或实验室应用起到重要的指导作用,因而CFD技术得到了越来越多的应用[11~14]。在环境方面的应用主要包括以下几部分:河流中污染物的扩散规律的研究;汽车尾气对街道环境污染的分析以及室内空气气流及污染物的分布[15~17]。

3.1 室内空气质量与热舒适

从20世纪20年代起,由人们对空调系统引起的吹风感的抱怨开始,产生了空气流动对热舒适影响的研究。50年代末,对热舒适的研究进入高潮。从研究空气平均速度对热舒适性的影响到研究气流脉动强度、气流脉动频率对人体热感觉的影响。而对吹风感的研究多基于实验研究,这给CFD的理论研究积累了大量的数据。基于此,CFD学者们可以对不同的置换通风系统中的气流平均速度、脉动强度及脉动频率特性进行模拟,建立相应的数据库,再通过与实验结果的对比,提出可以有效评价吹风感的参数及其数学模型,从而实现对系统可能产生的吹风感的预测。

置换通风是建筑通风最常用的形式,包含两种不同的对流方式:一种是由离散热源与污染源浮升力作用引起的自然对流;另一种是由外界机械通风引起的强迫对流。因此,室内实际的空气流动与传热传质特性应该由上述两种对流之间的相互作用来决定。

日本东京大学的Marahami[20]利用低雷诺数K-ε湍流模型和Gagge的人体两节点模型,模拟计算了人体与环境热湿传递过程中人体周围的空气温度、湿度、空气流速分布,模拟计

算结果与对真人和暖体假人的实测结果相近。利用模拟计算结果可准确预测各种室内热环境下人体的热感觉。日本开发了用于人体热舒适评价和室内空气品质评价的软件,并将PMV、空气龄等指标的计算问题编入CFD软件[21]。

美国麻省理工学院(MIT) [22]开发了几个雷诺平均纳维-斯托克斯RANS(Reynolds Averaged Navier-Stokes)方程模型(如双层K-ε紊流模型和零方程模型的CFD程序)和大涡模拟LES(Large Eddy Simulation)程序,用于模拟计算带有置换通风的办公建筑室内空气流速和温度,进行建筑物能量分析和室内热环境设计,评价建筑物自然通风效果,研究建筑材料的挥发性有机化合物VOC释放和室内空气品质问题。

徐玉党和张莉[23]通过模拟计算某房间各个截面上温度、速度和湍流强度的分布,来预测出整个房间的热舒适度。在数值模拟可视图中,可以看到房间内的温度场没有热分层现象,且温度梯度变化不大。计算方法表明,在相同的空气强度和流速条件下,高湍流强度的气流比低湍流强度的气流更容易产生冷吹风感,从而引发人体舒适性问题。

3.2 室内空气质量与建筑通风

通风房间内,新风量和风口位置决定着室内空气的温度、相对湿度以及污染物的分布。因此有效的通风和合理的气流组织对于改善室内空气品质,控制室内空气污染物水平,保证实现健康建筑有着重要的意义。

目前对室内空气环境的CFD模拟较好地考虑了热源浮升力对室内气流的驱动作用,而很少考虑室内污染物浓度差对空气流动的影响。尽管前者的影响比后者更为明显,但近年来国内室内污染物浓度近一半超过国家标准,对人体健康产生了重要影响的事实,使人们意识到污染物浓度差对室内气流的影响与驱动作用已是不容忽视的。特别是,随着近年来地板送风空调系统或置换通风系统的广泛采用,热与污染物浮升力作用相当,必须同时给予考虑。

Tatsuya等[24]利用k-ε湍流模型,模拟呈站立、仰卧和坐姿三种状态的个体人群周围的气流及污染物浓度的分布情况。由于人体呼出的空气量很少,不足以影响室内空气流场,因此,在边界条件的设置中把人嘴设置为排风口(exhaust fan),并且考虑到呼吸区的气流受到由人体新陈代谢产生热量而呈上升状态的影响,设人体热流分别为站立:20.0 W/m2, 坐姿:20.3 W/m2,仰卧:30.1 W/m2。此物理模型考虑到了人体的呼吸及其自身代谢的热量,与实际情况更相符。得到存在污染源(地板)的情况下,人体周围污染物浓度的分布。另外,研究过程中Tatsuya等定义了更具有实际应用价值的污染物吸入效应指数(IECI),用来评价污染物的扩散对人体的危害效应。

山东科技大学土木建筑学院的刘玉峰,徐永清[25]利用CFD商用程序,对通风空调系统两种常用气流组织方式(上送上回式以及上送下回式气流组织方式)的室内复合型木制装饰材料所释放的挥发性有机物(以甲醛为评价指标)的浓度场进行了计算,并对计算结果进行了分析,得出以下结论:不同气流组织方式下,室内污染物的分布特性、空气交换效率相差较大。比较而言,上送下回气流组织方式优于上送上回气流组织方式,其工作区污染物浓度和空气交换效率较高。

上海大学的徐丽等[26]采用雷诺平均的N-S方程与RNG的κ-ε涡粘性湍流模型,针对三种不同通风方案对内设障碍物、污染源和集中热源的房间内的三维速度场、温度场以及污染物CO2的浓度分布进行了数值模拟分析。并给出了x=1m,x=1.8m和x=2.7m三个剖面上沿房间高度方向的CO2浓度分布图。得出结论:在相同的条件下,置换通风方式可获得的IAQ。因为上进上出通风房间内的CO2浓度达到几万ppm,已远超出IAQ评价标准。上侧进上侧出通风方式则介于二者之间,但也超标。

另外,文献[26]还给出了污染物的质量组份的对流-扩散方程,介绍了通风效率的概念。通过对三种通风方式的气流组织和室内空气品质的比较得出,置换通风可使室内工作区得到较高的空气品质、较高的热舒适性,并具有较高的通风效率。

4 展望

自从1974年,丹麦的Nilsen首次将CFD技术应用于空调工程,模拟室内空气流动情况后,近年来,计算流体动力学在建筑环境模拟中的应用日趋广泛与成熟,并逐步成为人们认识与评价室内空气环境的重要手段与工具。因为CFD数值模拟得到的微观数据分布,如空气流速、温度与污染物浓度等,是设计与控制健康舒适室内空气环境的依据[27]。通过数值模拟技术对建筑室内环境进行模拟仿真,可以形象、直观、快捷地对室内气流流动形成的微环境做出分析和评价,这不仅便于让各类技术人员了解和把握室内空气及其污染物的分布规律,同时也是优化建筑规划设计的有力工具[28]。

目前用CFD模拟室内空气状况还存在以下问题:(1)无论是国内还是国外,用CFD技术模拟的室内空气污染物分布情况大都是针对甲醛和二氧化碳,对于苯、甲苯等室内空气浓度中危害较大的致癌性污染物进行模拟测定的还很少;(2)在模拟结果与实验测定相比较的基础上,为了得到更优化的模型,还要注重不同模型所得结果之间的对比;(3)由于现阶段对室内空气污染物的检测是在房间密闭的情况下进行的,因此,对密闭房间的模拟也有一定的现实意义。现今,多数学者都在研究通风房间的气流及污染物状况,对于密闭房间研究甚少。

综上所述, CFD技术可以对室内气流组织特性和污染物传播规律进行模拟,为评估室内空气品质和研究人体舒适性提供有力依据。但是需要选择合理的数学模型和离散方法,设置符合实际的边界条件,模拟结果才能与实际相符。它减少了研究者在计算方法、编程、前后处理等方面投入的重复、低效的劳动,可以将更多的精力和时间投入到考虑问题的本质,优化算法的选用,参数的设定等方面。因此,作为一种新学科,CFD将会随着技术的进步和发展而日趋成熟,并且将在环境领域获得更广泛的应用。

第五章 室内空气品质

第五章室内空气品质 1、室内空气环境包括室内热湿环境和室内空气品质。 2、对室内空气品质纯客观的定义是把室内空气品质几乎完全等价为一系列污染物浓度的指标。 3、美国供热制冷空调工程师学会颁布的<<满足可接受室内空气品质的通风>>中的定义“良好的室内空气品质:应该是空气中没有已知的污染物达到公认的权威机构所确定的有害浓度指标,并且处于这种空气中的绝大多数人(≥80%)对此没有表示不满意。 4、可接受的室内空气品质是:空调空间中绝大多数人没有对室内空气表示不满意,并且空气中没有已知的污染物达到了可能对人体产生严重健康威胁的浓度。 5、可感受到的可接受的室内空气品质是:空调房间中绝大多数人没有因为气味或刺激性而表示不满。 6、影响室内空气品质的污染源从性质上可分为:化学污染、物理污染和生物污染。 7、甲醛是一种挥发性有机化合物,无色,具有强烈刺激性气味。空气中的年平均浓度大约为0.005~0.01mg/m3 ,一般不超过0.03mg/m3。 8、《民用建筑室内污染环境控制规范》GB50325-2001规定甲醛的I类民用建筑的标准为≤0.08mg/m3 II类民用建筑≤0.12mg/m3。 9、《民用建筑室内污染环境控制规范》GB50325-2001规定I类民用建筑包括住宅楼、医院、老年建筑、幼儿园、学校教室。II类民用建筑包括办公楼、文化娱乐场所、书店、图书馆、体育馆。 10、VOC是(美国环境署)除了CO、碳酸、金属碳化物、碳酸盐以及碳酸氨等一些参与大气中光化学反应之外的含碳化合物。 11、VOC总称VOCs,以TVOC表示其总量。其中《民用建筑室内污染环境控制规范》GB50325-2001规定I类民用建筑≤0.5mg/m3,II类民用建筑≤0.6mg/m3。 12、氡对人体的辐射伤害占人体所收到的全部环境辐射中的55%以上。 13、世界约15%的肺癌患者与氡有关。 14、每立方米空气中氡平均浓度增加100贝克,肺癌发病率可增高19%至31%。 15、世界卫生组织已经把它列为19种主要的环境致癌物质之一。 16、氡致肺癌的发病潜伏期大多都在15年以上。 17、《民用建筑室内污染环境控制规范》GB50325-2001规定氡的I类民用建筑的标准为≤200Bq/m3,II类民用建筑的标准为≤400Bq/m3 18、室内空气污染的控制方法包括:源头治理、通新风稀释合理组织气流、空气净化。 19、物理性吸附的主要吸附剂有:活性炭、人造沸石、分子筛。 20、浸泽高锰酸钾的氧化铝对NO、SO2、甲醛、H2S的去除效果较好。 21、表征过滤器的主要指标有:过滤效率、压力损失和容尘量。 22、颗粒物浓度表示方法:计质浓度和计量浓度。 23、氧化铝对NO2和甲苯去除效果比较好。 24、病态建筑综合症没有明显的发病原因,只是和某一特定建筑相关的一类症状的总称。 25、病态建筑综合症的病因尚不完全清楚,其中可能涉及到40多个相关因素。 26、病态建筑综合症的原因很大可能性有:低通风率、空调、工作压力过大或对工作不满意、过敏或哮喘患者。 27、病态建筑综合症的原因原因可能有:地毯、办公室人员过多、使用显示器、女性等原因。

室内空气品质评价标准

室内空气品质评价标准 分析了室内空气品质的现状,危害,对人体健康及生产效率的影响和改善室内空气品质的解决办法。本文主要从引发室内空气品质恶化的原因方面,探讨如何防止病态建筑的产生,提高室内空气品质,及如何解决已经产生空气品质问题的建筑,从而使人们享受舒适现代生活的同时,不会被病态建筑综合症侵扰。文章在以下几个方面展开讨论: ●建筑物室内空气存在的问题 ●影响室内空气品质的因素 ●解决被污染的空气办法 1引言 近年来由于人们生活水平的提高,在满足空间和舒适度要求后,人们逐渐的关注室内空气的健康状况。而由于采用了不合适的装修方法以及使用装修材料的化学产品质量不达标,现在居民室内空气品质状况令人担忧。人们往往关注于大楼内的空调系统制冷制热能力而忽略了对影响人体健康有着关键联系的室内空气品质(IAQ)问题,使得被污染的室内空气成为威胁人们身体健康的一大杀手。同时全球能源危机,使制冷空调系统这一能源消耗大户面临严重考验,节能降耗成为空调系统设计的关键环节。为了节能或降低造价而尽可能减少新风量,使室内产生有害气体和种种污染物(如造成居住和办公环境空气品质下降的元凶:室内的挥发性有机物,悬浮微生物和漂浮在空气中的微粒)。不能及时合理

的稀释和排出,使室内空气品质劣化。新风通风换气次数不足, 没有充足的室外新鲜空气稀释室内污染的空气,从而导致了室内空气进一步恶化。因此关注公共健康,不断提高室内空气品质,为公众提供健康、安全、舒适的生活产环境,便成为我们所应积极投入的研究课题。 2.室内空气品质的评价及标准(引用相关规范) 室内污染物种类繁多,目前检测到的有毒有害物质达数百种,它们当中有的会引起人体某种不愉快的感觉,如长期在室内工作的人们,出现眼、喉刺激、鼻塞、头痛、头晕、恶心、胸闷、乏力、皮肤干燥、嗜睡、烦躁等症状,统称为“病态建筑综合症”。有的被认为对健康造成一定程度的损害,据调查,约49.8%的人体疾病与室内污染物有关。还有一些其特性目前还不为人类所认识.如此种类繁多的污染物其存在是造成室内空气品质不良的重要原因。 2.1室内空气品质的评价目的 1. 掌握室内空气品质状况和变化趋势,以开展室内污染的预测。 2. 评价室内空气污染对健康的影响,以及室内人员接受的程度,为制 订室内空气品质标准提供依据。 3. 弄清污染源(如建材、涂料)与室内空气品质的状况关系,为建筑设计、卫生防疫、控制污染提供依据。

建筑工程质量事故分析报告.doc

一、工程实例分析 济南某五层砌体结构住宅楼位于小清河旁,平面呈“一”字形,东西长37m,南北宽9m,建筑面积1721m,采用无埋深筏板基础。在建筑场地平整后,先铺C10素混凝土垫层,厚100mm、在其上浇筑C20的钢筋混凝土筏板基础,筏板厚300mm,在筏板基础上砌砖墙。当主体工程施工至第五层时,发现东起第五开间中部筏板基础南北向整块横向断裂。经检查,从勘察报告、设计(依据勘察报告)和施工中均找不到原因,而是未处理好地基勘察、基础处理和建筑总平面的关系。对该楼地基土层重新进行勘察,新查明的地基土层和历史变迁如下: (1)表层为杂填土,西半部厚度1.1~2.4m,东半部厚度2.4~5.5m。 (2)第二层为稻壳灰及淤泥层土,其中稻壳灰占70%~80%。淤泥极为弱:孔隙比高达e =2.12~2.60; 液性指数IL=1.57~2.47;天然重度很小,仅为γ=14.3~15.2kN/m3,标准压缩系数a1-2=2.05MPa-1,属于超高压缩性土,厚度2.0~2.9m,分布在场地西半部,杂填土下面。(3)第三层为淤泥层.厚度为1.3~1.5m。此淤泥层也分布在场地西半部,场地东半部无此淤泥软弱土层。 (4)第四层为份土及粉细砂层,场地内普遍分布,层厚4~5m,土质良好。 (5)经深入调查得知该场地原为一南北长70m、东西宽40~50m的水塘。附近餐饮业用户用稻壳作燃料后将稻灰倾倒在塘内,不久塘被填平,还曾用作烧砖窑场。该工程开工前半年多方平整场地修建住宅楼。由于该楼西半部置于原水塘内,东半部位于塘外岸上,塘内外土质突变是造成钢筋混凝土筏板基础受力不合理断裂,从而导致上部结构破坏的主要原因。本人参与下曾提供四个处理方案进行比较: 方案一,将住宅楼五层全部拆至四层,并在四层顶部,加设钢筋混凝土封闭圈梁。 方案二,在方案一的基础上,东半部场地土质较好,东部四间仍修复至五层。 方案三,保留住宅楼为五层,自上至下拆除基础开裂这一开间,将一幢楼房分成东、西两幢楼。这样处理后,减小了建筑物的长高比.相对增加建筑物的刚度;并使东西两幢楼可以自由沉降。 方案四,暂缓处理,待进一步沉降观测后,再分析处理。 上述四个方案各有利弊。经多次研究讨论,最后采用卸荷处理方案,即将原设计建造的五层住宅楼,全部拆至四层,即采用方案一。后又进一步卸荷,将住宅楼全部拆成至三层。在该住宅楼已使用多年,观察到该按原来筏板基础断裂的裂缝已经稳定,没有再继续发展。住户已放心,消除了忧虑。但由于这一事故处理,拆除两层楼房,损失建筑面积40%。如不用卸荷处理方案,改用锚杆静压桩加固场地西半部软弱地基,则可在保证住宅楼安全的前提下,保持住宅楼五层不变。 地基与基础质量,对建筑物的安全使用和耐久性影响甚大。基础或地基的质量事故,常常带来地面的塌陷、各种梁的拉裂、墙体开裂、柱子倾斜等。轻则使人对建筑有不安全感,重则影响建筑物的使用,甚至于危及人们的生命。 据有关单位对43起房屋过大不均匀沉降原因调查分析得知,属于设计不周者占21%,属于施工问题者占70%,属于使用单位管理不善者占9%。由此可见,尽管事故产生的原因是多方面的,而注意施工质量,则是避免事故发生的重要措施。 现浇钢筋混凝土结构由于多方面原因往往会出现一些裂缝,因此,鉴别裂缝、分析裂缝、控制裂缝的产生和发展,并对裂缝的产生进行有效的防治,对保证混凝土结构的整体性及正常使用具有重要的意义。 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就可以读出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十字或

建筑工程质量管理现状分析

建筑工程质量管理现状分析 发表时间:2018-03-28T14:34:54.333Z 来源:《基层建设》2017年第34期作者:黄岩[导读] 摘要随着我国经济的快速发展,人们生活水平的逐渐提高,建筑工程质量问题逐渐引起人们的高度重视。 安徽省海峡投资建设集团有限公司安徽省蚌埠市 233000 摘要随着我国经济的快速发展,人们生活水平的逐渐提高,建筑工程质量问题逐渐引起人们的高度重视。如何确保工程质量,保证企业获得良好的收益,成为建筑企业面临的主要问题。为了保证工程质量,就必须加强工程质量管理,保证建筑工程合格验收。受到多种因素的影响,建筑工程质量管理仍存在一些问题,影响着建筑工程的质量。本文从建筑工程质量管理的意义入手,分析了建筑工程质量管理 现状,并提出了几点合理化建议。 关键词:建筑工程;质量管理;现状 引言 在城市化建设不断加快的背景下,建筑工程企业逐渐增多,企业之间竞争逐渐增大。在新时期如何在竞争中脱颖而出,获得良好的经济效益,就需要加强建筑工程质量管理,提高建筑工程质量。近些年来随着建筑工程的增多,建筑工程质量问题时常出现,造成建筑安全事故时有发生,严重威胁了人们的生命安全。因此,相关部门必须做好建筑工程质量管理工作,提高建筑工程的安全性,保证建筑企业的收益,提高企业的综合实力。 1建筑工程质量管理的现实意义 加强建筑工程质量管理,是为了提高建筑工程施工的安全性。近几年,建筑安全事故时有发生,例如著名的上海楼房坍塌事故就是由于地基出现问题,现场施工不当造成工程质量出现问题。影响建筑工程质量的因素很多,具体如图1所示,因此,企业必须意识到建筑工程质量管理的重要性。对于很多的建筑项目来说,工程质量的好坏是关系国计民生的大事情,因而必须要对这些工程项目进行质量管理,从整项工程的开始部分进行参与,一直到工程的结束,都不可以轻视工程的质量问题,并且还要努力做好工程质量管理工作,严格对工程项目各阶段的施工结果进行验收把关。 图1工程质量影响因素分析 2建筑工程质量管理的现状 2.1设计质量问题 建筑工程设计环节是保障建筑工程质量的基础,只有严格、科学的设计才能保证设计方案的合理性。在建筑工程设计中,勘察不准确、工程地质资料不足、计算简图不准确、设计构造不当、结构计算出现错误等,或过多地考虑建筑的外观造型、结构形式,忽视地区环境差异、施工条件限制、抗震构造、整改难度等因素,而编制的施工组织设计质量较差,问题处理的方案不当或质量不高,都会使得后期工程施工过程中发生不少的工程质量事故。在设计时没有聘请专业的设计师进行设计,或是设计时没有设计经验,也会造成设计容易出现问题,造成工程出现安全隐患。 2.2建筑材料的问题 建筑工程包含的技术较多,施工量较大,涉及到的建筑材料也较多。因此,一旦建筑材料出现问题,就会造成建筑工程质量出现问题。对于一些材料没有仔细检查,就使其进入施工现场。劣质材料的性能较差,达不到原有的设计要求,进而影响建筑的质量,造成其耐用性降低,寿命缩短。一些建筑企业为了追求眼前利益,或是购买材料人员为了个人利益,购买不合格的建筑材料,就会造成建筑工程出现安全隐患,造成建筑工程发生倾斜或坍塌现象,威胁施工人员安全。材料的优劣、来源、功能等是保障建筑工程质量的重要基础,因此,必须重视这一问题。 2.3质量监督力度不够 目前一些建筑企业在项目实施过程中缺少有效的质量监督管理,施工过程中的质量管理主要还是靠监理单位,政府质量监督管理部门和施工单位质量管理人员执行力度不够,甚至出现无人监管等现象,导致有些施工单位为了减少成本支出,大胆使用低等级的钢筋或质量不符合施工标准的混凝土,出现了偷工减料等违法现象,严重影响了施工进度,降低了施工质量,给企业带来巨大的经济损失和信誉损失,更为严重的是造成人员伤亡及财产损失等后果。

室内空气质量标准(GBT 18883-2002)

室内空气质量标准(GB/T 18883-2002) 1、范围 本标准规定了室内空气质量参数及检验方法。 本标准适用于住宅和办公建筑物,其它室内环境可参照本标准执行。 2、规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 9801 空气质量一氧化碳的测定非分散红外法 GB/T 11737 居住区大气中苯、甲苯和二甲苯卫生检验标准方法气相色谱法 GB/T 12372 居住区大气中二氧化氮检验标准方法改进的Saltzman法 GB/T 14582 环境空气中氡的标准测量方法 GB/T 14668 空气质量氨的测定纳氏试剂比色法 GB/T 14669 空气质量氨的测定离子选择电极法 GB 14677 空气质量甲苯、二甲苯、苯乙烯的测定气相色谱法 GB/T 14679 空气质量氨的测定次氯酸钠-水杨酸分光光度法 GB/T 15262 环境空气二氧化硫的测定甲醛吸收-副玫瑰苯胺分光光度法GB/T 15435 环境空气二氧化氮的测定 Saltzman法 GB/T 15437 环境空气臭氧的测定靛蓝二磺酸钠分光光度法 GB/T 15438 环境空气臭氧的测定紫外光度法 GB/T 15439 环境空气苯并[a]芘测定高效液相色谱法 GB/T 15516 空气质量甲醛的测定乙酰丙酮分光光度法 GB/T 16128 居住区大气中二氧化硫卫生检验标准方法甲醛溶液吸收-盐酸副玫瑰苯胺分光光度法 GB/T 16129 居住区大气中甲醛卫生检验标准方法分光光度法 GB/T 16147 空气中氡浓度的闪烁瓶测量方法 GB/T 17095 室内空气中可吸入颗粒物卫生标准 GB/T 18204.13 公共场所空气温度测定方法 GB/T 18204.14 公共场所空气湿度测定方法 GB/T 18204.15 公共场所风速测定方法 GB/T 18204.18 公共场所室内新风量测定方法 GB/T 18204.23 公共场所空气中一氧化碳测定方法 GB/T 18204.24 公共场所空气中二氧化碳测定方法 GB/T 18204.25 公共场所空气中氨测定方法 GB/T 18204.26 公共场所空气中甲醛测定方法 GB/T 18204.27 公共场所空气中臭氧测定方法 3、术语和定义 3.1 室内空气质量参数 indoor air quality parameter 指室内空气中与人体健康有关的物理、化学、生物和放射性参数。

建筑工程质量管理案例分析

施工准备、施工过程的质量控制 1.施工质量控制的系统过程(1)按工程实体质量形成过程的时间阶段划分 1)施工准备控制:指在各工程对象正式施工活动开始前,对各项准备工作及影响质量的各因素进行控制,这是确保施工质量的先决条件。 2)施工过程控制:指在施工过程中对实际投入的生产要素质量及作业技术活动的实施状态和结果所进行的控制,包括作业者发挥技术能力过程的自控行为和来自有关管理者的监控行为。 3)竣工验收控制:它是指对于通过施工过程所完成的具有独立的功能和使用价值的最终产品(单位工程或整个工程项目)及有关方面(例如质量文档)的质量进行控制。 (2)按工程实体形成过程中物质形态转化的阶段划分 1)对投入的物质资源质量的控制。 2)施工过程质量控制:即在使投入的物质资源转化为工程产品的过程中,对影响产品质量的各因素、各环节及中间产品的质量进行控制。 3)对完成的工程产出品质量的控制与验收:在上述三个阶段的系统过程中,前两个阶段对于最终产品质量的形成具有决定性的作用,而所投入的物质资源的质量控制对最终产品质量又具有举足轻重的影响。所以,在质量控制的系统过程中,无论是对投入物质资源的控制,还是对施工及安装生产过程的控制,都应当对影响工程实体质量的五个重要因素方面,即对施工有关人员因素、材料(包括半成品、构配件)因素、机械设备因素(生产设备及施工设备)、施工方法(施工方案、方法及工艺)因素以及环境因素等进行全面的控制。 (3)按工程项目施工层次划分的系统控制过程 通常,任何一个大、中型工程建设项目可以划分为若干层次。例如,对于建筑工程项目按照国家标准可以划分为单位工程、分部工程、分项工程、检验批等层次;而对于诸如水利水电、港口交通等工程项目,则可划分为单项工程、单位工程、分部工程、分项工程等几个层次。各组成部分之间的关系具有一定的施工先后顺序的逻辑关系。显然,施工作业过程的质量控制是最基本的质量控制,它决定了有关检验批的质量;而检验批的质量又决定了分项工程的质量。 2.施工质量控制的工作程序 在施工阶段的全过程中,监理工程师要进行全过程、全方位的监督、检查与控制,不仅涉及最终产品的检查、验收,而且涉及施工过程的各环节及中间产品的监督、检查与验收。 在每项工程开始前,承包单位须做好施工准备工作,然后填报《工程开工/复工报审表》及附件,报送监理工程师审查。若审查合格,则由总监理工程师批复准予施工。 在施工过程中,监理工程师应督促承包单位加强内部质量管理,严格质量控制,施工作业过程均应按规定工艺和技术要求进行,在每道工序完成后,承包单位应进行自检,自检合监理工程师收到检查申请后应在合同规定《_报验申请表》交监理工程师检验。填报格后, 的时间(合同文本17条:隐蔽工程在隐蔽或者中间验收前48小时以书面形式通知工程师验收)内到现场检验,检验合格后(24小时内)予以确认。 【案例一】 某工程项目,建设单位与施工总承包单位按《建设工程施工合同》(示范文本)签订了施工承包合同,并委托某监理公司承担施工阶段的监理任务。施工总承包单位将桩基工程分包给一家专业施工单位。

室内空气质量标准

《室内空气质量标准》编制说明 一、制定标准的目的和意义 室内空气污染不仅破坏人们的工作和生活环境,而且直接威胁着人们的身体健康。这主要是因为:(1)人们每天大约有80%以上的时间是在室内度过的,所呼吸的空气主要来自于室内,与室内污染物接触的机会和时间均多于室外。(2)室内污染物的来源和种类日趋增多,造成室内空气污染程度在室外空气污染的基础上更加重了一层。(3)为了节约能源,现代建筑物密闭化程度增加,由于其中央空调换气设施不完善,致使室内污染物不能及时排出室外,造成室内空气质量的恶化。 室内空气污染包括物理、化学、生物和放射性污染,来源于室内和室外两部分。室内来源主要有消费品和化学品的使用、建筑和装饰材料以及个人活动。如(1)各种燃料燃烧、烹调油烟及吸烟产生的CO、NO2、SO2、可吸入颗粒物、甲醛、多环芳烃(苯并[a]芘)等。(2)建筑、装饰材料、家具和家用化学品释放的甲醛和挥发性有机化合物(VOCs)、氡及其子体等。(3)家用电器和某些办公用具导致的电磁辐射等物理污染和臭氧等化学污染。(4)通过人体呼出气、汗液、大小便等排出的CO2、氨类化合物、硫化氢等内源性化学污染物,呼出气中排出的苯、甲苯、苯乙烯、氯仿等外源性污染物;通过咳嗽、打喷嚏等喷出的流感病毒、结核杆菌、链球菌等生物污染物。(5)室内用具产生的生物性污染,如在床褥、地毯中孳生的尘螨等。 室外来源主要有(1)室外空气中的各种污染物包括工业废气和汽车尾气通过门窗、孔隙等进入室内。(2)人为带入室内的污染物,如干洗后带回家的衣服,可释放出残留的干洗剂四氯乙烯和三氯乙烯;将工作服带回家中,可使工作环境中的苯进入室内等。 目前我国对于住宅和办公建筑物室内空气质量缺乏系统的标准,为了控制室内空气污染,切实提高我国的室内空气质量,在借鉴国外相关指标、标准的基础上,结合我国的实际情况,参考国内现有的标准,特制定《室内空气质量标准》。 二、本标准中条文的依据 (一) 室内空气质量标准依据 表1 室内空气质量标准依据 污染物名称标准值依据 二氧化硫SO2 mg/m31h GB 3095-1996 《环境空气质量标准》 二氧化氮NO2 mg/m3 1 h GB 3095-1996 《环境空气质量标准》 一氧化碳CO10 mg/m3 1 h GB 3095-1996 《环境空气质量标准》 二氧化碳CO2室外浓度以上 1260 mg/m3 8 h ASHREA 62-1999 氨NH3 mg/m3 1 h前苏联工业企业设计卫生标准(CH245-71)

建筑工程质量管理现状分析

建筑工程质量管理现状分析 摘要随着我国经济的快速发展,人们生活水平的逐渐提高,建筑工程质量问题 逐渐引起人们的高度重视。如何确保工程质量,保证企业获得良好的收益,成为 建筑企业面临的主要问题。为了保证工程质量,就必须加强工程质量管理,保证 建筑工程合格验收。受到多种因素的影响,建筑工程质量管理仍存在一些问题, 影响着建筑工程的质量。本文从建筑工程质量管理的意义入手,分析了建筑工程 质量管理现状,并提出了几点合理化建议。 关键词:建筑工程;质量管理;现状 引言 在城市化建设不断加快的背景下,建筑工程企业逐渐增多,企业之间竞争逐 渐增大。在新时期如何在竞争中脱颖而出,获得良好的经济效益,就需要加强建 筑工程质量管理,提高建筑工程质量。近些年来随着建筑工程的增多,建筑工程 质量问题时常出现,造成建筑安全事故时有发生,严重威胁了人们的生命安全。 因此,相关部门必须做好建筑工程质量管理工作,提高建筑工程的安全性,保证 建筑企业的收益,提高企业的综合实力。 1建筑工程质量管理的现实意义 加强建筑工程质量管理,是为了提高建筑工程施工的安全性。近几年,建筑 安全事故时有发生,例如著名的上海楼房坍塌事故就是由于地基出现问题,现场 施工不当造成工程质量出现问题。影响建筑工程质量的因素很多,具体如图1所示,因此,企业必须意识到建筑工程质量管理的重要性。对于很多的建筑项目来说,工程质量的好坏是关系国计民生的大事情,因而必须要对这些工程项目进行 质量管理,从整项工程的开始部分进行参与,一直到工程的结束,都不可以轻视 工程的质量问题,并且还要努力做好工程质量管理工作,严格对工程项目各阶段 的施工结果进行验收把关。 图1工程质量影响因素分析 2建筑工程质量管理的现状 2.1设计质量问题 建筑工程设计环节是保障建筑工程质量的基础,只有严格、科学的设计才能保证设计方 案的合理性。在建筑工程设计中,勘察不准确、工程地质资料不足、计算简图不准确、设计 构造不当、结构计算出现错误等,或过多地考虑建筑的外观造型、结构形式,忽视地区环境 差异、施工条件限制、抗震构造、整改难度等因素,而编制的施工组织设计质量较差,问题 处理的方案不当或质量不高,都会使得后期工程施工过程中发生不少的工程质量事故。在设 计时没有聘请专业的设计师进行设计,或是设计时没有设计经验,也会造成设计容易出现问题,造成工程出现安全隐患。 2.2建筑材料的问题 建筑工程包含的技术较多,施工量较大,涉及到的建筑材料也较多。因此,一旦建筑材 料出现问题,就会造成建筑工程质量出现问题。对于一些材料没有仔细检查,就使其进入施 工现场。劣质材料的性能较差,达不到原有的设计要求,进而影响建筑的质量,造成其耐用 性降低,寿命缩短。一些建筑企业为了追求眼前利益,或是购买材料人员为了个人利益,购 买不合格的建筑材料,就会造成建筑工程出现安全隐患,造成建筑工程发生倾斜或坍塌现象,威胁施工人员安全。材料的优劣、来源、功能等是保障建筑工程质量的重要基础,因此,必 须重视这一问题。 2.3质量监督力度不够 目前一些建筑企业在项目实施过程中缺少有效的质量监督管理,施工过程中的质量管理

室内空气品质评价及CFD技术

室内空气品质评价及CFD技术 王圣1王小逸屈伟 (北京工业大学环境与能源工程学院,北京100022) 摘要室内空气品质与人的感知及个体差异紧密相连,是空气的温度、湿度、气流速度、洁净度等空气指标的综合效应。不好的室内空气品质将对人的身心健康和工作效率造成巨大的不利影响。综述了室内空气品质与舒适性、通风效率的关系,总结了国内外的室内空气品质评价方法,并对不同国家地区的室内空气品质评价标准进行了归纳比较。最后,介绍了CFD(计算流体力学)在室内空气品质研究中的应用。 关键词室内空气品质评价标准计算流体力学 I ndoor air quality evaluation and CFD technology Wang Sheng, Wang Xiaoyi, Qu Wei. (College of Environmental and Energy Engineering, Beijing University of Technology,Beijing 100022) Abstract: IAQ (Indoor Air Quality) has much to do with people’s feeling and individual differences and is the integrated effect of temperature, humidity, airflow velocity, lustration of air. Poor IAQ will have great harm to people’s health and working efficiency. This paper summarizes the relationship between indoor air quality and comfort and Ventilation Efficiency, introduces the kinds of IAQ evaluation methods in the world and points out the differences of the standards in different countries and areas. At last, the trends regarding to the CFD application in indoor air quality and the instance using CFD technology on indoor air quality have been addressed. Keywords:Indoor air quality Evaluation Standard CFD 室内是城市中大多数人工作与生活的场所,人们在室内的时间约占总时间的80%以上,所以人们的日常生活、身心健康、工作效率等均与室内环境状况有关。随着人们生活水平的提高,居住环境的改善,家庭装修变得异常火热。根据中国建筑装饰协会的统计数据,我国新建住宅装修率达到了95%以上。而有机合成材料在室内装饰及设备用具方面的广泛应用,致使室内挥发性有机化合物(VOC)气体大量散发,严重恶化了室内空气品质。此外,由于20世纪70年代的全球能源危机,能源消耗面临严峻的考验,现代建筑物密闭程度增加,新风量不足,使室内空气污染物不容易扩散,增加了室内人群与污染物的接触机会,出现了由于建筑本身不环保不卫生而导致的“病态建筑综合症”(Sick Building Syndrome, SBS)。世界卫生组织(WHO)估计[1],世界上有将近30%的新建和整修的建筑物受到SBS的影响,大约有20%~30%的办公室人员常被SBS症状所困扰。因此,继“煤烟型”、“光化学烟雾型”污染后,现代人正进入以“室内空气污染”为标志的第三污染时期。 1 室内空气品质与舒适性 空气品质是描述空气质量好坏的概念,它是指空气的温度、湿度、气流速度、洁净度等空气指标的综合效应。舒适性是指人在温和环境中的热感觉,当感觉不冷不热时,这个环境就是舒适的环境;反之当感觉到热或者冷时,这个环境就是不舒适的。人的健康、自身感觉及工作能力在很大程度上取决于室内的舒适状况。换句话说,舒适性是人体对空气1第一作者:王圣,女,1982年生,硕士研究生,主要从事室内环境分析与评价的研究。

关于建筑工程质量管理分析研究

关于建筑工程质量管理分析研究 发表时间:2018-12-20T10:12:27.930Z 来源:《建筑学研究前沿》2018年第26期作者:张涛 [导读] 在我国现代化社会不断发展的今天,社会经济的不断发展促进了我国市场经济体制的不断深化改革。 贵州深港建力建设工程项目管理有限公司贵州贵阳 550002 摘要:在我国国民经济不断发展的过程中,建筑业作为国民经济的基础产业,为我国社会经济的发展做出了巨大的贡献。建筑业的健康发展关系着我国的国计民生问题,因此,在建筑业不断发展建设的过程中吗,加强对建筑工程的质量管理至关重要。在我国现代化社会经济不断发展的现在,人们对建筑工程的施工质量要求也在逐步的提高,为了更好的适应现代化社会发展的需要,加强我国建筑工程的施工质量的管理尤其重要,可以有效的推动我国现代化社会经济的快速发展进步。 关键词:国计民生;施工水平;发展进步 引言:在我国现代化社会不断发展的今天,社会经济的不断发展促进了我国市场经济体制的不断深化改革,这样有利于促进市场经济健康有序的发展。建筑业在发展的同时也暴露出了一定的问题,因此,为了确保建筑企业的健康发展,加强建筑工程施工质量的管理就显得尤其重要。在我国现阶段一些建筑企业为了在市场的竞争中赢得更多的经济效益,而忽略了对建筑工程质量的管理和控制,这不利于工程建筑的施工发展,严重的还会造成一定的安全事故,因此,加强建筑工程施工质量的控制和管理十分重要,在现阶段,应逐步的建立健全相关的建筑工程法律法规,促进建筑企业的长远发展,为我国现代化社会经济的发展赢得更好的经济效益以及社会效益。 1 建筑工程管理的内容 1.1 项目管理 建设项目是一次性的,因此管理方法应该是全面的,科学的和程序性的。项目管理需要全面的控制和协调,以实现高效的项目目标。最终目标是实现项目目标。在任务发布之前,公司应计算项目计划成本和利润,这为项目的进展提供了基础,并提供了建筑材料选择的样本。这样的计划降低了企业和项目部门的操作风险,有利于调动有关部门负责人的积极性。同时,可以针对项目的不同特点采用不同的施工方法,在施工过程中可以制定相应的施工方案“灵活”。在项目建设之前,企业还应根据实际情况对各类工作进行相应的培训。 1.2 质量管理 质量管理是建设项目现场管理中最重要的环节,确定工程建筑是否可以转化为物质成就,影响建筑企业的声誉和效益,也是建筑企业建设水平的最终体现是关键。做好质量管理,主要从以下几个方面入手。一是建立了一支高素质的施工队伍,一支优秀的施工队伍是确保项目质量的人力资源条件,也是项目及时交付的保证。在选择施工队伍时,必须坚持“从不滥用”的原则,公平公正地选择施工人员,确保施工队伍的优秀。其次,我们必须严格控制材料,以确保项目的质量。选材,主要注意以下几个方面:(1)选材供应商时,以材料质量为审查条件,建立档案,供今后合作。(2)完善物资管理和运输体系,避免物料老化,给施工造成一定损失。(3)严格检查材料质量,不使用不合格或者不合格的材料,以保证施工成品和部件的质量,保证工程的顺利实施。 1.3 安全管理 首先,我们必须建立一个安全管理系统。建筑企业必须有合理的分工和对人的责任。安全管理人员的配置必须符合以下要求:专业安全知识和管理技能,善于发现安全隐患,能够在紧急情况下冷静处理相关问题;有严谨的工作态度,责任心强;有无私的服务精神和奉献精神,能听取别人的意见和建议;二是做好现场安全评估工作。建设项目部还需要建立评估小组,建立相关的评估体系,评估现场安全管理人员的工作。第三,要做好安全教育,工人安全教育应是建筑企业的必修课。必须有针对性地规划安全教育。在建筑企业中,建筑工人的文化水平参差不齐。因此,对于安全意识薄弱的工人,有必要教育和加强安全意识。特别是对新建筑工人来说,安全教育不容忽视。通过这种方式,我们必须不断灌输安全观念,并不时提醒我们,以实现有效预防人为不安全行为,减少人为错误。 1.4 技术管理 技术管理是建筑公司进行的一系列技术组织和管理工作的总称。施工企业的技术管理应运用系统的观点,运用科学的方法,对施工技术的各项要素和施工企业的技术活动进行规划,决策,组织,指导,控制和规范。我们知道,建筑工程的建设是一个复杂的过程,多工作的合作操作,以及多种技术的交叉集成应用。因此,建筑技术活动是多种多样的。在建筑专业领域,技术活动包括:熟悉图纸,设计和施工,质量检验,质量验收等。施工技术的各个要素是指各种技术的技术标准,技术设备,技术人员和技术责任。 2 建筑工程常见的质量问题 2.1 基础和主体施工阶段 基础和建筑工程学科的质量与建筑工程结构的安全性,可靠性和耐久性以及人员的安全有关。目前,我国基础和主体工程的施工质量还不是很理想。例如,在实际施工过程中,混凝土强度趋于低,混凝土表面缺陷较多,混凝土柱,墙,梁等部件尺寸和轴偏差过大,收缩裂纹明显,钢带严重错位。 2.2 装饰装修阶段 装修装修阶段的质量与建设项目的使用功能是否能够充分实现有关,关系到满足多人的需求。目前,我国建筑工程装饰阶段的施工质量还不是很理想。例如,在实际施工过程中,水泥地板经常打磨,墙面裂缝空洞,卫生间和地下室漏水,门窗没有紧闭,漏水和外观有效。 3 建筑工程质量管理的具体措施 3.1 安全施工,保证效率 首先,对于建设项目,施工过程中应首先确保施工人员的安全。继续建造不保证安全的建筑项目是没有意义的。如果施工现场存在安全隐患,不仅会影响工程的整体进度,而且对施工人员来说,也不能保证安全,让他们直接失去动力。 3.2 合理调查施工现状 对于施工,首先要做的是对施工进行现场调查,对于当地气候条件的积累,附近有公共建筑和公共设施,周围环境条件,工厂状况,

室内空气质量检测标准

室内空气质量检测标准 《室内空气质量标准》GB/T18883-2002 一、室内空气应无毒、无害、无明显异味、臭味。 二、空气质量标准见表其中: 室内空气的质量参数(indoor air quality parameter) 指室内空气中与人体健康有关的物理、化学、生物和放射性参数。 可吸入颗粒物(particles with dimeters of less,PM10) 指悬浮在空气中,空气动力学当量直径小于或等于10的颗粒物。 总挥发性有机物(Total Volatile Organic Compounds TVOC):利用Tenax Gc或(Tenax TA)采样,非极性色普柱(极性指数小于10)进行分析,保留时间在正乙烷和正十六烷之间的挥发性有机物。 标准状态(normal state):指温度为273K,压力为101.325时的干物质状态。 室内空气质量标准—— 1、新风量要求≥标准值,除温度、相对湿度外的其他参数要求≤标准值 2、行动水平即达到此水平建议采取干预行动以降低室内氡浓度

民用建筑工程室内环境污染控制规范 GB 50325-2001(2006) 1.01为了预防和控制民用建筑工程中建筑材料和装修材料产生的室内环境污染, 保障公众健康,维护公共利益,做到技术先进、经济合理,制定本规范。1.02本规范适用于新建、扩建和改建的民用建筑工程室内环境污染控制,不适 用于工业建筑工程、仓储性建筑工程、构筑物和有特殊净化卫生要求的房 间。 1.03本规范控制的室内环境污染物有氡(Rn-222)、甲醛、氨、苯和总挥发性有 机物(TVOC)。 1.04民用建筑工程根据控制室内环境污染的不同要求,划分为以下两类: ①Ⅰ类民用建筑工程:住宅、医院、老年建筑、幼儿园、学校教室等民用 建筑工程; ②Ⅱ类民用建筑工程:办公楼、商店、旅馆、文化娱乐场所、书店、图书 馆、展览馆、体育馆、公共交通等候室、餐厅、理发店等民用建筑工程。 1.05民用建筑工程所选用的建筑材料和装修材料必须符合本规范的规定。 1.06民用建筑工程室内环境污染控制除应符合本规范规定外,尚应符合国家现 行的有关强制性标准的规定。 1、民用建筑工程验收时,应抽检有代表性的房间室内环境污染物浓度,抽检数量不得少于 5%,并不得少于3间。 2、当房间内有2个及2个以上检测点时,应取各点检测结果的平均值作为该房间的检测值。 3、民用建筑工程验收时,环境污染物浓度现场检测点应距内墙不小于0.5m、距楼地面高 度0.8~1.5m。检测点应均匀分布,避开通风道和通风口。 4、民用建筑工程室内环境中游离甲醛、苯、氨、总挥发性有机物浓度检测时,对采用集中 空调的民用建筑工程,应在空调正常运转的条件下进行;对采用自然通风的民用建筑工程,检测应在对外门窗关闭状态下进行。放射性氡浓度检测时应在对外门窗关闭24小 时后进行。 5、室内环境质量验收不合格的民用建筑工程,严禁投入使用。

室内空气质量的部分参考标准

石油大厦室内空气质量 的参考标准、控制策略及数据集成界面 (代实施方案) 一、室内空气质量的控制标准 收集整理有关室内空气质量的控制标准,如:CO2浓度、PM2.5含量、TVOC 浓度,以及温度、相对湿度五项国内外标准限值,旨在指导石油大厦在健康标准下节能运行,极大的满足人们对身心健康及环境舒适度方面的需求。 1、室内空气中的CO2浓度的各类标准限值: ○1由美国空军Armstrong试验室推荐的标准,并采用为美国空军最低警戒水平的室内空气中的CO2浓度限值≤1080mg/m3(约550ppm,相当于0.055%);目前国际组织(如USAF)推荐的标准规定的室内空气中的CO2浓度限值≤0.055%(550ppm约1080mg/m3,1h平均);此标准限值可代表更高舒适度的室内空气中CO2浓度水平和更优异的室内环境。室内空气中的CO2浓度≤0.055%时,能保证所有人(包括各种健康状况的敏感人群、老人和儿童)长期居住或停留人群都感到空气清新、舒适、环境优异,室内空气质量评价为特优。 ○2澳大利亚国际健康建筑有限公司(HBI)建议标准规定的室内空气中的CO2浓度限值≤0.07%(700ppm约1375mg/m3,1h平均);室内空气中的CO2浓度≤0.07%时,能保证所有人长期居住或停留时人体感觉良好,室内空气质量评价为优。 ○3世界卫生组织(WHO)和美国加热、制冷和空调工程师协会(ASHREA)推荐标准规定的室内空气中可以接受的CO2浓度限值≤0.09%(900ppm约1800mg/m3,1h平均);室内空气中的CO2浓度≤0.09%时,能保证所有人长期居住或停留时健康不受危害,室内空气质量评价为良。 ○4国家现行标准(GB/T18883)规定的室内空气中的CO2浓度限值≤0.1%(1000ppm约1964.3mg/m3,1h平均);目前正在修订的国家标准(征求意见稿)规定的室内空气中的CO2浓度调整为限值≤0.09%(900ppm约1800mg/m3,1h 平均);室内空气中的CO2浓度达到0.1%时,个别敏感者有不舒适感,室内空气质量评价为中;室内空气中的CO2浓度≤0.09%时,能保证所有人长期居住或停留时健康不受危害,室内空气质量评价为良。 ○5石油大厦现行运行标准,依据“毒理学和流行病学的研究结果”确定的室

室内空气质量标准GB

室内空气质量标准GB/T18883-2002 1、范围 本标准规定了室内空气质量参数及检验方法。 本标准适用于住宅和办公建筑物,其它室内环境可参照本标准执行。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议 的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于 本标准。GB/T 9801 空气质量一氧化碳的测定非分散红外法 GB/T 11737 居住区大气中苯、甲苯和二甲苯卫生检验标准方法气相色谱法GB/T 12372 居住区大气中二氧化氮检验标准方法改进的Saltzman 法GB/T 14582 环境空气中氨的标准测量方法GB/T 14668 空气质量氨的测定纳氏试剂比色法GB/T 14669 空气质量氨的测定离子选择电极法 GB 14677 空气质量甲苯、二甲苯、苯乙烯的测定气相色谱法GB/T 14679 空气质量氨的测定次氯酸钠-水杨酸分光光度法 GB/T 15262 环境空气二氧化硫的测定甲醛吸收-副玫瑰苯胺分光光度法GB/T 15435 环境空气二氧化氮的测定Saltzman法GB/T 15437 环境空气臭氧的测定靛蓝 二磺酸钠分光光度法GB/T 15438 环境空气臭氧的测定紫外光度法GB/T 15439 环境空气苯并[a]花测定高效液相色谱法GB/T 15516 空气质量甲醛的测定乙酞丙酮分 光光度法 GB/T 16128 居住区大气中二氧化硫卫生检验标准方法甲醛溶液吸收-盐酸副玫瑰苯胺分光光度法GB/T 16129 居住区大气中甲醛卫牛检验标准方法分光光度法GB/T 16147 空气中氨浓度的闪烁瓶测量方法GB/T 17095 室内空气申可吸人颗粒物卫生 标准GB/T 18204.13 公共场所室内温度测定方法GB/T 18204.14 公共场所室内相对湿度测定方法GB/T 18204.15 公共场所室内空气流速测定方法 GB/T 18204.18 公共场所室内新风量测定方法示踪气体法GB/T 18204.23 公共场所空气中一氧化碳检验方法GB/T 18204.24 公共场所空气中二氧化碳检验方法 GB/T 18204.25 公共场所空气中氨检验方法GB/T 18204.26 公共场所空气中甲醛 测定方法GB/T 18204.27 公共场所空气申臭氧检验方法 3 术语和定义 Page 1of 9 室内空气质量标准GB/T18883-2002 3.1 室内空气质量参数(indoor air quality parameter)指室内空气中与人体健康有关 的物理、化学、生物和放射性参数。 3.2 可吸人颗粒物(particles with diameters of 10um or less,PM10)指悬浮在空气中,空气动力学当量直径小于等于10urn的颗粒物。 3.3 总挥发性有机化合物(Total Volatile Organic Compounds TVOC) 利用Tenax GC 或Tenax TA采样,非极性色谱柱(极性指数小于10)进行分析,保留时 间在正己烷和正十六烷之间的挥发性有机化合物。 3.4 标准状态(normal state) 指温度为273 K.压力为101325kPa时的于物质状态。 4 室内空气质量 4.1 室内空气应无毒、无害、无异常嗅味。 4.2 室内空气质量标准见表l。表 1 室内空气质量标准 Table 1 Indoor Air Quality Standard序号参数类别参数 单位标准值 备注

相关文档
最新文档