相关与回归区别与联系

相关与回归区别与联系
相关与回归区别与联系

直线回归与相关的区别和联系

1.区别:

①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。直线相关分析要求服从双变量正态分布; ②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;

③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;

⑤取值范围不同:?1≤r ≤1,∞<<∞-b ;

⑥单位不同:r 没有单位,b 有单位。

2.联系:

① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值;

② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。

b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反;

③ 回归系数b 与相关系数r 的假设检验等价。即对同一双变量资料,r b t t =。由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;

④ 用回归解释相关。由于决定系数总回归SS SS R /2=,当总平方和固定时,

回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。

相关分析与回归分析的异同

问:请详细说明相关分析与回归分析的相同与不同之处 相关分析与回归分析都是研究变量相互关系的分析方法,相关分析是回归分析的基础,而回归分析则是认识变量之间相关程度的具体形式。 下面分为三个部分详细描述两种分析方法的异同: 第一部分:相关分析 一、相关的含义与种类 (一)相关的含义 相关是指自然与社会现象等客观现象数量关系的一种表现。 相关关系是指现象之间确实存在的一定的联系,但数量关系表现为不严格相互依存关系。即对一个变量或几个变量定一定值时,另一变量值表现为在一定范围内随机波动,具有非确定性。如:产品销售收入与广告费用之间的关系。 (二)相关的种类 1. 根据自变量的多少划分,可分为单相关和复相关 2. 根据相关关系的方向划分,可分为正相关和负相关 3. 根据变量间相互关系的表现形式划分,线性相关和非线性相关 4.根据相关关系的程度划分,可分为不相关、完全相关和不完全相关 二、相关分析的意义与内容 (一)相关分析的意义 相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。其目的是揭示现象之间是否存在相关关系,确定相关关系的表现形式以及确定现象变量间相关关系的密切程度和方向。 (二)相关分析的内容 1. 明确客观事物之间是否存在相关关系 2. 确定相关关系的性质、方向与密切程度 三、直线相关的测定 (一)相关表与相关图 1. 相关表 在定性判断的基础上,把具有相关关系的两个量的具体数值按照一定顺序平行排列在一张表上,以观察它们之间的相互关系,这种表就称为相关表。 2. 相关图

把相关表上一一对应的具体数值在直角坐标系中用点标出来而形成的散点图则称为相关图。利用相关图和相关表,可以更直观、更形象地表现变量之间的相互关系。 (二)相关系数 1. 相关系数的含义与计算 相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。相关系数的理论公式为: y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差 (2)xy 2δ 协方差对相关系数r 的影响,决定:???<>数值的大小正、负)或r r r (00 简化式 ()()2222∑∑∑∑∑∑∑-?--= y y n x x n y x xy n r 变形:分子分母同时除以2 n 得 r =???????????? ??-???????????? ??-?-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x x y x xy -*-?-=y x y x xy δδ-?- n x x x ∑-=2)(δ=()[]n x x x x ∑+?-222=()222x n x x n x +??-∑∑ = () 22x x - 2. 相关系数的性质

系统辨识试卷A

1、相关分析法的主要优点是什么,其在工程中的应用有哪些方面? 答:相关分析法的主要优点是由于M序列信号近似于白噪声,噪声功率均匀分布于整个频带,从而对系统的扰动甚微,保证系统能正常工作(1.5分)。此外。因为相关函数的计算是一种统计平均的方法,具有信息滤波的功能,因此,在有噪声污染下,仍可提取有用信息,准确地求出系统的脉冲响应(1.5分)。 相关辨识技术在工程中的应用、可归结为下述几个方面: (1)系统动态特性的在线测试。包括机、炉、电等一次设备,风机、水泵等辅机以及二次自动控制系统;(1分) (2)对控制系统进行在线调试,使调节系统参数优化;(1分) (3)自适应控制中的非参数型模型辨识等。(1分) 2、什么是权?叙述加权在渐消记忆的最小二乘递推算法中的作用。 计算中用一个数值来表示对观测数据的相对的“信任程度”,这就是权。(2分) 对于时变参数系统,其当前的观测数据最能反映被识对象当前的动态特性,数据愈“老”,它偏离当前对象特性的可能性愈大。因此要充分重视当前的数据而将“过时的”、“陈旧的”数据逐渐“遗忘”掉,这就是加权的概念。(2分)具体的方法是,每当取得一个新的量测数据, ρ<1),这个加权因子体现出对老数据逐步衰就将以前的所有数据都乘上一个加权因子ρ(0< 减的作用,所以ρ也可称为衰减因子,因此在L次观测的基础上,在最小二乘准则中进行了某ρ=μ(0<μ<1),选择不同的μ就得到不同的加权效果。μ愈小,表示将过种加权,即取2 去的数据“遗忘”得愈快。(2分) 3、简述极大似然原理,叙述极大似然法和最小二乘法的关系。 答:极大似然法把参数估计问题化为依赖于统计信息而构造的似然函数的极大化问题,即当似然函数在某个参数值上达到极大时,就得到了有关参数的最佳估计。(2分)似然函数是在给定的观测量z和参数θ下的观测量的联合概率密度函数,它是实验观测的样本数据z和参数θ的函数。(2分)最小二乘法基本不考虑估计过程中所处理的各类数据的概率统计特性。极大似然法要求有输出量的条件概率密度函数的先验知识,当噪声服从正态分布的条件下,极大似然法和最小二乘法完全等价。(2分) 第1页,共1页

weka分类与回归

weka分类与回归 1.背景知识 WEKA把分类(Classification)和回归(Regression)都放在“Classify”选项卡中,这是有原因的。 在这两个任务中,都有一个目标属性(输出变量)。我们希望根据一个样本(WEKA中称作实例)的一组特征(输入变量),对目标进行预测。为了实现这一目的,我们需要有一个训练数据集,这个数据集中每个实例的输入和输出都是已知的。观察训练集中的实例,可以建立起预测的模型。有了这个模型,我们就可以新的输出未知的实例进行预测了。衡量模型的好坏就在于预测的准确程度。 在WEKA中,待预测的目标(输出)被称作Class属性,这应该是来自分类任务的“类”。一般的,若Class 属性是分类型时我们的任务才叫分类,Class属性是数值型时我们的任务叫回归。 2.选择算法 这一节中,我们使用C4.5决策树算法对bank-data建立起分类模型。 我们来看原来的“bank-data.csv”文件。“ID”属性肯定是不需要的。由于C4.5算法可以处理数值型的属性,我们不用像前面用关联规则那样把每个变量都离散化成分类型。尽管如此,我们还是把“Children”属性转换成分类型的两个值“YES”和“NO”。另外,我们的训练集仅取原来数据集实例的一半;而从另外一半中抽出若干条作为待预测的实例,它们的“pep”属性都设为缺失值。经过了这些处理的训练集数据在这里下载;待预测集数据在这里下载。 我们用“Explorer”打开训练集“bank.arff”,观察一下它是不是按照前面的要求处理好了。切换到“C lassify”选项卡,点击“Choose”按钮后可以看到很多分类或者回归的算法分门别类的列在一个树型框里。 3.5版的WEKA中,树型框下方有一个“Filter...”按钮,点击可以根据数据集的特性过滤掉不合适的算法。我们数据集的输入属性中有“Binary”型(即只有两个类的分类型)和数值型的属性,而Class变量是“Binary”的;于是我们勾选“Binary attributes”“Numeric attributes”和“Binary class”。点“OK”后回到树形图,可以发现一些算法名称变红了,说明它们不能用。选择“trees”下的“J48”,这就是我们需要的C 4.5算法,还好它没有变红。 点击“Choose”右边的文本框,弹出新窗口为该算法设置各种参数。点“More”查看参数说明,点“Capa bilities”是查看算法适用范围。这里我们把参数保持默认。 现在来看左中的“Test Option”。我们没有专门设置检验数据集,为了保证生成的模型的准确性而不至于出现过拟合(overfitting)的现象,我们有必要采用10折交叉验证(10-fold cross validation)来选择和评估模型。若不明白交叉验证的含义可以Google一下。 3.建模结果 OK,选上“Cross-validation”并在“Folds”框填上“10”。点“Start”按钮开始让算法生成决策树模型。很快,用文本表示的一棵决策树,以及对这个决策树的误差分析等等结果出现在右边的“Classifier output”中。同时左下的“Results list”出现了一个项目显示刚才的时间和算法名称。如果换一个模型或者换个参数,重新“Start”一次,则“Results list”又会多出一项。 我们看到“J48”算法交叉验证的结果之一为 Correctly Classified Instances 206 68.6667 % 也就是说这个模型的准确度只有69%左右。也许我们需要对原属性进行处理,或者修改算法的参数来提高准确度。但这里我们不管它,继续用这个模型。

实验五相关分析与回归分析

一、问题描述 2016年1月12日 13:04 学习并使用SPSS软件进行相关分析和回归分析,具体包括: (1) 皮尔逊pearson简单相关系数的计算与分析 (2) 学会在SPSS上实现一元及多元回归模型的计算与检验。 (3) 学会回归模型的散点图与样本方程图形。 (4) 学会对所计算结果进行统计分析说明。 二、实验原理 2016年1月12日 13:13 1.相关分析的统计学原理 相关分析使用某个指标来表明现象之间相互依存关系的密切程度。用来测度简单线性相关关系的系数是Pearson简单相关系数。 2.回归分析的统计学原理 相关关系不等于因果关系,要明确因果关系必须借助于回归分析。回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。 线性回归数学模型如下: 在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数: 回归模型中的参数估计出来之后,还必须对其进行检验。如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。回归模型的检验包括一级检验和二级检验。一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。 三、数据录入 2016年1月13日 20:05 有“连续变量简单相关系数的计算与分析_时间与成绩”数据文件,以此录入做相关分析:

第九章 线性回归和相关分析

第九章 线性回归和相关分析 9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计? 9.2 a s 、b s 、x y s /、y s 、y s ?各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验? 9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正? 9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算: (1)直线回归方程y ?=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。 x 0 5 10 15 20 25 30 y 0.00 0.11 0.23 0.34 0.46 0.57 0.71 [答案:(1)y ? =-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l] 9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间? 年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y 50 55 50 47 51 29 48 [答案:(1)r=0.8424;(2)y ? =33.2960+0.7456x , x y s /=4.96;(3)9月22日~10月23日] 9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。试对两回归系数和相关系数的差异作假设测验,并解释所得结果的意义。 [答案: 2 1b b s -=0.0229,t <1; 2 1z z s -=0.2053,t=3.413] 9.8 下表为1963、1964、1965三年越冬代棉红铃虫在江苏东台的化蛹进度的部分资料,试作协方差分析。 x 日 期 (以6月10日为0) y 化 蛹 进 度(%) 1963年 1964年 1965年

线性回归与线性分类

线性回归与线性分类 1.线性回归 在温洲的一个房产网()我弄到了下面的一些数据: 现在我们以横轴表示房子面积,纵轴表示房子价格,画到坐标轴上: 现在问题来了,我想要一套200平方米的房子价格大概是多少呢?这时在数

据表中我又找不到到对应的数据。那么这时就要做线性回归分析了。如下图找到下面这样的一条直线,使图中的所有点到直线的距离最小(即使误差最小)。 下面我们用数学语言来表达“使图中的所有点到直线的距离最小”这句话。图中的(面积,价格)可以用坐标点(Xi,Yi)表示。数学中的直线方程解析式为:y=kx+b,现在我们用机器学习里的表达方式如下: y=b+wx (在机器学习中b叫偏至,w叫超越平面参数) 这样的表达还不够统一,不方便计算,写成下式: y’=w’x’,(w’=[1,w] x’=[1,x]). 现在我们继续把上面改写成向量形式,以便于推广到N维形式,改写成正式: “使图中的所有点到直线的距离最小”用数学的语言描述如下: 上式叫误差平方和式,写成向量形式如下: 我们的目标是使J(W)最小,上式对W求导得:

W就是我们要求的结果了。把200平方米的代入式(1)就得到我们的估计房价了 这里的解有一个陷阱,不知道大家知道了没有。在分类问题中,我会提出一种要求更低的解决算法,即著名的感知机算法。 2.线性分类 什么是分类呢?下面我列出一些实际的分类任务如下: 1.识别图像中的人脸,非人脸。 2.识别正常邮件,垃圾邮件。 3.识别信贷中的正常行为,欺诈行为。 4.入侵检测中的系统的的正常访问跟非法访问。 5.…… 一些符号说明如下: 以下图的两类分类问题为例,样本点的类别是已知的,并且两类样本点是线性可分的, 定义映谢:

利用相关分析法辨识脉冲响应

利用相关分析法辨识脉冲响应 自1205 刘彬 41251141 1 实验方案设计 1.1 生成输入数据和噪声 用M 序列作为辨识的输入信号,噪声采用标准正态分布的白噪声。 生成白噪声时,首先利用乘同余法生成U[0,1]均匀分布的随机数,再利用U[0,1]均匀分布的随机数生成标准正态分布的白噪声。 1.2 过程仿真 模拟过程传递函数)(s G ,获得输出数据y(k)。)(s G 采取串联传递函数仿真, 2 12111 11)(T s T s T T K s G ++= ,用M 序列作为辨识的输入信号。 1.3 计算互相关函数 ∑++=-= p p N r N i p Mz i z k i u rN k R )1(1 )()(1 )( 其中r 为周期数,1+=p N i 表示计算互相关函数所用的数据是从第二个周期开始的,目的是等过程仿真数据进入平稳状态。 1.4 计算脉冲响应估计值、脉冲响应理论值、脉冲响应估计误差 脉冲响应估计值[] )1()()1()(?2 --?+=p Mz Mz p p N R k R t a N N k g 脉冲响应理论值[] 21//2 10)(T t k T t k e e T T K k g ?-?---=

脉冲响应估计误差 ()() ∑∑==-= p p N k N k g k g k g k g 1 2 1 2 )()(?)(δ 1.5 计算噪信比 信噪比()()2 2 )()(v k v y k y --=η 2 编程说明 M 序列中,M 序列循环周期取 63 126=-=p N ,时钟节拍t ?=1Sec ,幅度1=a , 特征多项式为1)(56⊕⊕=s s s F 。白噪声循环周期为32768215=。 )(s G 采样时间0T 设为1Sec ,Sec 2.6 Sec,3.8 ,12021===T T K 3 源程序清单 3.1 均匀分布随机数生成函数 function sita=U(N) %生成N 个[0 1]均匀分布随机数 A=179; x0=11; M=2^15; for k=1:N x2=A*x0; x1=mod(x2,M); v1=x1/(M+1); v(:,k)=v1; x0=x1; end sita=v; end 3.2 正态分布白噪声生成函数 function v=noise(aipi) %生成正态分布N(0,sigma)

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

相关分析和回归分析SPSS实现

相关分析与回归分析 一、试验目标与要求 本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析,具体包括: (1)皮尔逊pearson简单相关系数的计算与分析 (2)学会在SPSS上实现一元及多元回归模型的计算与检验。 (3)学会回归模型的散点图与样本方程图形。 (4)学会对所计算结果进行统计分析说明。 (5)要求试验前,了解回归分析的如下内容。 参数α、β的估计 回归模型的检验方法:回归系数β的显著性检验(t-检验);回归 方程显著性检验(F-检验)。 二、试验原理 1.相关分析的统计学原理 相关分析使用某个指标来表明现象之间相互依存关系的密切程度。用来测度简单线性相关关系的系数是Pearson简单相关系数。 2.回归分析的统计学原理 相关关系不等于因果关系,要明确因果关系必须借助于回归分析。回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数与模型进行检验与判断,并进行预测等。 线性回归数学模型如下: y i 01x i12x i2k x i k i 在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数: ???? y i 0 1x i12x i2k x i k e i 回归模型中的参数估计出来之后,还必须对其进行检验。如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释

(整理)多项分类Logistic回归分析的功能与意义1.

多项分类Logistic回归分析的功能与意义 我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。 例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示: 上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下: 1:设置随机抽样的随机种子,如下图所示:

选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、 2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面: 在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值 如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0" 为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件” 点击“如果”按钮,进入如下界面:

回归分析与相关分析联系 区别

回归分析与相关分析联系、区别?? 简单线性回归分析是对两个具有线性关系的变量,研究其相关性,配合线性回归方程,并根据自变量的变动来推算和预测因变量平均发展趋势的方法。 回归分析(Regression analysis)通过一个变量或一些变量的变化解释另一变量的变化。 主要内容和步骤:首先依据经济学理论并且通过对问题的分析判断,将变量分为自变量和因变量,一般情况下,自变量表示原因,因变量表示结果;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;接着要估计模型的参数,得出样本回归方程;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验,计量经济学检验、预测检验;当所有检验通过后,就可以应用回归模型了。 回归的种类 回归按照自变量的个数划分为一元回归和多元回归。只有一个自变量的回归叫一元回归,有两个或两个以上自变量的回归叫多元回归。 按照回归曲线的形态划分,有线性(直线)回归和非线性(曲线)回归。 相关分析与回归分析的关系 (一)相关分析与回归分析的联系 相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。 (二)相关分析与回归分析的区别 1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。因此,在回归分析中,变量之间的关系是不对等的。 2.在相关分析中所有的变量都必须是随机变量;而在回归分析中,自变量是确定的,因变量才是随机的,即将自变量的给定值代入回归方程后,所得到的因变量的估计值不是唯一确定的,而会表现出一定的随机波动性。 3.相关分析主要是通过一个指标即相关系数来反映变量之间相关程度的大小,由于变量之间是对等的,因此相关系数是唯一确定的。而在回归分析中,对于互为因果的两个变量(如人的身高与体重,商品的价格与需求量),则有可能存在多个回归方程。 需要指出的是,变量之间是否存在“真实相关”,是由变量之间的内在联系所决定的。相关分析和回归分析只是定量分析的手段,通过相关分析和回归分析,虽然可以从数量上反映变量之间的联系形式及其密切程度,但是无法准确判断变量之间内在联系的存在与否,也无法判断变量之间的因果关系。因此,在具体应用过程中,一定要注意把定性分析和定量分析结合起来,在定性分析的基础上展开定量分析。

第3章分类和回归

第3章分类与回归 3.1简述决策树分类的主要步骤。 3.2给定决策树,选项有:(1)将决策树转换成规则,然后对结果规则剪枝,或(2)对决策树剪枝,然后将剪 枝后的树转换成规则。相对于(2),(1)的优点是什么? 3.3计算决策树算法在最坏情况下的时间复杂度是重要的。给定数据集D,具有m个属性和|D|个训练记录, 证明决策树生长的计算时间最多为) ?。 m? D log(D 3.4考虑表3-23所示二元分类问题的数据集。 (1)计算按照属性A和B划分时的信息增益。决策树归纳算法将会选择那个属性? (2)计算按照属性A和B划分时Gini系数。决策树归纳算法将会选择那个属性? 3.5证明:将结点划分为更小的后续结点之后,结点熵不会增加。 3.6为什么朴素贝叶斯称为“朴素”?简述朴素贝叶斯分类的主要思想。 3.7考虑表3-24数据集,请完成以下问题: (1)估计条件概率) |- C。 P) A (+ | (2)根据(1)中的条件概率,使用朴素贝叶斯方法预测测试样本(A=0,B=1,C=0)的类标号; (3)使用Laplace估计方法,其中p=1/2,l=4,估计条件概率) P,) C (+ | (- P, A | | (+ P,) P,) A (+ B | (- P。 | C (- P,) | ) B (4)同(2),使用(3)中的条件概率 (5)比较估计概率的两种方法,哪一种更好,为什么? 3.8考虑表3-25中的一维数据集。

表3-25 习题3.8数据集 根据1-最近邻、3-最近邻、5-最近邻、9-最近邻,对数据点x=5.0分类,使用多数表决。 3.9 表3-26的数据集包含两个属性X 与Y ,两个类标号“+”和“-”。每个属性取三个不同值策略:0,1或 2。“+”类的概念是Y=1,“-”类的概念是X=0 and X=2。 (1) 建立该数据集的决策树。该决策树能捕捉到“+”和“-”的概念吗? (2) 决策树的准确率、精度、召回率和F1各是多少?(注意,精度、召回率和F1量均是对“+”类定 义) (3) 使用下面的代价函数建立新的决策树,新决策树能捕捉到“+”的概念么? ????? ???? +=-=+--=+=== j i j i j i j i C ,,10),(如果实例个数 实例个数如果如果 (提示:只需改变原决策树的结点。) 3.10 什么是提升?陈述它为何能提高决策树归纳的准确性? 3.11 表3-27给出课程数据库中学生的期中和期末考试成绩。 表3-27 习题3.11数据集 (1) 绘制数据的散点图。X 和Y 看上去具有线性联系吗?

第十一章线性相关分析报告与线性回归分析报告

第十一章线性相关分析与线性回归分析 11.1 两个变量之间的线性相关分析 相关分析是在分析两个变量之间关系的密切程度时常用的统计分析方法。最简单的相关分析是线性相关分析,即两个变量之间是一种直线相关的关系。相关分析的方法有很多,根据变量的测量层次不同,可以选择不同的相关分析方法。总的来说,变量之间的线性相关关系分为三种。一是正相关,即两个变量的变化方向一致。二是负相关,即两个变量的变化方向相反。三是无相关,即两个变量的变化趋势没有明显的依存关系。两个变量之间的相关程度一般用相关系数r 来表示。r 的取值范围是:-1≤r≤1。∣r∣越接近1,说明两个变量之间的相关性越强。∣r∣越接近0,说明两个变量之间的相关性越弱。相关分析可以通过下述过程来实现: 11.1.1 两个变量之间的线性相关分析过程 1.打开双变量相关分析对话框 执行下述操作: Analyze→Correlate(相关)→Bivariate(双变量)打开双变量相关分析对话框,如图11-1 所示。 图11-1 双变量相关分析对话框 2.选择进行相关分析的变量 从左侧的源变量窗口中选择两个要进行相关分析的变量进入Variable 窗口。 3.选择相关系数。 Correlation Coefficient 是相关系数的选项栏。栏中提供了三个相关系数的选项:(1)Pearson:皮尔逊相关,即积差相关系数。适用于两个变量都为定距以上变量,且两个

变量都服从正态分布的情况。这是系统默认的选项。 (2)Kendall:肯德尔相关系数。它表示的是等级相关,适用于两个变量都为定序变量的情况。 (3)Spearman:斯皮尔曼等级相关。它表示的也是等级相关,也适用于两个变量都为定序变量的情况。 4.确定显著性检验的类型。 Test of Significance 是显著性检验类型的选项栏,栏中包括两个选项: (1)Two-tailed:双尾检验。这是系统默认的选项。 (2)One-tailed:单尾检验。 5.确定是否输出相关系数的显著性水平 Flag significant Correlations:是标出相关系数的显著性选项。如果选中此项,系统在输出结果时,在相关系数的右上方使用“*”表示显著性水平为0.05;用“**”表示显著性水平为0.01。 6. 选择输出的统计量 单击Options 打开对话框,如图11-2 所示。 图11-2 相关分析选项对话框 (1)Statistics 是输出统计量的选项栏。 1)Means and standard deviations 是均值与标准差选项。选择此项,系统将在输出文件中输出均值与标准差。 2)Cross- product deviations and covariances 是叉积离差与协方差选项。选择此项,系统将在输出文件中输出每个变量的离差平方和与两个变量的协方差。 上述两项选择只有在主对话框中选择了Pearson:皮尔逊相关后,计算结果才有价值。 (2)缺失值的处理办法 Missing Valuess 是处理缺失值的选项栏。 1)Exclude cases pairwise 是成对剔除参与相关系数计算的两个变量中有缺失值的个案。2)Exclude cases listwise 是剔除带有缺失值的所有个案。 上述选项做完以后,单击Continue 按钮,返回双变量相关分析对话框。 8.单击OK 按钮,提交运行。系统在输出文件窗口中输出相关分析的结果。 11.1.2 两个变量之间的线性相关分析实例分析

《系统辨识》实验手册-16页文档资料

《系统辨识》 实验手册 哈尔滨工业大学控制与仿真中心 2012年8月 目录 实验1白噪声和M序列的产生---------------------------------------------------------- 2实验2脉冲响应法的实现----------------------------------------------------------------5实验3最小二乘法的实现--------------------------------------------------------------- 9 实验4递推最小二乘法的实现---------------------------------------------------------- 12附录实验报告模板----------------------------------------------------------------------16 实验1 白噪声和M序列的产生 一、实验目的 1、熟悉并掌握产生均匀分布随机序列方法以及进而产生高斯白噪声方法

2、熟悉并掌握M 序列生成原理及仿真生成方法 二、实验原理 1、混合同余法 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: 式中a 为乘子,0x 为种子,b 为常数,M 为模。混合同余法是一种递归算法,即先提供一个种子0x ,逐次递归即得到一个不超过模M 的整数数列。 2、正态分布随机数产生方法 由独立同分布中心极限定理有:设随机变量12,,....,,...n X X X 相互独立,服从同一分布,且具有数学期望和方差: 则随机变量之和1n k i X =∑的标准化变量: () n n n k k k X E X X n Y μ --= = ∑∑∑近似服从(0,1)N 分布。 如果n X 服从[0, 1]均匀分布,则上式中0.5μ=,2 1 12 σ= 。即 0.5n k X n Y -= ∑近似服从(0,1)N 分布。 3、M 序列生成原理 用移位寄存器产生M 序列的简化框图如下图所示。该图表示一个由4个双稳态触发器顺序连接而成的4级移位寄存器,它带有一个反馈通道。当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。

相关分析和回归分析的区别

相关分析和回归分析的区别:1, 在相关分析中,解释变量X与被解释变量Y之间处于平等的位置。而回归分析中,解释变量与被解释变量必须是严格确定的。2 相关分析中,被解释变量Y与解释变量X全是随机变量。而回归,被解释变量Y是随机的,解释变量X可能是随机的,可能是非随机的确定变量。3 相关的研究主要主要是为刻画两变量间线性相关的密切程度。而回归不仅可以揭示解释变量X和被解释变量Y的具体影响形式,而且还可以由回归方程进行预测和控制。如果两变量间互为因果关系,解释变量与被解释变量互换位置,相关分析结果一样,回归分析结果不同。 样本回归函数与总体回归函数的区别: 1 总体是未知的,是客观唯一存在的。样本是根据样本数据拟合的,每抽取一个样本,变可以拟合一条样本回归线。 2 总体中的β0和β1是未知参数,表现为常数。而样本中的是随机变量,其具体数值随样本观测值的不同而变化。3 随机误差ui 是实际Yi值与总体函数均值E(Yi)的离差,即Yi与总体回归线的纵向距离,是不可直接观测的。而样本的残差ei是yi与样本回归线的纵向距离,当拟合了样本回归后,可以计算出ei的具体数值。一元的五个基本假定: 1 随机扰动项ui的均值为零,即E(ui)=0 2 随机扰动项ui的方差为常数Var(ui)=E[ui-E(ui)]^2=E(ui^2)=σ^2 3 任意两个随机扰动项ui和uj互不(i不等于j)互不相关,其其协方差为0 Cov(ui,uj)=0 4 随机扰动项ui与解释变量Xi线性无关 Cov(ui,Xi)=0 5 随机扰动项服从正态分布,即ui~N(0,σ^2) 样本分段比较法适用于检验样本容量较大的线性回归模型可能存在的递增或递减型的异方差性,思路是首先量样本按某个解释变量从大到小或小到大顺序排列,并将样本均匀分成两段,有时为增强显著性,可去掉中间占样本单位1/4或1/3的部分单位;然后就各段分别用普通最小二乘法拟合回归直线,并计算各自的残差平方和,大的用RSS1,小的用RSS2表示,如果数值之比明显大于1,则存在异方差 异方差性的后果:1 参数估计值虽然是无偏的,但却不是有效的。 2 参数的显著性检验失去意义。3 模型的预测失效: 一方面,由于上述后果,使得模型不具有良好的统计性质。另一方面,在预测值的置信区间也包含有随机误差项共同的方差σ^2。所以,当模型出现异方差,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测零度,预测功能失效。

实验一 利用相关辨识法辨识脉冲响应

《系统辨识基础》第11讲要点 实验一 利用相关分析法辨识脉冲响应 一、实验目的 通过仿真实验掌握利用相关分析法辨识脉冲响应的原理和方法。 二、实验内容 下图为本实验的原理框图。过程传递函数为)(s G ,其中Sec 26T Sec,3812021..,===T K ;)()(k z k u 和分别为过程的输入和输出变量;)(k v 为过程测量白噪声,服从正态分布,均值为零,方差为2v σ,记作),(~)(20v N k v σ;)(k g 0为过程的脉冲响应理论值,)(? k g 为过程脉冲响 应估计值,)(~k g 为过程脉冲响应估计误差。 过程的输入驱动采用M 序列,输出受到白噪声)(k v 的污染。根据过程的输入和输出数据 {})(),(k z k u ,利用相关分析算法根据出过程的脉冲响应值)(? k g ,并与过程脉冲响应理论值 )(k g 0比较,得到过程脉冲响应估计误差值)(~k g ,当∞→k 时,应该有0→)(~k g 。 1 模拟过程传递函数)(s G ,获得过程的输入和输出数据{})(),(k z k u (采样时间取1秒)。 下面介绍的三种仿真方法都可以用。 (1) 惯性环节 其中,T 为惯性环节的时间常数,K 为惯性环节的静态放大倍数。若采样时间记作0T ,则惯性环节的输出可写成: [ ]0 011111000T k u k u T e T TK k u e TK k y e k y T T T T T T ) ()() )() ()()()(///--+-+--+-=--- (2) 传递函数)(s G 仿真(串联) 2 12111 11 T s T s T T K s G //)(++= k g =)(?]2 T t k /?

第三节:多元线性相关与回归分析汇总

第三节 多元线性相关与回归分析 一、标准的多元线性回归模型 上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。但是,在现实中,某一现象的变动常受多种现象变动的影响。例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。这就是说,影响因变量的自变量通常不是一个,而是多个。在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定与分析多因素之间相关关系的问题。 研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。只对某些多元回归分析所特有的问题作比较详细的说明。 多元线性回归模型总体回归函数的一般形式如下: t kt k t t u X X Y ++?++=βββ221 (7.51) 上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。 假设已给出了n个观测值,同时1?β,2?β…,k β?为总体回归系数的估计,则多元线性回 归模型的样本回归函数如下: t kt k t t e X X Y ++?++=βββ???221 (7.52) (t =1,2,…,n) 式中,e t 是Y t 与其估计t Y ?之间的离差,即残差。与一元线性回归分析相类似,为了进 行多元线性回归分析也需要提出一些必要的假定。多元线性回归分析的标准假定除了包括上一节中已经提出的关于随机误差项的假定外,还要追加一条假定。这就是回归模型所包含的自变量之间不能具有较强的线性关系,同时样本容量必须大于所要估计的回归系数的个数即n >k 。我们称这条假定为标准假定6。 二、多元线性回归模型的估计 (一)回归系数的估计 多元线性回归模型中回归系数的估计同样采用最小二乘法。设 ∑-=∑=22)?(t t t Y Y e Q 2221)???(kt k t t X X Y βββ-?--∑= (7.53) 根据微积分中求极小值的原理,可知残差平方和Q存在极小值,欲使Q达到最小,Q对1?β、2?β…,k β?的偏导数必须等于零。将Q对1?β、2?β…,k β?求偏导数,并令其等于零,加以整理后可得到以下k个方程式: ∑=∑+?+∑+t kt k t Y X X n βββ???221 ∑=∑+?+∑+∑t t kt t k t t Y X X X X X 2222221???βββ (7.54)

二分类与多分类Logistic回归模型

二分类Logistic 回归模型 在对资料进行统计分析时常遇到反应变量为分类变量的资料,那么,能否用类似于线性回归的模型来对这种资料进行分析呢?答案是肯定的。本章将向大家介绍对二分类因变量进行回归建模的Logistic 回归模型。 第一节 模型简介 一、模型入门 在很多场合下都能碰到反应变量为二分类的资料,如考察公司中总裁级的领导层中是否有女性职员、某一天是否下雨、某病患者结局是否痊愈、调查对象是否为某商品的潜在消费者等。对于分类资料的分析,相信大家并不陌生,当要考察的影响因素较少,且也为分类变量时,分析者常用列联表(contingency T able)的形式对这种资料进行整理,并使用2 χ检验来进行分析,汉存在分类的混杂因素时,还可应用Mantel-Haenszel 2χ检验进行统计学检验,这种方法可以很好地控制混杂因素的影响。但是这种经典分析方法也存在局限性,首先,它虽然可以控制若干个因素的作用,但无法描述其作用大小及方向,更不能考察各因素间是否存在交互任用;其次,该方法对样本含量的要求较大,当控制的分层因素较多时,单元格被划分的越来越细,列联表的格子中频数可能很小甚至为0,将导致检验结果的不可靠。最后,2χ检验无法对连续性自变量的影响进行分析,而这将大大限制其应用范围,无疑是其致使的缺陷。 那么,能否建立类似于线性回归的模型,对这种数据加以分析?以最简单的二分类因变量为例来加以探讨,为了讨论方便,常定义出现阳性结果时反应变量取值为1,反之则取值为0 。例如当领导层有女性职员、下雨、痊愈时反应变量1y =,而没有女性职员、未下雨、未痊愈时反应变量0y =。记出现阳性结果的频率为反应变量(1)P y =。 首先,回顾一下标准的线性回归模型:

相关文档
最新文档