运动生物化学(1)--脂肪分解概述

运动生物化学(1)--脂肪分解概述
运动生物化学(1)--脂肪分解概述

第4章 脂肪代谢与运动能力

习 题 作 业

1、名词解释

1 —氧化

2 酮体

3 脂肪动员

4脂肪水解

5自由脂肪酸

2、填空题

6 脂肪酸氧化可分为 、 、 和 四个阶段。 -氧化和脂肪酸氧化的产物分别是 和 。

7 脂肪酸在 催化下在 部位活化成脂肪酰辅酶A,同时消耗 个高能磷酸键。

8 脂肪酸 -氧化在 部位进行,反应过程分为 、

、 和 等四个步骤,脱氢的辅酶分别是

和 。

9 酮体是脂肪酸分解代谢的中间产物之一,包括 、 、;酮体生成与氧化的部位分别为 和 。运动时血液酮体含量的变化与运动员的训练水平有关。进行相同定量负荷后,经训练的运动员血液酮体含量比未经训练的正常人 。

10 运动时肌肉利用的脂肪酸的三个主要来源是 、

和 。

11 影响运动时血浆游离脂肪酸供能的因素包括 、

、 、 、 。

12 甘油分解的第一步是在 酶催化生成 ,然后再由酶催化脱氢生成 ,后者进入

代谢途径。

13 酮体虽在 生成,但由于没有氧化酮体的酶,只能在

利用。由于长时间运动会引起血糖降低,影响脑组织对血糖的利用,且酮体能透过血脑屏障和肌肉的毛细血管壁,因此,酮体是长时间耐力运动时 和 的补充能源。

14 酮体是 性物质,长时间持续运动时,由于酮体生成增加,大量酮体进入血液,引起血液酸碱平衡。故认为酮体与长时间运动所引起的 有关。

15 运动时脂肪供能比例随运动强度的增大而 ,随运动持续时间的延长而 。因此,脂肪酸是长时间运动至稳定状态时的重要能源物质。

三、单项选择题

16 1摩尔20碳饱和脂肪酸可进行几次 -氧化,分解成几摩尔乙酰辅酶A( )。

A、10次 -氧化,10摩尔乙酰辅酶A

B、9次 -氧化,9摩尔乙酰辅酶A

C、9次 -氧化,10摩尔乙酰辅酶A

D、10次 -氧化,9摩尔乙酰辅酶A

17 长时间耐力运动时,酮体的生成增多对( )最重要。

A、肝

B、脑

C、心肌

D、肾

18 -氧化的终产物是( )。

A、乙酰辅酶A

B、CO2、H2O

C、尿素

D、乳酸

19 当脂肪酸 -氧化的每次循环中,不生成的化合物是( )。

A、H2O

B、脂酰辅酶A

C、NDAH + H+

D、 FADH2

20 脂肪酸 —氧化中第二次脱氢的受体是( )。

A、NAD+

B、FAD

C、FMN

D、NADP+

21 16 C的软脂酸经 —氧化,最终可生成( )乙酰辅酶A。

A 、6

B 、7

C 、8

D 、9

22 甘油进入糖代谢途径时,首先形成化合物是( )。

A、3-磷酸甘油酸

B、3-磷酸甘油醛

C、1,3-二磷酸甘油酸

D、甘油醛

23 体内可快速动用的脂肪一般是指( )。

A、皮下脂肪 B、肠系膜脂肪

C、肌内脂 D、磷脂

24 脂肪氧化、酮体生成和胆固醇合成的共同中间产物是( )。

A、乙酰辅酶A

B、乙酰乙酸

C、乙酰乙酰辅酶A

D、丙二酰辅酶A

25 活化脂肪酸不能直接穿过线粒体内膜,需要借助内膜上的()转运机制。

A、肉毒碱 B、CP

C、磷酸甘油 D、苹果酸

26 脂肪酸的活化状态是( )。

A、自由脂肪酸 B、脂酰辅酶A

C、脂肪 D、乙酰辅酶A

27 脂肪酸 —氧化中第一次脱氢的受体是( )。

A、NAD+

B、FAD

C、NADP+

D、FMN

28 脂肪的分解代谢是在( )的条件下进行的。

A、无氧 B、有氧

C、有氧或无氧 D、急性运动

29 脂肪酸在肝脏进行 —氧化不生成的化合物是( )。

A、H2O

B、乙酰辅酶A

C、NADH + H+

D、FADH2

30 关于脂肪酸 —氧化的叙述正确的是( )。

A、起始代谢物是自由脂肪酸

B、起始代谢物是脂酰CoA

C、整个过程在胞液进行

D、反应产物是CO2和H2O

31 脂肪动员时脂肪酸在血中运输形式是( )。

A、与清蛋白结合

B、与VLDL结合

C、与HDL结合

D、与CM结合

32 脂肪酰CoA在肝进行 —氧化,其酶促反应的顺序是( )。

A、脱氢、再脱氢、水化、硫解

B、硫解、脱氢、水化、再脱氢

C、脱氢、水化、再脱氢、硫解

D、脱氢、脱水、再脱氢、硫解

33 下列不是脂肪酸 —氧化所必需的辅助因子的物质是( )。

A、N AD+

B、肉毒碱

C、F AD

D、N AD P+

34 酮体生成的主要组织是( )。

A、肝

B、心肌

C、脑

D、骨骼肌

35长时间耐力运动时可利用酮体代谢能量的主要组织是( )。

A、肝

B、心肌

C、脑

D、肾

36携带脂酰C o A进入线粒体的物质是( )。

A、脂酰C o A脱氢酶

B、磷脂

C、胆碱

D、肉毒碱

37 可作为脂肪动员强度指标的物质是血浆的( )。

A、乳酸

B、甘油

C、丙酮酸

D、胆固醇

38 由于甘油分解代谢主要发生在( ),因此,在运动时其供能意义不大。

A、肝

B、心肌

C、脑

D、骨骼肌

39下列不是酮体的组成成分的是( )。

A、丙酮酸

B、β-羟丁酸

C、乙酰乙酸

D、丙酮

40长时间耐力运动时,血中含量明显增加的物质是( )。

A、乳酸

B、酮体

C、丙酮酸

D、胆红素

411摩尔甘油彻底氧化成水和CO2可净生成ATP摩尔数是( )。

A、20

B、22

C、11

D、18

42 组织可从血中摄取和利用的物质是( )。

A、胆固醇酯

B、游离脂肪酸

C、磷脂

D、肝甘油三酯

四、多项选择题

43属于酮体的物质是( )。

A、 -羟丁酸

B、乙酰乙酸

C、丙酮酸

D、丙酮

44脂肪酸 ——氧化过程中,参与其脱氢的物质是( )。

A、FNM

B、FAD

C、NAD+

D、NADP+

45下列脂肪酸氧化产生乙酰CoA的去路中错误的是( )。

A、再合成脂肪酸

B、合成葡萄糖

C、合成胆固醇

D、在肝脏合成酮体

46 下列有关酮体的叙述,正确的是( )。

A、酮体包括 -羟丁酸、乙酰乙酸和丙酮

B、酮体是肝脏输出能源的重要方式

C、长时间运动可引起血中酮体增多

D、酮体是酸性物质,运动是可能导致运动性疲劳

47 脂肪动员加强是会引起( )。

A、血浆甘油三酯升高

B、血浆游离脂肪酸下降

C、血浆甘油三酯下降

D、血浆游离脂肪酸升高

48 脂肪酸 -氧化在细胞内进行的部位是( )。

A、胞液

B、细胞质膜

C、微粒体

D、线粒体

49长时间运动时能将酮体作为补充的能源物质的组织是( )。

A、心肌

B、大脑

C、骨骼肌

D、肝脏

50由乙酰CoA可合成( )。

A、胆固醇

B、酮体

C、脂肪酸

D、甘油

51 下列有关脂肪动员的叙述正确的是( )。

A、是利用脂肪组织中储存的脂肪

B、是把脂肪转移成葡萄糖以升高血糖

C、受多种激素调节控制

D、其水解产物脂肪酸的运输需清蛋白作载体

52 了解运动时脂肪动员的程度可测定血液中的( )。

A、酮体

B、甘油

C、脂肪酸

D、丙酮酸

53 运动时骨骼肌利用值肪酸的主要来源是( )。

A、食物的脂肪

B、肌细胞内的甘油三酯

C、血浆的甘油三酯

D、脂肪组织的甘油三酯

54 运动时脂肪供能的相对量与( )有关。

A、运动强度

B、运动持续时间

C、运动前膳食

D、运动员训练水平

五、判断题

55 1分子甘油完氧化释放能量可合成22分子ATP,故甘油是运动肌主要能量供应者。

56 肝脏含有生成酮体的酶系,但缺乏利用酮体的酶系。

57 丙酮酸、乙酰乙酸、 —羟丁酸总称为酮体。

58 饱和脂肪酸完全氧化释放的能量数取决于脂肪酸碳链的碳原子数。

59 酮体在骨骼肌生成,但在肝脏氧化。

60耐力性运动时,脂肪氧化起着节省糖的作用。

61脂酰CoA进入线粒体的过程需要肉毒碱参与。

62运动时,当肝脏酮体生成速度大于肝外组织酮体氧化速度时,血浆酮体的浓度增高。

63长时间运动时,甘油作为糖异生原料合成糖对维持血糖恒定起着重要作用。

64极量运动时,脂肪参与供能的比例很小。

65低强度运动时,肌糖原动用很少,肌肉主要利用血浆游离脂肪酸供能。

66同等重量的脂肪和糖在体内完全氧化时,释放的能量相同。67糖在缺氧时生成乳酸,脂肪酸在缺氧时易生成酮体。

68运动时酮体生成增多会引起运动性疲劳。

69脂肪酸 -氧化的终产物是CO2、H2O与ATP。

70运动时酮体可作为大脑和肌肉组织的重要补充能源。

71脂酰CoA进行 -氧化,需经脱氢、水化、再脱氢、硫解等四个过程。

六、简答题

72试述甘油的代谢过程。

73试述脂肪酸氧化分解过程。

74简述运动时甘油代谢的生物学意义。

75酮体在哪里生成?又在哪里氧化?长时间运动时酮体的生成有何意义?

76试述脂肪水解与脂肪动员的异同。

七、综合分析题

77叙述甘油三酯分解代谢过程,并计算1分子硬脂酰甘油三酯完全氧化产生能量可合成的ATP数。

78分析不同强度、不同时间运动时骨骼肌利用脂肪酸氧化供能的一般代谢特点。

22脂肪酸的分解代谢

第28章、脂肪酸的分解代谢(p230) 本章重点:1、脂肪酸分解代谢过程,2、脂肪酸代谢的能量产生,3、脂肪酸分解脱氢,4 脂肪酸分解代谢和糖酵解的关系。 本章主要内容: 一、脂肪的水解——脂酶的水解作用(细胞质中) 生物体内脂肪是由脂肪酶水解,在脂肪酶的催化下生成一分子甘油和三分子脂肪酸,脂 肪酶的特点:主要作用于有酯键的化合物,不论脂肪来源于什么组织,不论脂肪酸碳链的长 短,只要是酯键,脂肪酶就可以使其断裂,这就是酶的专一性即键专一性。 事实上,脂肪的水解不是一步完成的,而是分步完成,分步进行水解。第一步脂肪酶水 解第一或第三全酯键,即a或a'酯键,如果第一步水解a -酯键,第二水解a '酯键,生成a和a'脂肪酸和甘油-酯,最后,3 -位的脂肪酸在转移酶的催化下3 -的脂肪酸转到a 或a'位上,再在脂肪酶的作用下,脂肪酸水解下来,共生成三分子脂肪酸和一分子甘油,水解过程为:脂肪(甘油三酯)水解的产物:一分子甘油和三分子脂肪酸。 二、甘油的转化 脂肪的水解产物甘油是联系脂肪代谢和糖代谢的重要化合物,它可以轩化成磷酸甘油醛 进入糖代谢,其代谢过程为: 生成的磷酸2羟丙酮有两种去路: 1、DHAF可以进入EMP途径生成pyr,再经脱氢、脱羟生成乙酰COA经TCA循环氧化成CQ和H2O 2、G-3-P可以与DHAP逆EMP途径在醛缩酶催化下生成F-1.6-P,继续转化成糖类。 甘油被彻底氧化以后可以生成多少molATP呢?首先总结氧化的部位: ①a-磷酸甘油脱氢,生成ImolNADH H ②G-3-P 生成1, 3-DPG 1molNADH H ③Pyr 脱氢1molNADH H ④异柠檬酸脱氢1molNADHH+ ⑤ a -酮戊二酸脱氢1molNADH H+ ⑥平果酸脱氢1molNADH H+ ⑦琥珀酸脱氢1molFADH 2 琥珀酰COA>琥珀酸 另外,甘油还可在代谢的过程中转化到蛋白质中去,如进入TCA后生成Pyr、OAA a -Kg等可经转氨基作用生成Ala、Asp和Glu参与到蛋白质的合成中去。 三、脂肪酸的降解 脂肪酸的降解(分解)即氧化分解有几种形式,最重要的是 3 -氧化,其次是a -氧化和 3 -氧化。 (一)3 -氧化(线粒体内进行) 1、概念:脂肪酸的3 -氧化作用是脂肪酸经一系列酶的作用,从a、3碳位之间断裂生 成1mol乙酰COA和比原来脂肪酸少两个碳原子的脂酰COA 2、3 -氧化过程:脂肪酸3 -氧化的合成过程包括下列几个主要步骤: 1)活化或叫做脂酰COA的形成:脂肪酸首先与辅酶A缩合同时消耗一分子ATP形成活化的脂酰COA这步反应要消耗ATP的两个高能磷酸键。 第一步反应是在脂酰COA合成酶的催化下进行的,活化了的脂酰COA借线粒体内膜两侧的肉毒碱脂酰COA专移酶的作用,进入线粒体内。 肉毒碱脂酰COA专移酶 脂酰COA肉毒碱脂酰肉毒碱+COA 肉毒碱的结构: 肉毒碱起携带脂肪酸酰基通过线粒体内膜的作用。 肉毒碱脂酰COA转移酶有两个同工酶,一是位于内膜外侧的肉毒碱脂酰COA转移

脂类与生物膜

第二章脂类及生物膜习题 一、选择题(指出下列各题中哪个是错的) 1、关于脂肪酸的叙述 a.不饱和脂肪酸的第一个双键均位于9—10碳原子之间b.高等植物中的不饱和脂肪酸属顺式结构 c.花生四烯酸在植物中不存在 d.膜脂肪酸的过氧化作用破坏了膜的结构和功能 e.细菌中只存在单不饱和脂肪酸 2.关于甘油磷脂的叙述 a.在pH 7时卵磷脂和脑磷脂以兼性离子存在 b.用弱碱水解甘油磷脂可生成脂肪酸金属盐 c.甘油磷脂可用丙酮提取 d.将甘油磷脂置于水中,可形成微团结构 e.甘油磷脂与鞘磷脂的主要差别在于所含醇基不同3.关于油脂的化学性质 a.油脂的皂化值大时说明所含的脂肪酸分子小 b.酸值低的油脂其质量也差 c.向油脂中加入抗氧化剂是为了除去氧分子 d.油脂的乙酰化值大时,其分子中所含的羟基也多 c.氢化作用可防止油脂的酸败 4.关于固醇类的叙述 a.人体内存在的胆石是由胆固醇形成的 b.胆固醇可在人体合成也可从食物中摄取 c.在紫外线作用下,胆固醇可转变为维生素D2 d.人体不能利用豆类中的豆固醇和麦类中的麦固醇 e.羊毛脂是脂肪酸和羊毛固醇形成的酯 5.关于生物膜的特性,下列说法哪个是正确的 a.膜的功能越复杂,含蛋白质的种类及数量越多 b.组成膜的脂质分子均是双亲性分子 c.蛋白质分子在膜的脂双层中可以进行旋转、翻转、侧向移动等运动 d.胆固醇在膜相变温度以下可以增加膜的流动性,在相变温度以上则降低膜的流动性。 e.膜脂和膜蛋白分布不对称 二、判断是非(正确的写对,错误的写错) 1.在动植物组织中大部分脂肪酸以结合形式存在。√ 2.所有脂类均含有脂酰基。 3.哺乳动物体中也能合成不饱和脂肪酸。√· 4.天然存在的甘油磷脂均为D构型。 5.鞘磷脂在pH7的溶液中以兼性离子存在。√ 6.氧自由基及羟自由基作用于脂肪酸双键时产生氢过氧化物。√ 7.甘油与脱水剂五氧化二磷作用可产生丙醛。 8.某些类固醇类化合物具有激素功能,对代谢有调节作用。√ 9.胆汁酸是固醇的衍生物,是一种重要的乳化剂。√ 10.含有三个双键的脂肪酸是人体必需脂肪酸。

脂肪进行合成代谢的过程

郑州增肥专科医院 来源:河南省现代研究院中医院增肥专科脂肪是怎样消耗的——脂肪分解的“三大环节” 为了方便大家理解这个相对专业的生化反应过程,我画了一张图(如下),我就按图解说了。 建议大家先仔细阅读一下图,再接着看下文—— 第一环节:脂肪动员 我们的脂肪主要以“甘油三酯(TG)”的形式储存在脂肪组织内,另外,心肌、骨骼肌、血浆中也有少量甘油三酯存在。对于减肥瘦身来说,主要是将脂肪组织内的甘油三酯动员起来用于供能,才能达到理想的效果。如果一个人脂肪动员的能力较低,就更容易产生肥胖,或者更不容易减肥。 一些特定的食物也能促进脂肪动员,如茶(茶多酚、咖啡碱)、咖啡、辣椒,以及瓜拉那等草本提取物,同时伴有心跳加速、血压增高的反应,因此需慎重使用。 第二环节:活性脂酸转移 当脂肪酸从脂肪组织中分解出来进入血浆后,在血浆蛋白的帮助下运送到全身各处的活动细胞内,开始了它的第二个环节——活化。只有被活化的脂肪酸才能进入被称作“细胞内动力工厂”的“线粒体”内,进一步被氧化分解。这个进入过程就是第三环节:活性脂酸转移。 脂肪酸被活化是受一系列酶的催化作用完成的,因此,这些酶的活性成为脂肪分解的一个限制因素。当然,这个因素主要受遗传决定,同时也受特定的代谢物质(如共轭亚油酸,CLA)影响。 第三环节:脂肪酸β氧化 这是脂肪酸在线粒体内最后被分解成二氧化碳和水,并产生能量的过程,受一系列酶和其他代谢反应影响。值得重视的是,脂肪酸的β氧化和糖的氧化在最后阶段都必须进入一个叫“三羧酸循环”的生化反应过程,才能最终分解成二氧化碳和水,最大限度地释放能量。

如果脂肪分解过程中,糖供应不足,导致三羧酸循环不能顺利进行,脂肪分解也会受到抑制,从而产生“酮体”。高浓度的酮体对人体是有害的,可能造成“酮中毒”。

人体脂肪代谢的调控和调动

人体脂肪代谢的调控和调动 人体摄入的大部分)脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸). 水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。 脂肪细胞在体内的代谢过程受到多种因素的调控,脂蛋白脂酶,以及脂肪细胞膜上的肾上腺素能受体、胰岛素受体及其他肽类激素和腺苷受体都参与这一过程的调节。 (1)脂蛋白脂酶(LPL):脂蛋白脂酶由体内脂肪细胞合成,然后释放到血液中附着在毛细血管的表面。其功能是将与其接触的乳糜微粒和极低密度脂蛋白中的三酰甘油(甘油三酯)水解成游离脂肪酸和α-磷酸甘油。前者进入脂肪细胞内,与磷酸甘油结合生成三酰甘油。由于人类脂肪细胞合成脂肪酸的能力很弱,因此在脂蛋白脂酶作用下所产生的游离脂肪酸就成为体内脂肪细胞合成三酰甘油所需要游离脂肪酸的主要来源。因此脂蛋白脂酶在调节人体局部脂肪沉积上发挥着一定的功能。脂蛋白脂酶的活性受机体营养状况及相关激素的调节,空腹及营养不良时其活性降低,进食后其活性增高。胰岛素可以增加脂蛋白脂酶的合成,而脂解激素则使脂蛋白脂酶活性受到抑制。 (2)胰岛素:胰岛素可以通过降低脂肪细胞内cAMP的浓度来抑制三酰甘油脂肪酶活性,减少三酰甘油的水解,促进水解后的游离脂肪酸再酯化。胰岛素是体内主要的抗脂解激素。当胰岛,素水平下降时,体内脂肪组织的脂解过程加快,血中游离脂肪酸和磷酸甘油浓度增高。 (3)儿茶酚胺:人类脂肪细胞上分布着许多α2和β1,受体,儿茶酚胺主要就是通过脂肪细胞膜上的肾上腺素能受体来调节脂解反应。 儿茶酚胺通过。α2受体抑制脂解,通过β1受体刺激脂解。人体不同部位脂肪细胞对儿茶酚胺的反应性是不相同的。无论男女,腹部脂肪细胞对儿茶酚胺促进脂解的反应性和敏感性均强于股部,绝经前女性股部脂肪细胞对儿茶酚胺的脂解反应性明显下降,而妊娠晚期和哺乳期女性股部脂肪细胞对儿茶酚胺的脂解反应性明显增强。造成上述差别的主要原因可能与分布在这些部位脂肪细胞上的。α2和β1受体的数目、比例及活性不同有关。 (4)性激素:性激素在促进脂肪细胞脂解反应区域性差异的发生上起着一定的作用。女性激素可以促进脂肪细胞α2受体的活性来达到拮抗儿茶酚胺的脂解作用。 (5)其他激素:生长激素、促肾上腺皮质激素、促甲状腺激素、泌乳素、胰高血糖素等均可促进脂肪细胞的脂解反应。 肪细胞的代谢过程是怎样进行的? 体内脂肪细胞的代谢过程是一个非常活跃、从不间断的循环过程。 正常情况下,机体内的脂肪细胞一方面不断地从血液中摄取食物分解后产生的游离脂肪酸,然后在细胞内将游离脂肪酸与由葡萄糖合成的。α-磷酸甘油结合生成磷酸三酰甘油。

4脂类和生物膜(答案)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 4脂类和生物膜(答案) 4 脂类化学和生物膜一、名词解释 1、外周蛋白:在细胞膜的细胞外侧或细胞质侧与细胞膜表面松散连接的膜蛋白,易于用不使膜破坏的温和方法提取。 2、内在蛋白:整合进入到细胞膜结构中的一类蛋白,它们可部分地或完全地穿过膜的磷脂双层,通常只有用剧烈的条件将膜破坏才能将这些蛋白质从膜上除去。 3、同向协同:物质运输方向与离子转移方向相同 4、反向协同:物质运输方向与离子转移方向相反 5、内吞作用:细胞从外界摄入的大分子或颗粒,逐渐被质膜的小部分包围,内陷,其后从质膜上脱落下来而形成含有摄入物质的细胞内囊泡的过程。 6、外排作用:细胞内物质先被囊泡裹入形成分泌泡,然后与细胞质膜接触、融合并向外释放被裹入的物质的过程。 7、细胞识别:细胞通过其表面的受体与胞外信号物质分子选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体地生物学效应的过程。 二、填空 1、膜蛋白按其与脂双层相互作用的不同可分为内在蛋白与外周蛋白两类。 2、根据磷脂分子中所含的醇类,磷脂可分为甘油磷脂和鞘磷脂两种。 3、磷脂分子结构的特点是含一个极性的头部和两个非极性尾部。 1/ 8

4、神经酰胺是构成鞘磷脂的基本结构,它是由鞘氨醇以酰胺键与脂肪酸相连而成。 5、磷脂酰胆碱(卵磷脂)分子中磷酰胆碱为亲水端,脂肪酸的碳氢链为疏水端。 6、磷脂酰胆碱(卵磷脂)是由甘油、脂肪酸、磷酸和胆碱组成。 7、脑苷脂是由鞘氨醇、脂肪酸和单糖(葡萄糖/半乳糖)组成。 8、神经节苷脂是由鞘氨醇、脂肪酸、糖和唾液酸组成。 9、生物膜内的蛋白质疏水氨基酸朝向分子外侧,而亲水氨基酸朝向分子内侧。 10、生物膜主要由膜脂和膜蛋白组成。 11、膜脂一般包括磷脂、糖脂和固醇,其中以磷脂为主。 三、单项选择题鞘 1、神经节苷脂是() A、糖脂 B、糖蛋白 C、脂蛋白 D、脂多糖 2、下列关于生物膜的叙述正确的是() A、磷脂和蛋白质分子按夹心饼干的方式排列。 B、磷脂包裹着蛋白质,所以可限制水和极性分子跨膜转运。 C、磷脂双层结构中蛋白质镶嵌其中或与磷脂外层结合。 D、磷脂和蛋白质均匀混合形成膜结构。 3、跨膜蛋白与膜脂在膜内结合部分的氨基酸残基() A、大部分是酸性 B、大部分是碱性 C、大部分是疏水性 D、大部分是糖基化 4、下列关于哺乳动物生物膜的叙述除哪个外都是正确的() A、蛋白质和膜脂跨膜不对称排列 B、某些蛋白质可以沿膜脂平行移动 C、蛋白质含量大于糖含量 D、低温下生长的细胞,膜脂中饱和脂肪酸含

4脂类和生物膜(答案)

4脂类化学和生物膜 一、名词解释 1、外周蛋白:在细胞膜的细胞外侧或细胞质侧与细胞膜表面松散连接的膜蛋白,易于用不使膜破坏的温和方法提取。 2、内在蛋白:整合进入到细胞膜结构中的一类蛋白,它们可部分地或完全地穿过膜的磷脂双层,通常只有用剧烈的条件将膜破坏才能将这些蛋白质从膜上除去。 3、同向协同:物质运输方向与离子转移方向相同 4、反向协同:物质运输方向与离子转移方向相反 5、内吞作用:细胞从外界摄入的大分子或颗粒,逐渐被质膜的小部分包围,内陷,其后从质膜上脱落下来而形成含有摄入物质的细胞内囊泡的过程。 6、外排作用:细胞内物质先被囊泡裹入形成分泌泡,然后与细胞质膜接触、融合并向外释放被裹入的物质的过程。 7、细胞识别:细胞通过其表面的受体与胞外信号物质分子选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体地生物学效应的过程。 二、填空 1、膜蛋白按其与脂双层相互作用的不同可分为内在蛋白与外周蛋白两类。 2、根据磷脂分子中所含的醇类,磷脂可分为甘油磷脂和鞘磷脂两种。 3、磷脂分子结构的特点是含一个极性的头部和两个非极性尾部。 4、神经酰胺是构成鞘磷脂的基本结构,它是由鞘氨醇以酰胺键与脂肪酸相连而成。 5、磷脂酰胆碱(卵磷脂)分子中磷酰胆碱为亲水端,脂肪酸的碳氢链为疏水端。 6、磷脂酰胆碱(卵磷脂)是由甘油、脂肪酸、磷酸和胆碱组成。 7、脑苷脂是由鞘氨醇、脂肪酸和单糖(葡萄糖/半乳糖)组成。 8、神经节苷脂是由鞘氨醇、脂肪酸、糖和唾液酸组成。 9、生物膜内的蛋白质疏水氨基酸朝向分子外侧,而亲水氨基酸朝向分子内侧。 10、生物膜主要由膜脂和膜蛋白组成。 11、膜脂一般包括磷脂、糖脂和固醇,其中以磷脂为主。 三、单项选择题鞘 1、神经节苷脂是()A、糖脂 B、糖蛋白 C、脂蛋白 D、脂多糖 2、下列关于生物膜的叙述正确的是() A、磷脂和蛋白质分子按夹心饼干的方式排列。 B、磷脂包裹着蛋白质,所以可限制水和极性分子跨膜转运。 C、磷脂双层结构中蛋白质镶嵌其中或与磷脂外层结合。 D、磷脂和蛋白质均匀混合形成膜结构。 3、跨膜蛋白与膜脂在膜内结合部分的氨基酸残基() A、大部分是酸性 B、大部分是碱性 C、大部分是疏水性 D、大部分是糖基化 4、下列关于哺乳动物生物膜的叙述除哪个外都是正确的() A、蛋白质和膜脂跨膜不对称排列 B、某些蛋白质可以沿膜脂平行移动 C、蛋白质含量大于糖含量 D、低温下生长的细胞,膜脂中饱和脂肪酸含量高 5、下列有关甘油三酯的叙述,哪一个不正确?() A、甘油三酯是由一分子甘油与三分子脂酸所组成的酯 B、任何一个甘油三酯分子总是包含三个相同的脂酰基 C、在室温下,甘油三酯可以是固体,也可以是液体 D、甘油三酯可以制造肥皂 E、甘油三酯在氯仿中是可溶的 6、脂肪的碱水解称为() A、酯化 B、还原C、皂化 D、氧化 E、水解 7、下列哪种叙述是正确的? () A、所有的磷脂分子中都含有甘油基 B、脂肪和胆固醇分子中都含有脂酰基 C、中性脂肪水解后变成脂酸和甘油 D、胆固醇酯水解后变成胆固醇和氨基糖 E、碳链越长,脂酸越易溶解于水 8、一些抗菌素可作为离子载体,这意味着它们() A、直接干扰细菌细胞壁的合成 B、对细胞膜有一个类似于去垢剂的作用 C、增加了细胞膜对特殊离子的通透性 D、抑制转录和翻译 E、仅仅抑制翻译 9、钠钾泵的作用是什么? () A、Na+输入细胞和将K+由细胞内输出 B、将Na+输出细胞 C、将K+输出细胞 D、将K+输入细胞和将Na+由细胞内输出 E、以上说法都不对 10、生物膜主要成分是脂与蛋白质,它们主要通过什么键相连?()A、共价键 B、二硫键 C、氢键 D、离子键E、疏水作用 11、细胞膜的主动转运() A、不消耗能量 B、需要ATP C、消耗能量(不单指ATP) D、需要GTP 四、是非题 1、自然界中常见的不饱和脂酸多具有反式结构。 (顺式) 2、天然脂肪酸的碳链骨架碳原子数目几乎都是偶数。? 3、质膜上糖蛋白的糖基都位于膜的外侧。? 4、细胞膜的内在蛋白通常比外周蛋白疏水性强。? ①胆固醇:胆固醇的含量增加会降低膜的流动性。 ②脂肪酸链的饱和度:脂肪酸链所含双键越多越不饱和,使膜流动性增加。 ③脂肪酸链的链长:长链脂肪酸相变温度高,膜流动性降低。 ④卵磷脂/鞘磷脂:该比例高则膜流动性增加,是因为鞘磷脂粘度高于卵磷脂。 ⑤其他因素:膜蛋白和膜脂的结合方式、温度、酸碱度、离子强度等。 5、缩短磷脂分子中脂酸的碳氢链可增加细胞膜的流动性。? 6、某细菌生长的最适温度是25℃,若把此细菌从25℃移到37℃的环境中,细菌细胞膜的流动性将增加。? 7、细胞膜的两个表面(外表面、内表面)有不同的蛋白质和不同的酶。? 8、所有细胞膜的主动转运,其能量来源是高能磷酸键的水解。

脂肪代谢 课堂小结

脂肪代谢 1 脂类在机体内的消化和吸收 消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。短链、中链脂肪酸甘油酯直接吸收,经门静脉入血;长链脂肪酸甘油酯与载脂蛋白、胆固醇等结合成乳糜微粒,经淋巴入血。 Diet triacylglycerols are emulsified and absorbed by the intestine 1) Bile salts, synthesized from cholesterol in liver, emulsifies macroscopic fat particles into microscopic mixed micelles for better lipase action and absorption. 2) Fatty acids generated from triacylglycerol (catalyzed by the intestinal lipase) diffuse into intestinal epithelial cells, be reconverted into triacylglycerol, and packed with cholesterol esters and specific apolipoproteins in chylomicrons。 3) Triacylglycerols are converted into fatty acids and glycerols in the capillaries by the action of lipoprotein lipases activated by apoC-II on chylomicrons, which in turn are absorbed mainly by adipocytes and myocytes for storage and energy consumption. 4) The leftover of the chylomicrons (containing mainly cholesterol and apolipoproteins) will be taken up by the liver by endocytosis; triacylglycerols will be used as the energy source for the liver cells, converted to ketone bodies or transported to adipose tissues after being packed with apolipoproteins. 2 甘油三酯代谢 (1) 合成代谢 甘油三酯是机体储存能量及氧化供能的重要形式。 1) 合成部位及原料 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。 2) 合成基本过程 ①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。 ②甘油二酯途径:肝细胞和脂肪细胞的合成途径。 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。 (2) 分解代谢 即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。 甘油甘油激酶→3-磷酸甘油→磷酸二羟丙酮→糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

脂肪代谢总结

脂类代谢 一、脂肪=甘油+脂肪酸 二、脂肪的降解 脂肪脂肪酶 甘 油 激 酶 α- (一)脂肪酸的氧化分解 包括:α、β(重点)、ω氧化 1、脂肪酸的活化以及转运 细胞定位:活化:——细胞质 转运:——从细胞质→线粒体内膜→线粒体基质 (1)活化 脂肪酸脂酰-CoA合成酶脂酰-CoA (2)转运 【注意】:肉碱脂酰基转移酶Ⅰ是β氧化的限速酶 2、脂肪酸的β氧化 细胞定位:线粒体基质 (1)饱和、偶数碳脂肪酸的β氧化 脂酰-CoA 脂酰-CoA脱氢酶烯脂酰-CoA 烯脂酰-CoA水合酶L-?-羟脂酰CoA H+ 脂酰-CoA(-2C) ?-酮脂酰-CoA 乙酰-CoA (2)不饱和脂肪酸的氧化 1.1单不饱和脂肪酸的氧化 特殊的酶:烯酰-CoA顺反异构酶(只有当底物是反式的时候β氧化第二步的水合酶才能够识

别) 1.2多不饱和脂肪酸的氧化 特殊的酶:烯酰-CoA顺反异构酶 二烯酰-CoA还原酶(减少一个双键,并且消耗2.5ATP) 烯酰-CoA异构酶(移动双键位置) (3)奇数碳脂肪酸的氧化 最后生成的丙酰-CoA可转化为琥珀酰-CoA 3、脂肪酸的α-氧化作用 概念:脂肪酸在一些酶的催化下,其α–碳原子也可发生氧化,结果生成一分子二氧化碳和比原来少一个碳原子的脂肪酸,这种氧化作用称为脂肪酸的α-氧化作用。 底物:奇数碳脂肪酸、支链脂肪酸、或过长的C22、C24 等长链脂肪酸 4、脂肪酸的ω氧化途径 概念:在酶的催化下,脂肪酸的烷基端碳,即远离羧基的末断碳原子(ω–碳原子)发生氧化,生成α、ω-二羧酸。脂肪酸的这种氧化作用称ω–氧化作用。 底物:动物体内10或12碳脂肪酸 (二)乙醛酸循环 生物学意义:是连接糖脂代谢的枢纽 关键酶:异柠檬酸裂解酶、苹果酸合酶 (三)酮体的生成与利用 丙酮 酮体乙酰乙酸 β-羟基丁酸 (四)磷脂代谢 磷脂=溶血磷脂+脂肪酸 参与甘油磷脂代谢的酶有四种:磷脂酶A、B、C、D

脂代谢

脂类代谢 一级要求单选题 1 下列对血浆脂蛋白描述,哪一种不正确? A 是脂类在血浆中的存在形式 B 是脂类在血浆中的运输形式 C 是脂类与载脂蛋白的结合形式 D 脂肪酸-清蛋白复合物也是一种血浆脂蛋白 E 可被激素敏感脂肪酶所水解 E 2 用电泳法或超速离心法可将血浆脂蛋白分为四类,它们包括: A CM+α-脂蛋白+β-脂蛋白+高密度脂蛋白(HDL) B CM+β-脂蛋白+α-脂蛋白+低密度脂蛋白(LDL) C CM+α-脂蛋白+前β-脂蛋白+HDL D CM+β-脂蛋白+前β-脂蛋白+HDL E CM+β-脂蛋白+前β-脂蛋白+极低密度脂蛋白(VLDL) D 3 对于下列各种血浆脂蛋白的作用,哪种描述是正确的? A CM主要转运内源性TG B VLDL主要转运外源性TG C HDL主要将Ch从肝内转运至肝外组织 D 中间密度脂蛋白(IDL)主要转运TG E LDL是运输Ch的主要形式 E 4 胰高血糖素促进脂肪动员,主要是使: A LPL活性增高 B DG脂肪酶活性升高 C TG脂肪酶活性升高 D MG脂肪酶活性升高 E 组织脂肪酶活性升高 C 5 控制长链脂肪酰辅酶A进入线粒体氧化速度的因素是: A 脂酰辅酶A(CoA)合成酶活性 B ADP含量 C 脂酰CoA脱氢酶的活性 D 肉毒碱脂酰转移酶的活性 E HSCoA的含量 D 6 脂肪酸的β-氧化需要下列哪组维生素参加? A 维生素B1+维生素B2+泛酸 B 维生素B12+叶酸+维生素B2 C 维生素B6+泛酸+维生素B1 D 生物素+维生素B6+泛酸 E 维生素B2+维生素PP+泛酸 E 7 脂肪酸进行β-氧化前,必需先活化转变为脂酰CoA,主要是因为: A 脂酰CoA水溶性增加 B 有利于肉毒碱转运 C 是肉毒碱脂酰转移酶的激活 D 作为脂酰CoA脱氢酶的底物激活物 E 作为烯脂酰CoA水合酶的底物 D 8 下列哪种描述不适合于脂肪酸的β-氧化? A β-氧化是在线粒体中进行的 B β-氧化的起始物是脂酰CoA C β-氧化的产物是乙酰CoA D β-氧化中脱下的二对氢给黄素腺嘌呤二核苷酸(FAD)及辅酶II(NADP+) E 每经一次β-氧化可产生5摩尔三磷酸腺苷(ATP) D

脂肪酸的分解代谢

第28章脂肪酸的分解代谢 28.1 本章主要内容 1)脂肪酸代谢的主要途径 2)脂肪酸代谢中的能量变化 3)酮体的代谢 28.2 教学目的和要求 通过本章学习,使学生掌握饱和脂肪酸的β-氧化途径和能量变化以及酮体的代谢,了解代谢障碍引起的疾病的发病机制与防治。 28.3 重点难点 1. 脂肪酸的β-氧化途径和能量变化 2. 酮体的代谢 28.4 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 28.5授课内容 一、脂类的消化和吸收 1.脂类的消化(主要在十二指肠中) 食物中的脂类主要是甘油三酯80-90%,还有少量的磷脂6-10%,胆固醇2-3%。 胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。 胰腺分泌的脂类水解酶如下: ①三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两 个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活。) ②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)。 ③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)。 ④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)。 2.脂类的吸收 脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成

更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。 小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。 3.脂类转运和脂蛋白的作用 甘油三脂和胆固醇脂在体内由脂蛋白转运。 脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。 载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。 4.脂蛋白的分类及功能 1)皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。 2)血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。 二、甘油三酯的水解 甘油三酯的水解由脂肪酶催化。组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。 分解甘油三酯的三种酶是: 脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶) 甘油二酯脂肪酶 甘油单酯脂肪酶 1.甘油代谢 在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。 2.脂肪酸的氧化

脂质代谢教学内容

脂质代谢

脂质代谢 7.1脂类的生理功能 ?供能与贮能 ?机体的重要结构成分 ?转变为各种衍生物参与代谢活动 脂肪作为储能物质的优缺点: ?脂肪具有高度还原性,彻底氧化释放的能量是同等重量的糖或蛋白质的两倍多(~38kJ/g vs 18kJ/g)。 ?脂肪具有高度疏水性,因而不会增加细胞胞浆的渗透压,也不会因水化增加额外的重量。但消化需要乳化,运输需要其他蛋白质协助。 ?脂肪具有化学惰性,不易产生副反应。但C-C键的断裂需要激活。 7.2 脂类的消化和吸收(Digestion and Absorption) 7.2.1 脂类的消化 ?部位:小肠上段 ?消化因素 胆汁酸盐(bile salts):乳化作用 辅脂酶(colipase):帮助胰脂酶起作用 7.2.2 脂类的吸收 ?部位:空肠 ?在毛细血管中,脂肪又被水解为游离脂肪酸和甘油。FA被细胞吸收。 7.3 脂肪动员(Mobilization of triglycerides)

?指脂肪组织中脂肪在激素的调节下,被一系列脂肪酶水解为脂肪酸和甘油,然后释放进入血液,脂肪酸以与血清白蛋白非共价结合的方式运输到其它组织利用的过程。 7.4 甘油的氧化 ?主要部位在肝、肾、肠。 ?甘油氧化通过三步反应转化为3-磷酸甘油醛。 ?脂肪和骨骼肌组织中甘油激酶活性很低,所以不能很好地利用甘油。 ?饱和脂肪酸的氧化: ?部位: 以肝脏和肌肉组织最为活跃。 ?整个过程可分为三个阶段: 第一阶段:脂肪酸的活化; ?脂肪酸与HSCoA(辅酶A)结合生成脂酰CoA(高能化合物)的过程,催化反应的是脂酰CoA合成酶?在细胞内分别有内质网脂酰CoA合成酶和线粒体脂酰CoA合成酶,前者活化12个碳原子以上的长链脂肪酸,后者活化中链或短链脂肪酸。 第二阶段:长链脂酰CoA进入线粒体; ?在肉碱脂酰移位酶Ⅰ的催化下,以脂酰肉碱的形式通过酰基肉碱/肉碱转运蛋白(acyl-carnitine/carnitine transporter)进入线粒体,在线粒体基质,脂酰肉碱在肉碱脂酰移位酶Ⅱ的催化下,重新生成脂酰CoA。 ?这是脂肪酸β-氧化的限速步骤。 ?丙二酸单酰CoA是肉碱脂酰移位酶Ⅰ的抑制剂。 ?肉碱缺乏症(carnitine deficiency)和肉碱脂酰移位酶缺乏症(acyl-carnitine/carnitine transporter deficiency):属常染色体遗传病,影响器官主要是肌肉、肾脏、心脏等。症状从中等程度的肌肉疼痛、痉挛到严重的肌肉坏死。 第三阶段:β-氧化。 ?所有脂肪酸β-氧化的酶都是线粒体酶。 ? -氧化每一轮循环是脱氢、水化、再脱氢和硫解四个重复步骤,生成1个乙酰CoA、1个少2C的脂酰CoA以及1个NADH、1个FADH2。

第四章 脂类和生物膜

第四章脂类和生物膜 一、填空题: 1.生物膜主要是由和构成的薄层系统。 2.生物细胞的生物膜分为处于细胞表面的和位于细胞内部的系统。 3.生物膜功能的主要担负者是。 4.载体蛋白可以实现物质的运输和运输,前者需要消耗,后者只是物质通过载体蛋白的扩散。 5.细胞的识别功能是通过生物膜上的来实现的。 6.构成生物膜的三类膜脂是、和。7.耐寒植物的膜脂中脂肪酸含量较高,从而使膜脂流动性 ,相变温度。 8.1972年提出生物膜的“流动镶嵌模型”,该模型突出了膜的和膜蛋白分布的。 二、选择题(只有一个最佳答案): 1.典型的生物膜中蛋白质与脂类及其他物质的组成比例一般是( ) ①蛋白质:50%~75%脂类:25%~50%其它:1%~10% ②蛋白质:25%~50%脂类:50%~75%其它:1%~10% ③蛋白质:75%以上脂类:25%其它:1%~3% 2.生物膜上钠泵(Na+/K+—A TP)酶工作时伴随A TP水解,每水解1分子A TP,可有( ) ①二个钠离子外运和二个K+内运②二个钠离子外运和三个K+内运 ③三个钠离子外运和二个K+内运④三个钠离子外运和三个K+内运 3.由生物膜组成的合成蛋白质的细胞器是( ) ①粗糙内质网②高尔基体③细胞核④光滑内质网 4.生物膜的流动镶嵌模型是哪些科学家提出的( ) ① Robertson ② Singer和Nicolson ③ Jain 和White ④ Watson和Crick 5.下列各项中,哪一项不属于生物膜的功能:( ) ①主动运输②被动运输③能量转化④生物遗传 6.当生物膜中不饱和脂肪酸增加时,生物膜的相变温度:( ) ①增加②降低③不变④范围增大 7.生物膜的功能主要决定于:( ) ①膜蛋白②膜脂③糖类④膜的结合水 三、是非题(在题后括号内打√或×): 1.生物膜其实质就是处于细胞表面的质膜。() 2.生物膜可以有选择地控制细胞间和细胞内不同区域间的运输与传递,包括物质传递、通过生物膜的能量传递与转换和刺激信号的传递。() 3.膜蛋白在生物膜上是固定不动的。() 4.物质过膜运输中,被动运输必需要有载体蛋白。() 5.主动运输都是通过载体蛋白进行的,且需要消耗能量。()

脂肪体内代谢过程

一、人体脂肪来源 脂肪又称三脂酰甘油或甘油三酯,由一分子甘油和三个脂肪酸缩合而成。体内脂肪酸来源有二:一是机体自身合成,二是食物供给,某些不饱和脂肪酸,机体不能合成,要靠食物供给,称必需脂肪酸,主要有两种,一种是ω-3系列的α-亚麻酸,在含有油脂类的植物食物中含量高,如亚麻籽、白苏籽、紫苏籽、火麻仁、核桃等,还有深绿色的植物如螺旋藻及深海微藻中。动物食品中只有蚕蛹、深海鱼等极少数的食物中含有。一种是ω-6系列的亚油酸,主要存在于豆油、玉米油和葵花油中。 二、脂肪体内合成代谢 1.合成场所 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强(注意:肝细胞能合成脂肪,但不能储存脂肪)。合成后要与载体蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。 2.合成基本过程 (1)甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。 (2)甘油二酯途径:肝细胞和脂肪细胞的合成途径。 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。脂肪的合成代谢过程:见下图。

三、脂肪体内分解代谢 脂肪在人体合成代谢过程不用详细描述,吃是第一大来源了喔。看看脂肪在人体的分解代谢过程,脂肪分解分为三个阶段: 1、脂肪动员阶段 甘油三酯在脂肪酶(anslim含)的作用下,分解为甘油和脂肪酸。 2、甘油的氧化 甘油在甘油磷酸激酶的作用下,分解为3-磷酸甘油,然后在磷酸甘油脱氢酶的催化下,脱去2个氢形成磷酸二羟丙酮;再经糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。 3、脂肪酸的β-氧化 A.脂肪酸活化 胞浆和线粒体外膜上的脂酰CoA合成酶在ATP、CoASH、Mg2+存在条件下(食用anslim 植物可以自然体内产生),催化脂肪酸活化,生成脂酰CoA。帮助代谢脂肪中间产物,完成体内代谢脂肪过程。 B.脂酰CoA进入线粒体 因为脂肪酸的β-氧化在线粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β-氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。 4、CH3Co~SCoA彻底氧化 乙酰CoA经三羧酸循环循环,最终氧化成CO2和H2O,生成的CO2经呼吸排出体外,H2O 则通过排汗和排尿排出体外。 总结: 了解这些脂肪在人体代谢过程后,妞们应该明白减肥要选择科学健康的方式。科学减肥重在脂肪合成代谢过程中注意防止身体合成过多身体不需要的脂肪,同时加速脂肪在人体的分解代谢过程,减少脂肪在身体储存量,从而维持骨感和健康的体质。

脂肪代谢知识

脂肪吸收后在体内代谢的生化过程主要分成:甘油三酯丶磷脂丶胆固醇丶血浆脂蛋白四类脂类物质的代谢,受胰岛素丶胰高血糖素丶饮食营养丶体内生化酶活性等复杂而精密的调控, 转变成身体各种精细生化反应所需要的物质成分。1、肝丶脂肪组织丶小肠是合成脂肪的 重要场所,以肝的合成能力最强。合成后要与载脂蛋白丶胆固醇等结合成极低密度脂蛋白(VLDL),入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形 成脂肪肝。2、长期饥饿,糖供应不足时,脂肪酸被大量动用,生成乙酰CoA氧化供能,并产生大量酮体。肝是生成酮体的器官,但不能利用酮体。脑组织不能利用脂肪酸,而酮体溶于水,分子小,可通过血脑屏障。严重糖尿病患者,葡萄糖得不到有效利用,脂肪酸转化生成大量酮体,超过肝外组织利用的能力,引起血中酮体升高,可致酮症酸中毒。 由脂肪酸的β-氧化及其他代谢所产生的乙酰CoA,在一般的细胞中可进入三羧酸循环进行氧化分解,但在动物的肝脏、肾脏、脑、等组织中,尤其在饥饿、禁食、糖尿病等情形下,乙酰CoA还有另一条代谢去路。最终生成乙酰乙酸、β-羟基丁酸和丙酮,这三种产物统称为酮体 酮体包括乙酰乙酸、β-羟丁酸、丙酮。酮体是脂肪酸在肝分解氧化时特有的中间代谢物,脂肪酸在线粒体中β氧化生成的大量乙酰CoA除氧化磷酸化提供能量外,也可合成酮体。但是肝却不能利用酮体,因为其缺乏利用酮体的酶系。 1.生成过程: 2.利用:肝生成的酮体经血运输到肝外组织进一步分解氧化。 总之肝是生成酮体的器官,但不能利用酮体,肝外组织不能生成酮体,却可以利用酮体 总结: 脂肪合成主要在肝脏、小肠(乳糜微粒经淋巴入血)、脂肪组织进行,其中肝脏为最强,肝脏中合成的甘油三酯形成极低密度脂蛋白入血,来不及入血则易得脂肪肝; 脂肪的分解在脂肪细胞的线粒体进行,脂肪酸分解成乙酰CoA再进行三羧酸循环释放ATP,一部分脂肪酸入血由肝脏分解成乙酰CoA,但肝脏无法进行三羧酸循环,而是乙酰CoA生成酮体,酮体入血送至肝外需要能量的细胞进一步分解生成ATP,如果细胞不需能量,酮体则会经肾脏排出体外。

猪脂肪代谢的整个网络

猪脂肪代谢的整个网络(消化---吸收---转运---贮存---分解合成) (一)脂肪的消化 猪的口腔和胃几乎不消化脂肪。脂类到达十二指肠后,在肠蠕动的作用下与胰液和胆汁混合,胆汁中的胆汁酸盐使脂肪乳化并形成水包油的小胶体颗粒,以便于脂肪和胰液在油水界面充分接触,脂肪被充分的消化。胰液中含多种消化脂肪的酶类,包括胰脂肪酶,辅脂酶,胆固醇酯酶和磷脂酶A2等。胰脂肪酶在辅酯酶的协助下将甘油三酯水解为甘油二酯和甘油一酯;磷脂酶A2将饲粮磷脂水解为溶血磷脂和脂肪酸;胆固醇酯酶将胆固醇酯水解为胆固醇和游离脂肪酸。 (二)脂肪的吸收 脂肪消化产物在十二指肠下段和空场被吸收。甘油和短中链脂肪酸直接经小肠粘膜细胞吸收入门静脉血液,而长链脂肪酸和2-甘油一酯以混合微粒到达小肠粘膜细胞被吸收,随后在黏膜细胞中转化为甘油三酯,磷脂,胆固醇酯及少量胆固醇,再与黏膜细胞内合成的载脂蛋白一起形成能溶于水的乳糜微粒,乳糜微粒以胞饮作用的逆过程溢出黏膜细胞,经细胞间隙进入乳糜管,再经淋巴系统进入血液,然后由血管内皮细胞的脂蛋白酶水解为游离脂肪酸和甘油而被组织利用。 (三)脂类的转运 血浆中所含的脂类叫做血脂,包括甘油三酯,磷脂,胆固醇及其酯和游离脂肪酸。 游离脂肪酸是与血浆清蛋白结合形成可溶性复合物运输,其他血浆中的脂类常与肝脏和小肠粘膜细胞合成的载脂蛋白结合形成脂蛋白,并以脂蛋白的形式运输。脂蛋白酯酶LPL对其运输有重要的调节作用,LPL活性的高低是脂肪蓄积程度的标志,也是决定脂肪细胞大小的重要因素。血浆中各种脂蛋白的基本结构基本相似,由疏水性较强的甘油三酯和胆固醇酯形成的内核和由双极性分子以单分子层形式形成的表层结构。根据不同脂蛋白所含脂类,蛋白质的多少,用超速离心法将脂蛋白分为五类,即乳糜微粒,极低密度脂蛋白,中密度脂蛋白,低密度脂蛋白和高密度脂蛋白。 血中脂肪转运到脂肪组织,肌肉,乳腺等的毛细血管后,游离脂肪酸通过被动扩散进入细胞内,甘油三酯经毛细血管壁中的酶分解成游离脂肪酸后再被吸收,未被细胞吸收的物质经血液循环回至肝脏代谢。 (四)脂类的代谢 动物体内脂类的代谢受饲粮营养物质含量的影响,超过需要时多余的营养物质转变成脂肪沉积在脂肪组织中,低于需要时分解体脂肪供能。 1肝脏中脂肪的代谢:肝脏是脂肪合成,运转和利用的主要器官,进入肝脏的脂肪来自于消化道的吸收,少部分来自体内脂肪组织。肝细胞可氧化游离脂肪酸 转变为能量,供细胞代谢利用。饲料来源的游离脂肪酸和内源性脂肪酸都可被 肝细胞摄取并重新合成甘油三酯,新合成的甘油三酯很快以脂蛋白的形式释放 入血液,少部分的内源性脂肪酸还可合成磷脂和胆固醇。多余的沉积在肝中。 2脂肪组织中脂肪的代谢:猪和反刍动物在脂肪组织中进行脂肪代谢,脂肪组织也是储存脂肪的主要部位,沉积在脂肪组织的甘油酯是预先合成的,或是在机 体内脂酰辅酶A和L-3-磷酸甘油反应合成。 脂酰辅酶A的合成:一是在细胞液中由乙酰辅酶A或丁酰辅酶A合成棕榈酸, 棕榈酸可转化成几乎所有其他脂肪酸。二是主要在内质网也有少量在线粒体中 合成丙二酰CoA,丙二酰辅酶A与酰基载体蛋白(ACP)结合形成丙二酰ACP复 合物,乙酰辅酶A与ACP结合,使脂肪酸连接上两个碳原子而延长,最终形成 棕榈酸ACP复合物。三是仅在内质网中进行,其作用是使饱和脂肪酸去饱和,

脂质与生物膜答案

第8章脂质与生物膜答案 一、填空题 1.磷脂,糖脂,固醇类化合物。 2.磷脂,磷脂酰甘油,鞘磷脂。 3.不饱和,增大,降低。 4.液晶,晶胶。 5.变宽,流动。 6.膜蛋白,内在蛋白,外周蛋白。 7.Sanger,流动,不对称。 8.逆浓度梯度,放能反应。 9.顺浓度梯度,高浓度,低浓度,简单扩散,协助扩散。 10.异戊二烯单位,环戊烷多氢菲。 11.三酰甘油(或脂肪),甘油(或丙三醇)。 12.亚油酸,亚麻酸。 13.脂肪酸,醇。 14.饱和脂肪酸,不饱和脂肪酸。 二、选择题 1.C 2.C 3.C 4.A 5.B 6.B 7.D 8.B 9.A 10.C 11.D 12.D 13.A 三、名词解释 1.Lipid (脂质):脂质是一类低溶于水而高溶于非极性溶剂的生物有机分子。 2.Fatty acid(脂肪酸):是由一条4~36个碳的烃链和一个末端羧基组成的羧酸。3.Saturated fatty acid(饱和脂肪酸):烃链不含双键或三键的脂肪酸。 4.Unsaturated fatty acid(不饱和脂肪酸):含一个或多个双键的脂肪酸。 5.Essential fatty acid(必需脂肪酸):维持哺乳动物正常生长所需的,而体内又不能合成,必须由膳食提供的脂肪酸。 6.Integral membrane protein(膜内在蛋白):主要靠疏水相互作用与膜结合,蛋白质分子中的非极性氨基酸残基常以α螺旋形式与膜双层的疏水部分相互作用。有的是部分嵌在脂双层中,有的是横跨整个膜层。有的膜内在蛋白自身并不进入膜内而是与某些脂质(如脂肪酸,聚异戊二烯或糖基磷脂酰肌醇等)共价连接,并以后者为锚钩锚定在膜上。与膜结合的比较牢固,只有在剧烈的条件下,如有去污剂、有机溶剂或超声波等才能将它们解离下来。占膜蛋白的70%~80%。 7.Peripheral membrane protein(外周蛋白):分布于脂双层内外表面,借静电相互作用或其他非共价力与膜中膜脂的极性头基或膜内在蛋白质结合。比较容易从膜上分离,通常只要用温和的方法,如加入高浓度中性盐或金属螯合剂即可把它们提取出来。一般占膜蛋白的20%~30%。 8.Fluid mosaic model(流动镶嵌模型):细胞膜结构是由液态的脂类双分子层中镶嵌可以移动的球形蛋白质而形成的。这一模型强调两点:一是膜的流动性,膜蛋白和膜脂均可侧向移动。二是膜蛋白分布的不对称性,球形蛋白质有的镶嵌在膜的内或外表面,有的嵌入或横跨脂双分子层。

相关文档
最新文档