车架动力学分析研究

车架动力学分析研究
车架动力学分析研究

车架动力学分析研究

凡桂宽,姚京宁

北京科技大学土木与环境工程学院,北京 (100083)

E-mail: frank84821@https://www.360docs.net/doc/c110707551.html,

摘 要:汽车车架作为汽车底盘结构中的重要组成部分,承载了整车的大部分质量,承受着路面传递给它的各种力和力矩,车架性能的好坏主要取决于车架在静态载荷和动态载荷下的响应情况。本文利用有限元计算与分析的方法,以南京130轻型货车的车架为研究对象,运用CATIA 建立车架的三维几何曲面模型,以通用有限元分析软件ANSYS 作为平台,对车架进行模态分析,得到该车架十五阶自由模态的固有频率及振型,指出该车在使用中存在的隐患。旨在指出现有车架存在的问题并为其改进方案提出可行性意见。

关键词:车架;有限元;模态分析

0. 引言

汽车是一种运动的机械,其中大多数零部件的破损显然是由动载荷疲劳引起的。在有限元方法推广之前车架的动态分析通常用之前所述的静强度乘以几倍的动载系数和安全系数进行强度校核,这种方法已逐渐被淘汰。

由于汽车运动具有随机振动的特点,车架是受随机载荷的作用,这给车架动应力的计算带来一定的困难。由于这些随机载荷源于不平地面对车轮的随机激励,而地面不平度的统计特性近年来也有研究,即路面谱的研究。复杂系统的模态分析方法也广为应用,在前人这些工作的基础上,国内已进行了车架动应力响应的计算和研究。

本篇论文主要针对车架进行模态分析,简单介绍ANSYS 中模态分析的集中常用方法,对车架进行自由模态分析,分析其前十五阶振型和频率,从而为车架设计提供依据。

1. 模态分析的理论基础

对于一个N 自由度线性定常系统,其基本振动方程可写为:

[](){}[](){}[](){}(){}M X

t C X t K X t F t ++= (1) 式中[]M 、[]C 和[]K 分别为弹性系统的质量矩阵、阻尼矩阵和刚度矩阵;(){}

X

t 、(){}X

t 和(){}X t 分别为加速度向量、速度向量和位移向量;(){}F t 为动激励载荷向量。 在结构动力学问题中,结构的固有频率和固有振型是分析结构动力学响应与其它动力特性问题的基础。在进行模态分析时,因结构阻尼较小,对固有频率和振型影响甚微,故通常忽略不计。在这种情况下,分析结构的固有频率与振型问题转化为求解特征值与特征向量问题。因而,基本振动方程式(1)中的[](){}C X

t 和(){}F t 均为零。所以: [](){}[](){}M X

t K X t 0+= (2) 由于任何弹性体的自由振动可以分解为一系列简谐振动的叠加,设式(2)有如下形式的

简谐振动解: (){}{}0

X t X sin t =ω (3) 将式(3)代入式(2)得:

[][](){}2

K M X 0?ω= (4) 自由振动时结构各节点的振幅{}0X 不全为零,所以由式(4)得:

[][]2K M ?ω0= (5) 结构的刚度矩阵[]K 和质量矩阵[]M 均为n 阶方阵,其中n 为节点自由度的数目,所以式

(5)是关于2ω的n 次方程,解此方程可得结构的n 个固有频率;2ω称为广义特征值,对应于每一个固有频率。由式(5)可以确定一组各节点的振幅值{}0X ,称为广义特征向量。所以,寻找式(5)中的2ω和{}0X 的解的问题是一个广义特征值问题[1]。

2. 车架模态分析

2.1 车架模态分析算法介绍

在ANSYS 中,提供多种类型的分析计算,包括静态(Static )、模态(Modal )、谐响应分析(Harmonic )、瞬态(Transient )、谱分析(Spectrum )等,如图1:

图1 ANSYS 中的分析类型

Fig.1 The analysis type in ANSYS

在模态分析中,ANSYS 还提供了7种模态提取计算方法,如图2:

图2 ANSYS 中模态分析算法

Fig.2 The arithmetic in modal analysis

其中包括Block Lanzcos 法、子空间(Subspace )法、PowerDynamics 法、缩减(Reduced )法、非对称(Unsymmetrie )法、阻尼(Damped )法、QR 阻尼法。常用的是前两种算法,下面就Block Lanzcos 法和子空间(Subspace )法进行介绍[2]。

(1)Block Lanzcos模态提取方法采用Lanzcos算法,是用一组向量来实现Lanzcos递归计算,同其他算法相比,计算速度更快。不管用哪一种求解器进行求解,Block Lanzcos法都将自动采用稀疏矩阵方程求解器。当计算某系统特征值谱所包含的一定范围内的固有频率时,采用这种方法特别有效。计算时,求解从频率谱中间位置到高频范围内的固有频率时,收敛速度和求解低频率时基本相同,因此当采用频移频率FREQB来提取从FREQB起始的n 阶模态时,该法提取大于FREQB的n阶模态和提取n阶低频模态的速度基本相同,Block Lanzcos法特别适合于大型对称特征值求解问题。

(2)子空间法使用子空间迭代技术,它内部使用广义雅克比(Jacobi)迭代算法。由于该方法采用完整的刚度矩阵和质量矩阵,因此计算速度相对较慢,但精度很高,经常用于对计算精度要求高,但无法选择主自由度的情形,和Block Lanzcos一样,子空间算法特别适用于大型对称特征值的求解问题。

2.2车架模态分析结果讨论

进行模态分析时,唯一有效的“载荷”是零位移约束,如果在某个DOF处定义了一个非零位移约束,程序将以零位移约束替代在该DOF处的设置。模型中可以施加除位移以外的其他形式载荷,但分析时它们都将被忽略。

本篇论文主要运用子空间法分析其自由模态,所以对车架不做任何处理,分析位移云图如图3所示:

分析前的车架形态第一阶

第二阶第三阶

第四阶第五阶

第六阶第七阶

第八阶第九阶

第十阶第十一阶

第十二阶第十三阶

第十四阶第十五阶

图3 车架模态振型

Fig.3 The modal of the frame

各阶频率大小在ANSYS中也能读出来,具体数值见图4中黑色线框所示:

图4 车架各阶模态频率读取

Fig.4 Pick up the frequency

整理结果如表1:

表1 各阶模态列表

Table 1 List the rusult of modal analysis 模态阶次 固有频率(Hz ) 模态振型

最大变形量(m )1 0.0000 沿X 轴方向平移

0.071792 2 0.0000 沿Y 轴方向平移

0.071792 3 0.0000 沿Z 轴方向平移 0.071792 4 0.0000 绕X 轴方向旋转

0.131406 5 0.0000 绕Y 轴方向旋转

0.088666 6 0.0000 绕Z 轴方向旋转 0.129665

7 10.788 一阶扭转(绕Y 轴方向) 0.17272

8 28.378 一阶侧向弯曲(沿X 轴方向) 0.155595

9 34.281 一阶垂向弯曲(沿Z 轴方向) 0.181141

10 48.319 一阶扭转+二阶侧向弯曲 0.146292

11 51.655 一阶扭转+二阶垂向弯曲 0.208545

12 61.421 纵梁弯曲扭转+左边第二横梁扭转 0.161753

13 70.364 纵梁前端一阶扭转+左边第二横梁垂向弯曲 0.357876

14 72.529

纵梁二阶扭转 0.337775

15 85.485 纵梁二阶扭转+横梁垂向弯曲

0.350375 通常,车辆在正常行驶的时候,车架受到的外部激振的类型主要分为两类:一是汽车行驶时路面不平度对车轮作用的随机激振,引起车轮的不平衡,频率一般在20Hz 左右;二是发动机运转时,做功冲程燃烧爆发的压力和活塞往复运动的惯性力引起的简谐激振,其特点是频率范围很宽,很难有个具体的数值与之对应。如果上述两种激励力的激振频率与车架的某一阶固有频率相吻合时,就会产生共振,共振时幅值达到最大,并容易导致在车架上某些部位产生数值很大的共振动载荷,也增大了车架被损坏的可能性和加速了车架的疲劳进程。因此,用模态分析的方法对汽车车架进行模型的校核,可以验证车架结构是否符合动力学特性,也可以找到解决上述问题的方法。验证的具体原则如下[3]:

(1)车架低阶频率(即一阶扭转和弯曲频率的值)应低于发动机怠速运转频率,以避免发生整体共振;

(2)车架的弹性模态频率应尽量避开发动机经常工作的频率范围;

(3)车架的固有频率应避开路面不平度的激振频率;

(4)车架振型应尽量光滑,避免有突变。

南京130轻型货车采用的发动机是直列四缸四冲程水冷柴油机,发动机的怠速激振频率取决于发动机的怠速转速及气缸数,计算公式为:

260nz f r

= (6.11) 式中:n ——发动机的转速,r/min ;

z ——发动机的气缸数;

r ——发动机的冲程数。

对于南京130轻型货车发动机,其怠速频率一般为500r/min ,6z =,4r =,计算求得发动机怠速频率为25Hz 左右;另外,一般汽车的行驶速度在50~90km/h ,其发动机的工作频率则在40~90Hz 。

表1所示第一阶到第三阶车架的振型都是简单的沿X 、Y 、Z 轴方向的平移,第四阶到第六阶的振型都是绕X 、Y 、Z 轴方向的旋转,这主要是由于分析的是自由模态,并没有对其施加约束,所以前六阶振型对整车的分析价值不大。

从第七阶开始,车架开始出现了形状上的变化,阶次越高,振型越复杂,开始只是简单的一阶扭转和弯曲,从第十阶开始出现了二阶变形,从第十二阶开始又出现了局部模态。下面仅对从第七阶开始的振型和频率加以分析。

由表1可知车架的低阶固有频率是10.788Hz 、28.378Hz 和34.281Hz ,第七阶的固有频率低于发动机的怠速频率,符合要求;但第八阶和第九阶的固有频率高于发动机的怠速频率,这也就说明汽车在怠速准备起步行车时,必然会达到车架的固有频率,车架容易出现一阶侧向弯曲(沿X 轴方向)和一阶垂向弯曲(沿Z 轴方向)两种变形模态,所以在车辆起步时,驾驶员会感觉到明显的颠簸感,随着时间的推移,车辆容易出现疲劳,从而导致部分开裂或是几何上的变形,这对车辆延长使用寿命极为不利。

从第十阶到第十五阶,车架的固有频率范围正好是发动机工作频率范围,有可能发生共振,需要驾驶员在行车过程中尽量保证发动机的工作频率不与车架的固有频率重叠,第十阶到第十五阶固有频率对应的发动机转速是966r/min 、1033r/min 、1228r/min 、1407r/min 、1450r/min 、1710r/min ,即发动机运转在500r/min~2000r/min 时,整车振动都比较明显;此外,在高阶模态中可以观察到,横梁E 变形极为严重,需对其进行改进,改进方面主要包括:增大左边第二横梁的钢板厚度、调整左边第二横梁的形状等。

由于道路激励多属于20Hz 左右的垂直振动,所以车辆发生由道路路面不平而引发的共振的可能性不太大。综合以上叙述,南京130轻型货车的行驶平顺性和舒适性不容乐观,而且容易出现疲劳损坏,需要工程师对其结构进行相关改进,改进主要是针对横梁位置的调整以及横梁的截面形状尺寸的改变,从而提高车架整体刚度[4]。

3. 结论

本篇论文主要针对车架进行动态分析,集中叙述了基本振动方程及其求解方法和结构动力响应问题。在该理论的基础上,运用ANSYS 软件对车架进行自由模态分析,分析其前十五阶振型和频率,从而为车架设计提供依据。

通过分析南京130轻型货车车架前十五阶频率和振型发现,车架的左边第二根横梁(如图)是改进优化的重点(从十二阶到十五阶均出现了横梁的局部模态,变形较为严重),改进办法如增大该横梁的钢板厚度、调整该横梁的形状等;此外,车辆正常行驶的发动机频率与道路激励频率都没能避开车架的固有频率,因而容易引发共振,行驶平顺性和舒适性不容乐观。工程师需根据上述分析数据和图像对其结构进行相关改进,改进主要是针对横梁位置的调整以及横梁的截面形状尺寸的改变,从而提高车架刚度。

通过该车架在道路位移激励下的瞬态响应分析发现,该车架的整体响应情况良好,在前轮遇到颠簸路面时,车架仅在前轮附近会发生类似于道路位移激励的位移;而在远离前轮的部位几乎不会发生位移,这说明在遇到搓板路时,车辆不会因为路面的的不平而发生剧烈的振动,而且最大应力值也小于16Mn 的疲劳极限,因而符合设计要求。

参考文献

[1] 谢世坤,程从山. 基于ANSYS的边梁式车架有限元模态分析[J]. 机电产品开发与创新, 2005.1: 76-77

[2] 刘相新,孟宪颐. ANSYS基础与应用教程[M]. 北京: 科学出版社, 2007, 3: 3-391.

[3] 熊永华,杜发荣,高峰,赵杰. 轻型载货汽车车架动态特性分析与研究[J]. 机械设计, 2007, 4: 60-62.

[4] 尹辉俊,韦志林,沈光烈. 货车车架的有限元分析[J]. 机械设计, 2005, 11: 26-28.

The Dynamic Characteristic Analysis of Frame

Fan Guikuan, Yao Jingning

School of Civil and Environmental Engineering, University of Science and Technology,

Beijing (100083)

Abstract

The frame is one of the most significant parts in chassis.The frame’s fuction is that of a beam,augmenting the body strength and stiffness,both in bending and torsion.In case of vehicle collisions,the frame is forced to crush and absorb a large portion of the energy of impact.The capability of the frame depends largely on the response to the static load and dynamics load. In this thesis,the frame of NJ130 is set up by CATIA and analysed by ANSYS which is based on the theory of finite element analys(FEA). The primary fifteen natural frequencies and corresponding modal shapes of the frame are calculated using modal analysis. This thesis also gives readers a clear conception of the response to the rond-input.

Keywords:frame; FEA; modal analysis

车身骨架强度分析

客车车身骨架疲劳强度分析 [周俊杰,严伊莉] [郑州大学化工与能源学院,郑州450001] [ 摘要] 运用有限元方法建立了某轻型客车车身骨架的有限元模型,在确定载荷的简化和施加方法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此在ANSYS Workbench的 Fatigue(疲劳)模块对其进一步的疲劳分析,为该车车身骨架的优化设计和进一步研究 提供了理论依据。 [ 关键词] 车身骨架;有限元;疲劳分析 Fatigue strength analysis of bus body frame [ZHOU Jun-jie, YAN Yi-li] [School of Chemical and Energy, Zhengzhou University, Zhengzhou 450001,China] [ Abstract ] Finite element modeling of the bus framework is established by using finite element methods. When the simplified load and load way exerting on the framework are ensured,the finite element simulation of bus framework is executed under fully loaded bending condition. And then further fatigue analysis with ANSYS Workbench Fatigue finishes. These results provide theoretical basis for optimization and further study of the bus framework. [ Keyword ] Bus framework;Finite element analysis;Fatigue analysis 1前言 车身骨架是客车的主要承载结构,车身骨架的强度、刚度及疲劳性能都直接影响着客车的使用寿命、安全性、操作稳定性等基本性能。本文运用通用有限元分析软件对某

基于Hypermesh的车架结构模态分析(1)

计算机工程应用技术本栏目责任编辑:贾薇薇 基于Hypermesh的车架结构模态分析 卢立富1,岳玲1,黄雪涛2 (1.泰安东岳重工有限公司技术中心,山东泰安271000;2.中国五征集团汽车设计院,山东日照262300) 摘要:应用Hypermesh分析某中型载货汽车车架的固有频率,验证与外部激励发生共振的可能性,同时得出分析结论。 关键词:Hypermesh;车架结构;有限元 中图分类号:TP202文献标识码:A文章编号:1009-3044(2008)12-20569-02 TheModalAnalysisofMobileFrameBasedonHypermesh LULi-fu1,YUELing1,HUANGXue-tao2 (1.Tai'anDongyueHeavyIndustryCo.Ltd.TechnologyCenter,Tai'an271000,China;2.ChinaAutomotiveGroup5levyDesignInstitute,Rizhao262300) Abstract:Thispapermainlydealswiththeanalysisofthefrequenciesofmedium-sizedlorrycar,itverifiestheresponancepossibilityofthefrequencieswiththeexteriorencourageandbringsforwardtheanalysisresult. Keywords:Hypermesh;FrameStructure;FiniteElement 1概述 Altair公司研发的HyperWorks系列产品可以解决工程优化及分析问题,其中的Hypermesh软件可以完成有限元前处理任务,它可以很好的对几何模型数据完整读取,进行有限元的四面体网格和六面体网格的剖分,还有设置完备的网格检查功能,如今Hy-perwork已成为航空、航天、汽车等领域CAE应用的利器之一。 车架结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标而且反映了汽车车身的整体刚度性能,而且,应作为汽车新产品开发的强制性考核内容。实践证明,用有限元法对车架结构进行模态分析,可在设计初期对其结构刚度、固有振型等有充分认识,尽可能避免相关设计缺陷,及时修改和优化设计,使车架结构具有足够的静刚度,以保证其装配和使用的要求,同时有合理的动态特性达到控制振动与噪声的目的。使产品在设计阶段就可验证设计方案是否能满足使用要求,从而缩短设计试验周期,节省大量的试验费用,是提高产品可靠性的有效方法。 2车架有限元模型的建立 车架的Ug模型和有限元模型分别如图1和图2所示。有限元建模在前处理软件HyperMesh中进行。为了保证计算结果的正确性和经济性,在建模过程中尽量保持和原始结构一致的同时,也需要进行必要的简化。因为过于细致地描述一些非关键结构,不但增加建模难度和单元数目,还会使有限元模型的单元尺寸变化过于剧烈而影响计算精度。对于必要的简化要以符合结构主要力学特性为前提。车架结构中的小尺寸结构,如板簧吊耳、副簧限位件等,对车架的整体振型影响不大,可以忽略不计。而对于链接两个零件的铆钉,则采用刚性单元代替。 图1车架模型在UG环境下的实现图2车架结构有限元模型车架结构都采用板壳单元进行离散。单元形态以四边形单元为主,避免采用过多的三角形单元引起局部刚性过大;为了使整个车架有限元模型规模不致过大保证计算的经济性,单元尺寸控制在10~25mm。 车架板壳结构的材料参数取:弹性模量E=2.1e11pa,伯松比u=0.3,密度均取:ρ=7900kg/m3。模型规模:车架单元总数为36378个,节点总数为39064个。 3车架结构振动分析 在汽车设计领域,伴随着计算技术的迅猛发展,有限元分析在汽车数字化开发过程中获得了广泛的应用,尤其是对轿车承载式车身基本力学性能的分析,已经作为新产品开发设计中结构分析的主要内容。然而对于载货车,由于其非承载式的结构且在行驶过程中悬架系统和挠性橡胶垫较好的缓冲、吸振、吸能作用,故对其强度刚度和振动模态特性的要求要低于承载式车身,目前还没有 收稿日期:2008-03-12 569

模具结构强度分析方法

模具結構強度分析方法 當我們在進行模具設計時,首先進行的動作便是結構確定.模具結構的合理性,對模具的承載能力有很大的影響,不合理的結構可能引起嚴重的應力集中或過高的工作溫度,從而惡化模具的工作條件,降低模具壽命,造成生產成本增加. 為確定合理的模具結構,以下幾點我們必須要有一些初步的了解: 一模具的失效形式及原因: 在正常情況下,模具的失效主要過程為:損傷--->局部失效--->失效 模具損傷的基本形式有五種:塑性變形,磨損,疲勞,冷熱疲勞(主要出現在熱作模具),斷裂及開裂. 1沖壓模具的結構對損傷過程的影響: 1>模具的沖裁間隙是一個重要的結構參數,對模具刃口的應力水平以及 其磨損速度有很大的影響. (1)沖裁間隙過小在沖頭的刃口和凹模刃口處易產生裂紋.此時,被 沖下的材料外形大于凹模刃口的內徑,板料上沖孔的直徑小于沖 頭的直徑.當進行沖壓工作時沖頭和凹模刃口的側面將受到劇烈 的磨擦,使磨損加劇. (2)沖裁間隙過大間隙過大時,板料變形量增大,使刃口和板料的接 觸面積減少,刃口端面的壓應力急劇增大,加速了刃口的塑性變形 (鈍化). 2>模具鋼的力學性能指標及治金質量對模具的失效形式及壽命有很大的 影響. 3>模具的熱處理是非常重要的工序,模具要通過此工序賦予其所需要的 性能,才能保障模具的壽命. 二模具結構強度分析方法: 模具結構強度分析方法到目前為止還未有統一的標準,大體上依據: (1)應力分析(塑性變形抗力,斷裂抗力,疲勞抗力,耐磨性,韌性 或沖擊韌度ak), (2)材料在復雜應力狀態下的強度分析(例如建立有限元模型, 利用速度和加速度傳感器進行模擬分析), (3)材料疲勞的工程分析; (4)工程斷裂分析; 不同的試驗研究單位有各自的試驗方法,由於試驗方法不同,結果也不相同.並且此類方法也不適應目前的模具結構強度分析, 此類試驗研究尚停留在材料或模型分析過程,無法適應現在的模具設計進度要求.但是此類的研究對設計人員預防模具早期失效有很大的幫助,對提高模具的承載能力有極大的潛力. 三模具局部結構強度改善 模具工作部份的幾何形狀,決定于沖壓產品的外形,模具非工作部份的幾何形

基于+ANSYS+的混凝土搅拌车副车架的有限元分析

设 计 基于ANSYS的混凝土搅拌车 副车架的有限元分析 高耀东1 李 帅1 孔祥刚2 (1.内蒙古科技大学机械工程学院,内蒙古014010; 2.内蒙古北方巴里巴工程专用车有限公司,内蒙古014033) 摘要:利用ANSYS软件对14m3混凝土搅拌车副车架的静动态特性进行仿真分析。通过CATIA软件建立副车架的三维实体模型,并导入ANSYSY有限元分析软件对模型进行静力分析和模态分析,得到其最大应力的分布情况和固有频率及振型特点。为该类型车辆的进一步改进设计提供了理论指导。 关键词:搅拌车;副车架;有限元分析;静动态特性;模型 中图分类号:TU642 文献标识码:A FiniteElementAnalysisofConcreteMixer SubFrameBasedonANSYS GaoYaodong,LiShuai,KongXianggang Abstract:Emulationalanalysesondynamicandstaticcharacteristicsof14m3concretemixersubframehavebeenimplementedbyapplyingANSYS.ThreedimensionalsolidmodelofsubframehasbeenestablishedthroughCATIA,andstaticstressandmodeanalysesonthemodelhavebeencarriedoutbyquotingANSYSYfiniteelementanalysissoft-ware,finallytoobtainmaximumstressesdistributionstatusesandnaturalfrequenciesaswellasvibrationmodelcharac-teristics,whichprovidedtheoreticguidanceforfurtherdesignimprovementofthistypesofvehicle.Keywords:concretemixer;subframe;finiteelementanalysis;staticanddynamiccharacteristics;model 目前我国生产的混凝土搅拌车多数是由上装部分和通用底盘组装而成的[1]。其中,上装部分由搅拌筒、前后支撑、副车架、液压系统、操纵系统、清洗系统等主要部件组成。副车架起着连接底盘和整个上装部分的重要作用。混凝土搅拌车在行驶过程中,副车架不仅要承受拉伸、扭转、弯曲的复合应力,而且还要受动载荷作用产生冲击、振动。当达到一定的工作次数后,副车架会产生疲劳失效,这也是副车架结构的常见失效形式。 针对上述的实际情况,本文以某厂生产的14m3混凝土搅拌车为研究对象,用ANSYS有限元分析软件对该车型的副车架结构进行静力学分析和模态分析[4],验证该结构是否具有足够的强度和刚度。 收稿日期:2012—10—30 作者简介:高耀东(1966—),内蒙古科技大学教授,东南大学硕士,主要从事CAD、CAE技术的应用和研究工作。 李帅(1987—),内蒙古科技大学硕士研究生,主要从事 CAD、CAE技术的应用和研究工作。1 有限元模型的建立 1.1 副车架结构 该副车架为钢板焊接的纵截面为U型槽钢的箱型结构,主要由2根纵梁、2根横梁、8根X型斜梁组成,长6830mm、宽90mm、高140mm。其几何模型的主要尺寸如图1所示。材料为 Q345-B,弹性模量E=2.06×105MPa,泊松比μ=0.3,质量密度ρ=7850kg/m3,抗拉强度极限σb的范围为470MPa~630MPa,屈服强度极限σs=345MPa。该材料为塑性材料,故选取极限屈服强度作为极限应力,取强度安全系数n=1.4,则有许用应力值[σ]=σs/n=247 MPa。 图1 副车架的主要尺寸 Figure1 Mainsizesofsubframe 1 枟中国重型装备枠No.1CHINAHEAVYEQUIPMENTMarch2013

基于Workbench的赛车车架模态分析

基于Workbench 的赛车车架模态分析 摘要:参照中国大学生方程式汽车大赛竞赛规则,利用SolidWorks 软件建立了车架三维模型,在Workbench 中建立车架梁单元模型,并对车架进行模态分析,求取其前阶模态频率,并利用其振型动 画,找到试验模态的最佳激励点和悬挂点,接着通过试验模态的方法对车架 进行模态测试,将试验数据与仿真结果进行对比,前五阶频率误差不超过 2Hz,结果表明,通过梁单元建立的车架模型会有较高的精 度,可以进行后续的优化设计。 关键词:赛车车架;固有频率;模态测试;模态分析车架作为赛车总成最重要的一部分,其上安装着所有的 零部件,承载着来自各个系统的载荷,车架的结构设计在汽车总体设计中显得非常重要。赛车车架承受着来自道路的各种复杂载荷,在行驶时会由于各种不同振动源激励而产生振动。由于全国方程式赛车比赛时在良好道路条件下进行的,因此路面的激励不是主要激励,发动机激励为赛车车架的主要激励源。本文采用有限元软件Workbench 对某赛车车架进行模态分析,并与实际试验数据进行对比,结果表明利用梁单元建立的车架模型具有较高的精度,可以利用此模型进行后续的优化设计。

1.发动机激励分析 发动机激励是整车最为重要的激励源,如果车架的某阶 频率与发动机激励频率接近,车架将会发生严重的振动,从 而影响赛车的平顺性及可靠性。方程式赛车采用CRF-450单缸4 冲程发动机,转速区间900-9500r/min 。发动机2 阶点火激励为最主要的激励,其频率可以表示为: 2.车架模态测试 2.1模态试验原理试验时赛车车架采用自由悬挂方式,赛车车架用四 根弹 簧绳悬挂,模拟自由约束状态。试验原理图如图1 所示,由 于赛车车架质量只有32.6kg,使用激振器不方便安装,试验 过程中容易晃动造成试验数据不准确,所以试验时使用50KN 的冲击力锤产生激励信号。6 个单向加速度传感器,用于测 量各拾振点的振动信号,DH8302 采集系统用于数据采集及 分析。加速度传感器通过磁座安装在车架钢管上。 2.2模态测试测点和激振点选择与布置方案根据赛车车架的结构特 点,对其进行模态测试时,布置 了一个激振点,57 个测点,分别测取x、y、z 三个方向的加取平均值,模态测试测点及激振点布置如图3 所示,其中红色点位测点位置。 速度信号,为提高测试结果的精度,每个测点敲击4 次,求 2.3模态试验结果

整车布置设计规范(修改稿)

整车总布置设计规范 1.范围 本标准规定了整车总布置设计的原则、规定及应满足的有关法规等。 本标准适用于公司新产品开发时的整车总布置设计。 2.引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T490-2000:主图板 QC/T576-1999:轿车尺寸标注编码 GB/T17867-1999:轿车手操纵件、指示器及信号装置的位置 GB14167-1993:安全带固定点 GB11556-1994 :A、区 GB11565-1989:B区 GB11562-1994:前方视野 GB/T13053-1991:脚踏板 SAEJ 1100:头部空间、上下左方便性 3术语和定义 下列术语和定义适用于本标准。 3.1整车总布置 明示所有总成的硬点、关键的参数的布置图 3.2设计硬点 轮距、轴距、总长、总宽、造型风格、油泥模型表面或造型面、人体模型尺寸、人机工程校核的控制要求、底盘等与车身相关零部件对车身的控制点线面及控制结构,都称为设计硬点。 4.整车总布置图上应确定的参数 4.1整车的外廓尺寸; 4.2轴距和前、后轮距; 4.3前悬和后悬长度;

4.4发动机、前轮的布置关系; 4.5轮胎型号、静力半径和滚动半径、负载能力; 4.6车箱内长及外廓尺寸; 4.7前轮接地点至前簧座的距离; 4.8前簧中心距; 4.9后簧中心距; 4.10车架前部和后部外宽; 4.11车架纵梁外形尺寸及横梁位置; 4.12前簧作用长度; 4.13后簧作用长度; 5.参数确定原则及设计的一般程序 5.1参数确定原则 以设计任务书和标杆样车为基准,按设计任务书上规定的或标杆样车上测定的参数进行总布置,如确实不能满足的,需提出经上级领导批准后方能更改。 5.2设计的一般程序 1)总布置设计人员在接到新车型的开发任务后,首先要进行整车构思,并参与市场调研和样车分析,在此基础上制定出总的设计原则和明确设计目标; 2)各专业所建立标杆样车的3D数模,并提供给整车布置人员; 3)总布置设计人员将各专业所提供的数模装配好; 4)对各总成的匹配和布置关系等进行分析,明确它们的优点和不足; 5)各专业所建立拟采用的总成的数模,不提供总布置人员; 6)总布置人员对新的数模进行分析,并提出可行性的建议; 7)对方案进行评审; 8)评审后对各总成进行修改或开发; 6.主要尺寸参数的确定

轿车后副车架结构强度与模态分析.

轿车后副车架结构强度与模态分析 郑松林王寅毅冯金芝袁锋李丽 (上海理工大学机械工程学院) 【摘要】 根据某轿车后副车架的实际结构,运用有限元软件Hyperworks对后副车架进行有限元建模。 由有限元模型分析后副车架的结构强度,并计算后副车架的模态。从而反映后副车架可能存在的问题。在理论上为结构的进一步改进提供了重要参考二 【主题词】模态分析后副车架汽车 0 引言 随着轿车技术的不断进步,人们对于轿车的 舒适程度提出了更高的要求。副车架作为底盘系 统重要的承载元件,与车身和悬架系统相连,主要作用是提高悬架系统的连接刚度,减少路面震动

的传人,从而带来良好的舒适性。目前,一些中高 档轿车均采用独立式前后悬架系统,后副车架也 应用得越来越广泛。在设计时不仅要考虑到其强度,同时,为了避免振动和噪声,还要将模态特征作为对后副车架设计的约束条件。本文以某轿车后副车架为例,运用有限元软件对后副车架进行强度分析及模态分析,为轿车后副车架的设计改进提供了理论依据。 1 后副车架有限元模型的建立 后副车架三维模型是运用CATIAV5建立 的。后副车架如图1所示,通过4个悬置与车身相连。 使用Hyperworks软件的Hypermesh模块对3D 模型进行网格划分建立有限元模型。为保证有限 元模型的准确性,尽可能采用了四边形壳单元。 收稿日期:2009一∞一21 ?20?图1后副车架三维模型

考虑到模型的结构尺寸及运算效率采用以下划分标准:最小网格边长>10mm,最大网格边长≤ 20 mm;四边形单元的长宽比≤5,最大角150。,最 小角>30。,雅可比>0.6。三角单元的总数占总单元的比例不超过10%;得到有限元模型如图2所示。 图2后副车架有限元模型 有限元模型计算所使用的普通钢的材料参数 上海汽车2009.11 万方数据 为:密度7.8 x 103 kg/m3;弹性模量210GPa;泊松 比0.3。

汽车前副车架模态分析与参数识别

汽车前副车架模态分析与参数识别 摘要:通过了解模态分析的定义及概念,学习模态参数识别的基本方法与技术,在介绍结构模态试验方法的基础上,以汽车前副车架为研究对象,采用锤击激励法和白噪声激励法进行了模态试验,又用3种模态参数识别软件作模态参数识别,并对识别结果进行误差分析。 关键词:前副车架,模态试验,激振,模态参数识别

Modal analysis and parameters identification of car front subframe Abstract:By understanding the definitions and concepts of modal analysis, modal parameter identification of learning the basic methods and techniques, based on the introduction of structural modal test methods, automobile front subframe for the study, using a hammer and a white noise excitation method encourage a modal test method, and use three kinds of modal parameter identification software for modal parameter identification, error analysis and recognition results. Keyword: front subframe, modal test, exciting, identification modal parameters

车架受力分析基础

车架受力分析基础 一、对车架整车的受力要求 二、车架的受力情况具体分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

车架的模态分析知识讲解

车架的模态分析

Frame模型的模态分析 班级:T943-1 姓名:王子龙 学号:20090430124

Frame模型的模态分析 T943-1-24王子龙20090430124 一、模型问题描述 1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用Cylinder Support约束,分析结构的前6阶固有频率。 2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与 原结构对比。 短纵梁 短纵梁 图1 机架模型 二、模型分析 (一)无预紧力情况 1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择 Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。 2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→ Cylindrical Support,如图2所示。

图2 八圆孔内表面施加约束 3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。

图3 无应力时的变形图及6阶频率 (二)有预紧力情况 1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双 击B5栏,进入Mechanical窗口。 图4 拖拽Static Stuctual(ANSYS)到A4 2、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择 Paste。 3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所 示。

车架电泳线线技术要求

车架以及底盘小件以及薄板件电泳线技术要求 甲方(需方): 乙方(供方): 乙方向甲方提供车架、底盘小件以及薄板件电泳线设备 1 台(台套),由乙方进行设备的设计、制造、安装、调试,验收合格后一次性交付甲方使用。为确保项目质量,需满足如下要求: 一、技术要求 1、项目总体要求 1.1涂装工件名称:车架以及底盘小件以及薄板件; 1.2零件最大组挂尺寸:长12米*宽1.1米*高1.6米, 1.3最大重量:1500KG 1.4动力来源:电、压缩空气、天然气; 1.3生产纲领: 车架产量50000台/年,底盘小件和薄板件25000挂/年; 1.4工作制度: 工作制度:每年300天,每天工作20个小时,三班制; 生产节拍:4.8分钟/件 1.5工艺过程: 工艺温度:预脱脂、脱脂温度不低于45℃;磷化温度为35~45℃;电泳温度为28~32℃; 电泳烘干工件表面温度为180℃以上,其余工序常温。

(以上处理方式厂家可按照投标方的最优方案来制定)(每个工位有几个工作点根据工艺平面图确定) 1.6输送方式: 空中输送部分单独招标、地面输送包含在电泳线内 1.7作业点:每个工位有几个工作点根据工艺平面图确定 1.8厂房参数:210×18,厂房高度: 13米 1.9能源: 动力电: 380 V三相 50HZ 照明电: 220 V单相 50HZ 自来水:2~3 Kg/cm2(以实际情况为准) 压缩空气:5~6 Kg/cm2(以实际情况为准) 加热源:天然气 1.10有在著名工程机械单位或者汽车行业设计和建设大型阴极电泳涂装线的工程案例,且所承制的单个涂装线项目规模不小于1000万(出具合同证明); 2、项目内容 2.1项目工作流程 1)工件在上件点上件; 2)工件经前处理、电泳; 3)电泳后转挂至地面链,进入电泳烘房进行烘烤、强冷; 2.2分项工程

某商用车白车身结构静强度分析

某商用车白车身结构静强度分析 本论文依据有限元的基本理论,建立某型商用车白车身有限元模型,并在通用有限元分析系统MSC.Patran/Nastran中进行白车身结构的弯曲、单边扭曲、全扭曲三种工况的静态强度分析。 0 前言 从2000年法兰克福国际商用车展到2009年第37届美国中部卡车展,商用车(尤其是重型卡车)在国际主流车市上凸显强劲的增长势头和市场占有率。驾驶室作为商用车辆的一个主要产品总成,由于它是造型和结构功能的有机结合体,同时也是驾驶员和乘员工作和休息的空间,因此它在整车中体现出共性的技术应用和独有的发展特征。 本论文某型商用车驾驶室白车身作为研究对象,首先对白车身结构几何进行网格划分,检查网格划分质量,建立精确的有限元分析模型;进而基于此模型,施加适当约束,使用MSC.Patran/Nastran对白车身结构进行弯曲、单边扭曲、全扭曲等不同工况的静态强度仿真分析。 1 白车身有限元模型的建立 驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid单元模拟表示。在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。 文中将网格的检查标准设为Jacobin=0.6、aspect ratio=5、warpage=15°、skew=40°、min-angle=30°、max angle=120°,经检查后,不合格网格数为162个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。图1为白车身整车的有限元模型。 点击图片查看大图

汽车设计-车身前副车架安装点设计规范模板

汽车设计- 车身前副车架安装点设计规范模板XXXX发布

1 范围 本规范规定了车身前副车架安装点设计要点及其判断标准等。 本规范适用于新开发的M1类和N1类汽车车身前副车架安装点设计。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 《GB 11566-2009 乘用车外部凸出物》 《GB/T19234-2003 乘用车尺寸代码》 《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量及允许偏差》 《GB/T 710-2008 优质碳素结构钢热轧薄钢板和钢带》 《GB/T4780-2000 汽车车身术语》 《整车车身设计公差与装配尺寸链分析》 《螺栓连接的装配质量控制》 3 术语和定义 3.1 车身结构 3.1.1车身结构是各个零件的安装载体。 3.2 副车架 3.2.1副车架最早的应用原因是可以降低发动机舱传递到驾驶室的振动和噪音。副车架与车身的连接点就如同发动机悬置一样。通常一个副车架总成需要由四个悬置点与车身连接,这样既能保证其连接刚度,又能有很好的震动隔绝效果。副车架能分5级减小震动的传入,对副车架来说,在性能上主要目的是减小路面震动的传入,以及提高悬挂系统的连接刚度,因此装有副车架的车驾驶起来会感觉底盘非常扎实,非常紧凑。而副车架悬置软硬度的设定也面临着像悬挂调校一样的一个不可规避的矛盾。所以工程师们在设计和匹配副车架时通常会针对车型的定位和用途选择合适刚度的橡胶衬垫。由于来自发动机和悬挂的一部分震动会先到达副车架然后再传到车身,经过副车架的衰减后振动噪声会有明显改善。副车架发展到今天,可以简化多车型的研发步骤。这是因为悬挂、稳定杆、转向机等底盘零件都可以预先安装在一起,形成一个所谓的超级模块,然后再一起安装到车身上。 3.3前副车架安装点 3.3.1前副车架安装点指安装在车身的安装孔中心线与安装面下平面交点的位置(XYZ 坐标)及装配孔公称尺寸。 4 车身前副车架安装点技术要求 4.1车身安装硬点要求公差控制在±1.5mm范围内; 4.2前副车架与车身安装平面间的平度要求控制在±0.5mm范围内; 4.3车身安装硬点所采用的带法兰面的螺母或者螺纹管要求能够承受的扭矩≥160N.m; 4.4车身前副车架安装点强度由CAE部门依据安装点所选材料及车辆工况分析确定; 4.5车身前副车架安装点刚度要求达到5000N/mm—10000N/mm。 5 车身前副车架安装点设计要点

基于ANSYS的车身结构强度及刚度分析

南京工程学院 本科毕业设计(论文) 题目:基于ANSYS的车身结构强度及刚度 分析 专业:车辆工程(汽车技术) 班级:汽车技术091学号:215090105 学生姓名:周文军 指导教师:陈茹雯副教授 起迄日期:2013.2.25~2013.6.3 设计地点:车辆工程实验中心

Graduation Design (Thesis) Analysis on The Stiffness and Strength of Body Structure Based on ANSYS By ZHOU Wenjun Supervised by Associate Prof. CHEN Ruwen Nanjing Institute of Technology June, 2013

摘要 以有限元法为基础的车身结构分析已成为一种面向车身结构设计全过程的分析方法,车身结构设计的过程也随之成为一种设计与分析并行的过程。 车身作为车辆的重要组成部分,对整车的安全性、动力性、经济性、舒适性及操控性有着重要的影响。在设计车身时,应用有限元法对汽车车身骨架进行静、动态特性的分析,对其结构的强度和刚度进行评价,对于进一步了解车身结构的应力和变形情况,充分认识掌握车身结构分析方法,进而对整个车身结构设计进行优化,提高整车性能,缩短产品开发周期,降低开发成本,均具有重要的意义。 本课题是采用有限元分析法对2046车身骨架结构作适当简化,在ANSYS中建立其有限元模型,并按照实际载荷对车身进行了静力学分析,校验其强度和刚度,根据分析结果找出车身骨架结构的危险断面。同时对车身骨架进行动态分析,并提取前十阶模态,得到了车身固有频率及相应的振型。最后根据静、动态的分析结果,对车身结构提出改进意见。 关键词:车身;有限元法;静力分析;动态分析

车架模态分析报告

110ZH车架模态分析报告 编制: 审核: 批准: 2006年 3 月 15 日

第一章 车架模态分析 一、模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了某结构在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 由于车架的结构振动会直接引起驾驶室振动,所以分析三轮摩托车振动时,应对车架进行模态和响应分析,优化车架结构,并从工艺设计上保证乘客的安全、舒适。三轮摩托车车架是一个多自由度弹性振动系统,作用于这个系统的各种激扰力就是使摩托车产生复杂振动的动力源。引起各种激扰力的因素可概括为两类:一是摩托车行驶时路面不平度对车轮作用的随机激振;二是发动机运转时引起的简谐激振。如果这些激励力的激振频率和车架的某一固有频率相吻合时,就会产生共振,并导致在车架上某些部位产生数值很大的共振动载荷,影响乘骑的舒适性,而且往往会造成车架有被破坏的危险。因此,车架的动态设计要求车架具有一定的固有频率和振型,这样才能保证车架具有良好的动态特性。 本次分析主要针对车架进行模态分析,以期预计车架主要模态的固有频率和形状,并借以指导车架改进设计,达到优化摩托车动态性能的目的。 1、模态分析处理 本次分析采用自由边界条件下的模态分析(即不添加任何边界支撑和约束力,计算车架的自由模态。)和添加6个车架的边界条件状态下的模态分析(左右板簧4个,前轮支撑轴承处2个)。 1.1、模型材料参数 车架材料为:Q235,有限元分析过程中材料参数为: 密度 7829 kg/m^3

车架结构设计-0

大学生方程式赛车车架结构设计 1、方程式赛车车架结构综述 1.1 方程式赛车车架的功用与要求 1.1.1 车架的功用 大学生方程式赛车车架作为赛车的承载基本是赛车的主要承载构件,其功用是支撑车身各主要总成的安装机体,同时承受这些总成的重力以及其传给车架的各种力和力矩,因此,车架应有足够的弯曲强度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身变形量较小:车架也应有足够的强度,以保证其具有足够的可靠性和寿命,车架主要零件在使用期内不应有严重变形或者开裂。同时在保证强度、刚度的前提下车架的自身质量应尽可能小,以较少整车质量从被动安全性考虑车架应具有吸收撞击能力的特点,此外,车架设计时,还要考虑大学生方程式赛车技术规范中的要求。 1.1.2车架的要求 (1) 车架应满足中国大学生方程式汽车大赛车规则(2016)的要求。 1) 方程式赛车车架应有足够的强度,保证赛车在比赛期间的转弯、制动等各种工况下赛车的零部件不会因受力过大而失效。 2) 保证赛车车架的刚度,包括扭转刚度和抗弯刚度,车架保证赛车正常使用。另一方面,车架具有一定的柔度,即但车架弯曲扰度(扭转刚度)不宜过大,避免变形过大影响车架上总成的正常配合和各零部件的过早损坏。 3) 车架的整体质量应尽可能的小,有效的降低赛车的整备质量,同时结构简单,便于制造。 4) 赛车还需要适合从第5 百分位的女性到第95 百分位的男性车手驾驶。 5) 车架要有一定的韧性。 (2) 方程式赛车车架的结构设计要求 1) 赛车的车架被主环和前环分成三部分。 2) 从侧视图来看,主环斜撑在主环侧倾的一边,在下端通过三角形结构回到主环底部,从而提高车架的稳定性。前环斜撑延伸到脚部之前,保护脚部。 3) 车架的最前端是前隔板,设计为平面结构,能够吸能缓冲的结构,纵向安装在平而中部,一起保护脚部和腿部。

结构强度的分析

第三节结构与稳定性 一、新课内容: 结构的稳定性是指结构在负载的作用下,维持原有平衡状态的能力。 台风过后,部分结构却完好无损,这又说明,有的结构稳定,有的结构不稳定。 想一想: 结构的稳定性与什么因素有关? 填表说明下表中的物体有可能因受哪些力的作用而出现不稳定现象,并根据你的生活经验,简要说明原因。(P012) (一)影响结构稳定性的主要因素: [实验探究1]: 学生拿一本书,让它直立在桌面上,它马上倾倒了,显然,其稳定性不好。 同样的一本书,把它的下端各书页展开一定的角度,仍旧将它直立在桌面上,它就能很好的挺立住。 因素一:支撑面积的大小 1. 稳定性与支撑面积的大小有关

支撑面越大越稳定,越小越不稳定。 A.落地电风扇或者宾馆里的落地灯,它们都有一个比较大的底座。 [引导学生得出结论]:结构的底座,结构与地面接触所形成的 B:为什么大坝的横截面总是建成梯形? 生:思考回答 师:大坝需要承受很大的力的作用,如自身的重力,水的冲击力、压力等等,要起到防洪的作用,大坝必须要求非常稳固。大坝建成梯形,增大了与地面接触所形成的支撑面,支撑面越大越坚实,稳定性就越好。 C.为什么许多课桌椅的支撑脚要做成往外倾斜? 生:思考回答 师:这是为了进一步增大与地面接触所形成的支撑面积,增加稳定性。从而引导学生得出结论:结构的稳定性与支撑面积大小有关。 注意:支撑面≠接触面。(接触面是物体与地面接触形成的面。支撑面是物体与地面接触形成支撑点的连线与地面构成的面。)

[实验探究2]:显示落地扇的图片 师:落地扇为什么不易倾倒? 生:思考回答 师:落地扇的底座采用较重的材料,风扇比底座轻很多,使落地扇的重心降低。 因素二:重心位置 2.结构的稳定性与重心位置有关。 物体重心越低,越稳定。 A.不倒翁为什么不倒?如果在它脖子上挂上一定数量的铁环,它还会不倒吗? 师:研究不倒翁的结构,发现不倒翁的重心很低,就在它与地面的接触点上,所以不倒,如果往它的脖子挂上铁环,它的重心位置升高了,当铁环达到一定数量时,不倒翁就不在是不倒翁了。 [引导学生得出结论]:重心的高低影响结构的稳定性。重心越低,稳定性越好;重心越高,稳定性越差。 B.以前的农作物个子高,遭遇暴风骤雨容易倾覆,造成减产;现在的农作物普遍个子矮。就是利用了重心低结构稳定的原理。 C.屏幕显示比萨斜塔的图片,比萨斜塔为什么不倒塌?(简单介绍比萨斜塔。) 通过分析长方体重心的垂线位置与稳定性示意图,使学生容易理解,比萨斜塔不倒的原因是它的重心所在点的垂线落在塔的底面的范围内。当塔倾斜到一定程度,重心的垂线不再落在塔的底面时,塔就会倾倒。 [引导学生得出结论]:结构的稳定性与重心位置有关。

车车架的结构设计与强度和刚度分析.

第29卷第7期2007年7月 北J佣maI 京科技大学学报 VoI.29No.7 ofUnive玮ityofscien傥andT∞hnolo科Beijing Jul.2007 SGA92150型半挂车车架的结构设计与 强度和刚度分析 张国芬1’ 张文明1’ 剥、玉亮1’ 董翠燕2) 1)北京科技大学土木与环境工程学院,北京1000832)北京首钢重型汽车制造厂,北京100043 摘要对渊2150型半挂车车架的总体布置、纵梁、横梁、纵梁与横梁的连接等进行了设计.利用有限元软件Ansys workbench对车架进行应力和变形计算,利用Matlab软件采用传统方法对纵梁进行受力分析和应力计算.结果表明车架强度和刚度均满足要求.关键词半挂车;车架;结构设计;强度分析;刚度分析;有限元法;实体单元分类号TD402;U469.5+3;U463.32 SGA92150型半挂车是笔者设计、北京首钢重型汽车制造厂2005年生产的重型运输车辆,它是迄今为止国内载重量最大的半挂车,具有以下四大特点:(1)属非公路平板运输车,适用于露天矿山运输大型设备,工作条件恶劣;(2)载重量大,额定载重质量150t;(3)半挂车车架纵梁长(23m),支点跨距大(18.8m),货箱面积大(17m×6m);(4)半挂车车架采用变截面梁,质量轻(总质量31t).因而,半挂车车架的设计与普通车辆不同,需要考虑每部分应力和变形,而且尽可能减轻自身重量. 由于车架结构复杂,用经典力学方法分析其强 度和刚度不可能得到精确的结果.有限元法以离 鹅颈式.为了具有足够的强度和刚度,所设计车架材料选用16Mn钢板,采用焊接式结构.1.1总体布置 sGA92150型半挂车车架总体布置如图1所示,这里总体布置的几个总成是按照焊接次序分层的,牵引销座属于前部鹅颈总成,轮轴座属于后部轮轴座总

相关文档
最新文档