状态检测、故障诊断技术在离心压缩机上的运用

状态检测、故障诊断技术在离心压缩机上的运用
状态检测、故障诊断技术在离心压缩机上的运用

状态检测、故障诊断技术在离心压缩机上的应用

原作者:蔡广斌温宾江

出处:

【关键词】离心式压缩机,振动,故障诊断

【论文摘要】旋转机械故障诊断技术在发电、化工行业等大型透平,离心机组上的应用日益广泛。介绍了大庆天然气公司从美国DRSSER-RAND公司引进的D10R9B离心压缩机应用振动检测,故障诊断技术,分析、推断、处理的轴振动超高的问题及收到的良好效果。

Application of Condition Detecting and Trouble Diagnosis Technology on Centrifugal Compressor

AbstractSPAN class=zye style="FONT-SIZE:

10pt">Application of rotary mechanism trouble diagnosis technology on Large turbin and centrifugal unit used in power station and chemical industry is getting extensive day by day.Da Qing Natural Gas Company imported D10R9B Centrifugal compressor from American DRSSER-RAND Company is introduced.Problems of exceeding vibration limit of shaft are analyzed,judged and treated by using vibration detection and trouble diagnosis technology,and good effect is obtained.

Key words SPAN class=gje style="FONT-SIZE:

10pt">Centrifugal compressor Vibration Trouble diagnosis

D10R9B离心压缩机是大庆天然气公司喇二压气站浅冷装置从美国DRSSER-RAND公司引进的。1998年10月2日投运时,轴振动在同意范围之内。运行52天后,压缩机的驱动端轴振动报警,VT-701Y在53μm左右,之后此状态没有改善。1999年6月20日开始,VT-701Y达到60μm,轴振动加剧,阻碍正常生产。该机组每天处理天然气40万m3,每天产值30万元左右。而且该机组采纳的是90年代先进设计、制造技术。为了幸免事故扩大,需尽快查明振动值高的缘故,采取有效的处理措施,把损失降到最小。我们组织有关人员对该机组及相关系统实施振动检

测、诊断故障,确定处理方案。

D10R9B离心压缩机要紧设计参数:

天然气处理量:40万m3/d

驱动电机额定功率:2550kW

工作转速12718r/min;

最高工作压力:1.5MPa

轴振动VT:报警值53μm,停车值63μm

一、离心压缩机振动缘故与分析

1.转子不平衡

转子不平衡的要紧缘故有转子初始动平衡精度低、叶轮流道不均匀结垢、部件松动、转子弯曲等。

该压缩机投运1200小时以后出现轴振动值高报警,故可排除转子的动平衡精度阻碍。但叶轮流道不均匀结垢可能性较大,因湿气进入压缩机腔内会产生结碳。装于转子上的部件松动、转子微弯曲也是有可能的。

转子不平衡的振动频率为一倍频的几率为90%,二倍频出现几率为5%,其它高频出现几率为5%。附表如下:

表1 转子不平衡故障的振动特性

2.联轴器不对中

压缩机与增速箱高速轴不对中,转子径向振动以二倍频为主。不对中越严峻,二倍频所占比例越大,且振动随负荷增加而增加。这要紧发生在联轴器附近的两个轴承上。联轴器不对中时,轴向振动较大,振动的频率为一倍频,振动幅值和相位稳定。

不同轴严峻时(包括轴承不对中),会产生高次谐波,振动不稳定。

表2联轴器不对中故障的振动特性

联轴器不对中与转子不平衡引起轴振动值高,仅从振动频率推断,有时难以区分。两者重要区不是振幅随转速的变化特性,转子不平衡故障,振幅随转速的升高增大得专门快,而关于联轴器不对中故障,振幅差不多稳定,与转速没有太大的关系,而且

其二倍频幅值较大。

3.轴承间隙过大

轴承间隙过大,也会引起轴振动高,我公司喇一150#BCL607压缩机1997年轴振动一度超高。在排除其它缘故后,检查驱动端轴承发觉间隙超过正常值近一倍,更换轴承使其与轴配合间隙在同意范围内,其轴振动值为正常。

D10R9B压缩机轴承润滑油压力、温度、回油量正常,轴承配合间隙可不能有问题。

4.轴承压盖松动

此种情况一般轴承盖上振动值较大,振动频率一般为1/2倍频频率。由于D10R9B 压缩机专门的结构,该机可不能发生此种情况。

5.转子有微裂纹

由于长时刻运转,转子可能产生疲劳微裂纹。现在,轴振动表现轴向振幅专门高,径向振动频率为倍频频率,或有2~3倍频重量。机组运行时刻短,能够排除。

6.气流产生旋转脱离和喘振

离心压缩机在设计工作转速运行时,当进气流量降到设计正常工作区域边界之外时,气流会在叶轮流道或扩压器流道中产生旋转脱离,气流旋转脱离严峻到使压缩机的排气压力低于系统压力时,即发生喘振。其它情况如系统压力突然升高、进气温度突然升高等情况及操作失误也会发生喘振,现在,转子振动加剧,压比、流量大范围波动,压缩机振动十分强烈。振动频率一般是低频振动。

D10R9B压缩机轴振动振幅和速度在负荷平稳时仍然较高,而且工艺工况平稳正常,

压缩机可不能发生喘振。

基于以上分析,对D10R9B压缩机及其相关系统运行作振动检测、诊断分析,确定

故障缘故。

二、状态检测、故障诊断使用的方法

哈尔滨工业大学振动工程研究中心、大庆石化总厂设备研究室、大庆石油学院振动检测室、大庆天然气公司机修厂技术部等四家振动检测单位分不采取如下具体测振

方法。

哈工大与石化总厂,利用D10R9B压缩机自身的涡流式位移传感器,将该传感器电信号直接接至测振仪器,测量系统框图如下:

大庆石油学院振动测量系统框图如下/P>

天然气公司机修厂振动测量系统框图如下/P>

三、振动频谱比较及分析

以下对测振频谱进行比较分析。

D10R9B压缩机工作转速,12718r/min

D10R9B压缩机倍频,211.9Hz(12.75kCPM)

以上频谱图中,图1是该机启动时刻采集的(1999年7月3日14时40分)。图2是该机运行27分钟后采集的(1999年7月3日15时7分)。从两图中均能够看出振动信号,一倍频重量是最要紧成分,并存在三分之一和三分之二倍频重量,而且启动时刻与正常运行振动幅值相差5μm左右,讲明振幅随转速升高而增大。依照该机振动进展过程及频谱图分析能够推断导致该机轴振动超高和波动的要紧缘故是转子弯曲度超标或转子不平衡所致。

1.哈工大与石化总厂测振频谱及分析

频率kCPM

12.7525.50 3.75 2.85 4.05 1.359.1551.15

振幅μm .220E+

2

.300E+

1

.100E+

1

.100E+

1

.100E+

1

.000E+

1

.000E+

1

.000E+

1

频率kCPM

8.8516.65 2.40 5.55 2.85 4.807.50 5.10

振幅μm .000E+

1

.000E+

1

.000E+

1

.000E+

1

.000E+

1

.000E+

1

.000E+

1

.000E+

1

Overall:.230E+2μm

注:所测振幅为半波振幅(0-PEAK)

图1喇二压气站1#D10R9B压缩机振动频谱(Y:46μm)图注:kCPM为每分钟千赫兹

频率kCPM

12.7525.50 3.909.0016.6551.0027.0021.75

振幅μm

.243E+

2

.320E+

1

.250E+

1

.200E+

1

.800E+

.300E+

.200E+

.200E+

频率kCPM

29.4034.50 3.15 1.05 2.857.659.75 2.25

振幅μm

.200E+

.100E+

.100E+

.100E+

.100E+

.100E+

.100E+

.100E+

Overall:.250E+2μm

注:所测振幅为半波振幅(0-PEAK)

图2喇二压气站1#D10R9B压缩机振动频谱(Y:51μm)

图注:kCPM为每分钟千赫兹

2.天然气公司机修厂测振频谱及分析

图3喇二压气站1#压缩机测振频谱(Y:0.64mm/s)

频率Hz

212.764.1 5.6425.324.811.349.5

速度mm/s 0.6410.1630.0380.8000.0400.026

0.026

Overall:0.707mm/s

从天然气机修厂的测振频谱中能够看出(1999年7月3日14时51分测),径向(Y)向轴振动一倍频重量是要紧的成分,也存在一定的三分之一倍频重量。三分之一倍频重量要紧是压缩机刚运转时工况不稳造成的。二倍频重量在频谱图中也有所体现。二倍频重量讲明有50%是联轴器不对中所致,但由于二倍频专门小,不是要紧成分,因此,联轴器不对中的可能性不大。压缩机振动在一倍频重量占要紧成分,由此能够推断:1.转子不平衡;2.转子弯曲或叶轮等部件松动。这是导致该机轴振动超高的要紧缘故。

综上所述,四家振动状态检测的图谱及数据是一致的,分析诊断依据是充分的,推断故障:一是转子动不平衡。二是叶轮流道不均匀积碳结垢。

四、故障的处理及效果

依照以上检测、分析、推断,必须对该机解体,检查或检修转子。为此,在制定出解体检查方案后,组织有关人员对压缩机解体检查,将转子抽出,做动平衡检验及

弯曲度检查。检查结果如下:

1.动平衡精度低于国家规定的G

2.5级。

2.驱动端前两级叶轮流道有积碳夹裹的金属丝网,总重约315g。

3.转子驱动端径向轴承——轴端迷宫密封段径向跳动0.027~0.03mm。

这与测振频谱分析差不多一致。确定该不平衡的转子送风机制造厂维修。将备用转子换上。压缩机轴振动VT-701Y在10μm左右,其它各项机械运行参数均为正常。

新转子运行后机修厂测振图谱如图4。

图4天然气公司机修厂测振波谱(Y:0.210mm/s)

频率Hz

25.0212.73.80425.063.855.621.9

速度mm/s 0.0920.0940.0530.0150.0120.011

0.014

Overall:0.275mm/s

从1999年8月5日测得的新转子振动频谱能够看出,一倍频处振动速度值由原转子的0.641mm/s降为0.094mm/s。

五、小结

1.关于大型的高速旋转离心压缩机,采纳状态监测、振动诊断技术可高效的推断机组故障缘故,对设备治理与维修能够作出比较合理、准确的决策,减少经济损失。

2.离心压缩机发生一倍频振动的缘故要紧是转子不平衡或联轴器不对中,两者的区不在于振幅随转速的变化特性有差不。

3.关于因转子不平衡而引起轴振动的压缩机,在其振动值较高或进展速度较快时,应及时检查、检修转子,幸免转子弯曲扩大酿成事故,以利于安全生产和经济效益提高。

蔡广斌(大庆油田天然气公司大庆市163155)

温宾江(大庆油田天然气公司大庆市163155)

离心式空气压缩机运行故障分析及处理示范文本

离心式空气压缩机运行故障分析及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

离心式空气压缩机运行故障分析及处理 示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 国内工业生产已经步入机械自动化时代,机械控制系 统是企业内部生产调度的主要平台,满足了各类机械设备 传动作业的控制需求。离心式空气压缩机是现代工业常见 的一种设备,利用动能转换原理提升了设备内部的气体压 力,维持着内外装置的稳定性运转。受到多方面因素的干 扰,离心式空气压缩机故障率持续上升,对机械控制系统 运行造成了诸多不便。本文分析了离心式空气压缩机工作 原理,对其常见运行故障分析及处理方法进行总结,为机 械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动 机运转产生的机械能变为气体压力能,帮助机械设备内部

系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理 从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1.原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离

列车检测与故障诊断1

列车检测与故障诊断1 三、主观题(共39道小题) 38. 一个完整的检测过程一般包括:信息的,信号的、,信号的,信号的。 参考答案:提取、转换、存储与传输、显示和记录、分析和处理 39. 检测装置的精度包括度、度和度三个内容。 检测装置的稳定性能包括漂和漂。 参考答案: 精密度、准确度和精确度时漂和温漂。 40. 表示检测系统静态特性的参数主要有、、和等 参考答案:零点偏移量、灵敏度、分辨力和量程 41. 检测系统的动态特性可用数学模型来描述,主要有三种形式:时域中的,复频域中的,频率域中的。 参考答案:微分方程,传递函数,频率特性 42. 隔离放大器就其隔离模式而言分为隔离和隔离两种, 参考答案: 两口三口 43. 隔离放大器的隔离的办法有三种, 、和隔离。 参考答案:光隔离、电容隔离和变压器 44. 隔离放大器在使用时有两种输入模式:输入模式和输入模式。 参考答案: 电流电压 45. 滤波器按处理信号形式分为:滤波器和滤波器。 参考答案: 模拟数字 46. .滤波器按功能分为:滤波器(LPF)、滤波器(HPF)、滤波器(BPF)、滤波器(BEF),滤波器。 参考答案:低通、高通、带通、带阻,全通 47. 按电路组成划分,可分为无源滤波器、无源滤波器、有源滤波器、电容滤波器。 参考答案:LC 、RC 、RC 、开关 48. 按传递函数的微分方程阶数划分,可分为滤波器、滤波器、滤

波器。 参考答案:一阶、二阶、高阶 49. 低通滤波器的通带增益Kp一般是指时的增益; 参考答案:ω=0 50. 高通滤波器的通带增益Kp 是指时的增益; 参考答案:ω→∞ 51. 带通滤波器的通带增益则是指处的增益。 参考答案:中心频率 52. 用来切断和接通模拟量信号传输的器件称为开关。 参考答案:模拟(量) 53. 用来切换多路信号源与一个A/D 转换器之间通路的器件称为。 参考答案:多路模拟开关。 54. A/D转换按转换方式,可分为和两类。 参考答案:直接法和间接法 55. 常用的推理策略有推理、推理和推理。 参考答案:正向、反向、正反向 56. 温度传感器的主要类型有:、、。 参考答案:热电偶、热电阻、集成温度传感器 57. 表示检测系统静态特性的参数主要有、、等。参考答案:零点偏移量、灵敏度、分辨力和量程 58. 表示检测系统静态特性的性能指标有:、、、、、和等。 参考答案:滞差、重复性、线性度、准确度、稳定性、影响系数和输入/输出电阻 59. 仪器放大器增益的设定方法有三种:一是设定增益;二是设定增益;三是设定增益。 参考答案: 外接电阻引脚可编程数字式可编程 60. 反相比例放大器的特点是什么? 参考答案: 反相比例放大器的特点是: ①输出信号与输入信号反相。 ②电压放大倍数的绝对值可RF/R1以>1,也可以<1。

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

压缩机过热故障分析

压缩机过热故障分析 育龙网 WWW.CHINA-B.C0M 2009年06月15日来源:互联网 育龙网核心提示: 1.引言压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C 时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C 以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。

离心式压缩机常见故障分析及处理方法

压缩机常见故障分析及处理方法 序号故障现象故障原因处理方法 1 压缩机异常 振动 1.机组不对中 1.重新对中,消除管道外力的影响,必要时进行热态对中检查 2.压缩机转子不平衡 2.检查转子弯曲度及是否结垢或破损,如有必要应对转子重新 进行平衡 3.轴承不正常 3.检查并修复轴承消除半速涡动因素 4.联轴器故障或不平衡 4.检查修复或更换联轴器,进行平衡 5.动静部分摩擦,基础不均 匀下沉或机座变形 5.调整安装间隙或更换超差件,消除机座变形,加固基础 6.油压、油温不正常 6.检查各润滑点油压,油温及油系统工作情况,找出异常原因 设法解决 7.压缩机喘振7.检查压缩机运行时是否远离喘振点,防喘裕度是否正确,气 体纯度是否降低,根据原因按操作法规定进行处理消除 8.气体带液或杂物浸入8.消除带液和清除杂物 9.轴颈测振部位的机械跳 动和电跳动过大 9.消除轴颈部位的机械和电磁偏差 10.转子热弯曲10.修复或更换转子 11.转子有裂纹11.修复或更换转子 2 压缩机管线 异常振动 1.管道应力过大 1.消除管道应力 2.压缩机气流激振 2.调整工艺参数,消除气流激振 3.管线支撑设计不当 3.重新复核压缩机管线支撑 3 压缩机轴向 推力过大及 轴位移增加 1.级间密封损坏或磨损,造 成密封间隙增大 1.更换密封 2.齿式或膜片式联轴器齿 面或磨损磨损 2.修复或更换联轴器及其余部件 3.压缩机喘振或气流不稳 定 3.及时调整工艺参数,使压缩机运行稳定 4.推力盘端面跳动大,止推 轴承座变形大 4.更换推力盘或轴承座 5.轴位移探头零位不正确, 探头特性不好 5.校核探头,重新校对探头零位 6.油温、油压波动 6.调整油温、油压 7.止推轴承损坏7.更换止推轴承 4 压缩机轴承 温度升高 1.温度计安装不当或热电 偶损坏 1.检查测温套的安装情况,校准温度计,更换或修复热电偶及 其余测温元件 2.供油温度高或油质不符 合要求 2.检查冷却水的压力和流量,投用备用冷却器或更换补充新油 3.润滑油量减小或油压低 3.1 检查油的粘度、含水量和抗乳化度等 3.2 检查油箱的油位及泵工作情况 3.3 检查润滑油过滤器前后的压差,投用备用过滤器或清洗 3.4 检查油系统阀门开度和漏油情况 4.轴承损坏 4.检查修理或更换轴承 5.轴向推力增大或止推轴 承组装不当 5.检查压缩机转子及密封情况,调整间隙,检查止推轴承,消 除缺陷,消除压缩气体带液现象 6.压缩机气封漏气 6.调整气封间隙或更换气封

压缩机常见故障分析及处理方案

一、对于活塞式压缩机,什么事余隙容积?由哪几部分组成? 二、活塞式压缩机排气量不足的原因有哪些 (1)气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。 (2)填料函不严产生漏气使气量降低。其原因首先是填料函 本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气。一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 (3)压缩机吸排气阀的故障对排气量的影响。阀座与阀片间 掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化。阀座与阀片接触不严形成漏气而影响了排气量,一是制造质量问题,如阀片翘曲等,二是由于阀座与阀片磨损严重而形成漏气。 (4)气阀弹簧力匹配不好。弹力过强会使阀片开启迟缓,弹

力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到 功率的增加,以及气阀阀片和弹簧的寿命。同时,也会影响到气 体压力和温度的变化。 (5)压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧 也不行,会使阀罩变形损坏。一般压紧力p=kD2P2π/4,D 为阀腔直径,P2 为最大气体压力,k>1,一般取1.5~2.5,低压时k=1.5~2,高压时k=1.5~2.5。这样取k 值,实践证明是好的。气阀有故障,阀盖必然发热,同时压力也不正常。 三、活塞式压缩机排气温度高的原因有哪些?处理措施有哪些? 造成活塞压缩机机排气温度过高的原因如下: 1、一级吸气温度高。 2、级间冷却器冷却效率低,致使后一级的吸气温度高。 3、气阀有漏气现象,使排出的高温气体又漏回气缸,重新压缩后,排出温度就更高。 4、由于后一级漏气,本级的压缩比升高,致使排气温度升高。 5、活塞环磨损或质量不好,活塞两侧吸、排气之间相互窜气。 6、气缸水套及冷却水管上有水垢、水污,影响冷却效率。 故障解决方法: 1、在滤清器处搭阴棚或用淋水法降低一级吸气温度,夏天尤其就注意。当吸气温度超过额定值时,不能运转。 2、修理中间冷却器。

压缩机探头的安装,调试及故障判断

引言 压缩机是化工生产装置中重要的设备,广泛使用的有离心式压缩机和往复式压缩机(对称平衡和对置平衡)两种,它将工艺介质加压至后系统需要的反应压力,使装置生产出高质量的化工产品。对压缩机运转状况的监控主要靠电涡流传感器(探头)来完成,所以我们对探头正确的安装,调校及良好的维护,使压缩机长周期运转成为可能。 准备知识 概念: 楞次定律:感生电流的方向,总是使它的磁场阻碍原来磁场的变化。 固有频率:系统的自由振动频率。一个机组或其中的一个零部件一旦制造完成,它的固有频率则是一定的。 临界转速:是指产生大振动幅度时的任何转速。此转速常与系统的固有频率相对应。 压缩机的喘振:压缩机在运转过程中,流量不断减小,当小到最小流量界限时,流动就会严重恶化,出口压力突然大幅度下降,此时 管网压力高于压缩机出口压力,气体倒流回压缩机出口,压 力平衡后,压缩机又向管网供气,管网压力恢复后,压缩机 流量又减小,管网的气体又产生倒流,周而复始,产生“喘 振”。 单位换算 1MM=1000UM 1道=10UM 1MIL=2.54道=25.4UM 探头 种类(电涡流传感器):5MM,8MM,11MM,14MM四种,其中5MM,8MM电涡流传感器的灵敏度为200MV/MIL(7.87V/MM),线性范 围达2MM(80MILS),11MM,14MM电涡流传感器的灵敏度为 100MV/MIL(3.94V/MM),线性范围达4MM(160MILS)。四种传 感器均有正装,反装之分,见图一:

3300XL 8MM电涡流传感器 使用条件:-24VDC 供电,10KΩ负载,观测目标材料为:4140#钢。 电源要求:-23----26VDC,最大电流为12MA,当电压高于-23.5VDC时,会导致线性范围的减小。 供电电压的灵敏度:输入供电电压每变化1VDC,输出电压变化小于1MVDC。 直流阻抗:7.3Ω。 现场连线:应使用三芯屏蔽电缆,从前置器到监视器的最大距离为305米。 线性范围:2MM(80MILS),从被测靶面0.25---2.3MM(10---90MILS)。 推荐间隙设定值:1.27MM(50MILS)。 系统长度:5米系统:探头总长(探头壳体+猪尾线的长度)+延伸电缆 长度=5米。 9米系统:探头总长(探头壳体+猪尾线的长度)+延伸电缆 长度=9米。 环境温度:探头:-35---177℃ 延伸电缆:-51---177℃ 前置器:-35---85℃ 3300XL 8MM电涡流传感器解读: 部件号-AA-BB-CC-DD-EE 部件号:330101,330102,330103,330104,330106,330140,330141。 AA:无螺纹长度:04=0.4英寸 BB;壳体总长度:24=2.4英寸 CC:总长度:05=0.5米

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

离心式压缩机常见振动故障诊断及解决办法

离心式压缩机常见振动故障诊断及解决办法 摘要离心压缩机是高速运转的设备,运行中产生振动是不可避免的。但是振动值超出规定范围时的危害很大。对设备来说,引起机组静动件之间摩擦、磨损、疲劳断裂和紧固件的松脱,间接和直接发生事故。对操作人员来说,振动噪音和事故都会危害健康。下面就常见的振动现象进行简单诊断并提出相应的解决的办法。 关键词离心压缩机;振动;转子;共振;喘振 1 油膜振荡 1.1 油膜振动值的变化有一定规律 1)振动值与环境温度的变化存在一定规律,温度下降,振动值略有升高;反之会下降。环境温度的变化影响润滑油温、润滑油粘度、油膜刚度的变化,从而影响轴承振动值的变化。 2)振动值大小与声音的剧烈程度同步:振动大时,声音剧烈;振动小时,声音平缓。 3)其他运行参数变化时,振动值变化较迟钝,压缩机在空负荷运行时(吸风阀未打开时)就产生剧烈振动,在吸风、力口压过程中,振动值基本不变。 1.2 故障解决方案 油膜振荡是由半速涡动发展而成,即当转子转速升至两倍于第一临界转速时,涡动频率与转子固有频率重合,使转子一轴承系统发生共振性振荡而引起,如果能提高转子的第一临界转速,使其大于0.5倍工作转速,即可避免发生油膜振荡,但这显然无法实现。 只有通过加大轴承的载荷,使轴颈处于较大的偏心率下工作,提高轴瓦稳定性的办法解决。 在振荡发生时,提高油温,降低润滑油的粘度。 2 临界转速 临界转速是指数值等于转子固有频率时的转速。转子如果在临界转速下运行,会出现剧烈的振动,而且轴的弯曲度明显增大,长时间运行还会造成轴的严重弯曲变形,甚至折断。 装在轴上的叶轮及其他零、部件共同构成离心式压缩机的转子。离心式压缩

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

状态检测、故障诊断技术在离心压缩机上的运用

状态检测、故障诊断技术在离心压缩机上的应用 原作者:蔡广斌温宾江 出处: 【关键词】离心式压缩机,振动,故障诊断 【论文摘要】旋转机械故障诊断技术在发电、化工行业等大型透平,离心机组上的应用日益广泛。介绍了大庆天然气公司从美国DRSSER-RAND公司引进的D10R9B离心压缩机应用振动检测,故障诊断技术,分析、推断、处理的轴振动超高的问题及收到的良好效果。 Application of Condition Detecting and Trouble Diagnosis Technology on Centrifugal Compressor

AbstractSPAN class=zye style="FONT-SIZE: 10pt">Application of rotary mechanism trouble diagnosis technology on Large turbin and centrifugal unit used in power station and chemical industry is getting extensive day by day.Da Qing Natural Gas Company imported D10R9B Centrifugal compressor from American DRSSER-RAND Company is introduced.Problems of exceeding vibration limit of shaft are analyzed,judged and treated by using vibration detection and trouble diagnosis technology,and good effect is obtained. Key words SPAN class=gje style="FONT-SIZE: 10pt">Centrifugal compressor Vibration Trouble diagnosis D10R9B离心压缩机是大庆天然气公司喇二压气站浅冷装置从美国DRSSER-RAND公司引进的。1998年10月2日投运时,轴振动在同意范围之内。运行52天后,压缩机的驱动端轴振动报警,VT-701Y在53μm左右,之后此状态没有改善。1999年6月20日开始,VT-701Y达到60μm,轴振动加剧,阻碍正常生产。该机组每天处理天然气40万m3,每天产值30万元左右。而且该机组采纳的是90年代先进设计、制造技术。为了幸免事故扩大,需尽快查明振动值高的缘故,采取有效的处理措施,把损失降到最小。我们组织有关人员对该机组及相关系统实施振动检

离心式空气压缩机运行故障分析及处理

离心式空气压缩机运行故障分析及处理 姓名:XXX 部门:XXX 日期:XXX

离心式空气压缩机运行故障分析及处理 国内工业生产已经步入机械自动化时代,机械控制系统是企业内部 生产调度的主要平台,满足了各类机械设备传动作业的控制需求。离心式空气压缩机是现代工业常见的一种设备,利用动能转换原理提升了设备内部的气体压力,维持着内外装置的稳定性运转。受到多方面因素的干扰,离心式空气压缩机故障率持续上升,对机械控制系统运行造成了诸多不便。本文分析了离心式空气压缩机工作原理,对其常见运行故障分析及处理方法进行总结,为机械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动机运转产生的 机械能变为气体压力能,帮助机械设备内部系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1. 原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离心力,由于气体在叶轮里的扩压流动,从而使气体通过叶轮后的流速和压力得到提高,连续地生产出压缩空气。依据这一原理,离心式压缩机在机械传动系统中可提供足够的空气压力,促进

空压机常见故障及处理方法

本文详细分析了空气压缩机的常见故障现象、故障原因及处理方法。如,在发动机运转,空气压缩机向储气罐充气的情况下,气压表指示气压达不到起步压力值(空气压力不足)。出现这种情况的原因可能是: 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 那么相对应的处理方法是: 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。 3、如果空气压缩机不向储气罐充气,检查油水分离器和空气滤清器及管路内是否污物过多而堵塞,如果是堵塞,应清除污物。 4、经过上述检查,如果还找不到故障原因,则应进一步检查空气压缩机的排气阀是否漏气,弹簧是否过软或折断,气缸盖有无砂眼、衬垫是否损坏,根据所查找的故障更换或修复损坏零件。 5、检查空气压缩机缸套、活塞环是否过度磨损。 6、检查并调整卸荷阀的安装方向与标注(箭头)方向是否一致。 具体的各类空气压缩机的故障及排除方法详见下表1——1。 表1——1 空气压缩机的故障及排除方法 故障现象故障原因处理方法 空气压缩机空气压力不足 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

天然气输送离心式压缩机组故障诊断方法研究

天然气输送离心式压缩机组故障诊断方法研究 摘要:文章介绍了天然气输送离心式压缩机组的常见故障,分析了故障原因及特征,进而对其故障诊断技术现状进行了总结和比较,在此基础上针对输气动力设备故障的复杂性提出了应用数据挖掘技术对离心式压缩机组进行故障诊断的初步设想。 abstract: the article describes the common faults on natural gas centrifugal compressor unit, analyses the causes and characteristics, and then analyzes the current situation of fault diagnosis technology. on this basis, it puts forward the preliminary ideas on the fault diagnosis of centrifugal compressor unit by using data mining technique. 关键词:天然气输送;离心式压缩机组;故障分析;故障诊断key words: natural gas transmission;centrifugal compressor unit;failure analysis;fault diagnosis 中图分类号:th452 文献标识码:a 文章编号:1006-4311(2013)20-0046-02 0 引言 为使管道长距离输送天然气能连续进行,必须经增压站的输气动力设备对天然气增压,以克服其在管道流动中的摩擦阻力。离心式压缩机组以其结构紧凑、重量轻、体积小、稳定工况范围宽等优点广泛用于天然气管道输送过程的增压。压缩机组大多是从国外进口,价格昂贵,由于输气工况变化较大,生产要求压缩机在重负荷

故障检测与诊断

基于故障树分析法的轮胎异常磨损诊断系统 1.1轮胎异常磨损的故障机理 1.1.1轮胎异常磨损故障模式 本文所涉及到的故障模式主要依据江淮汽车(FCO3)轮胎异常磨损的调研情况,并经分析总结及专家考证得出。江淮HFC6703KY汽车轮胎异常磨损可分为以下9种模式: ①单点块状磨损 胎冠上发生早期磨损的部位呈单个点状或小块状分布。 ②对称多点块状磨损 胎冠上发生早期磨损的部位呈多点块状,并且相对于轮胎的中心线呈对称分布状。 ③两侧胎肩磨损 两侧胎肩的早期磨损量明显比胎冠上的大。 ④胎冠第二道花纹磨损 胎冠第二道花纹处的磨损比其它部位明显,一般为子午线胎特有的一种异常磨损形式。 ⑤胎冠均匀磨损 胎冠磨损较均匀,但汽车行驶里程明显远离规定里程。 ⑥胎冠胎肩波浪或碟边状偏磨损 胎冠胎肩的磨损呈波浪状或碟边形。 ⑦胎冠胎肩均匀偏磨损 胎冠和胎肩的一边比另一边磨损量大,磨损呈均匀状分布。 ⑧胎冠胎肩秃斑偏磨损 单侧胎冠胎肩部位呈秃斑状磨损,即有的部位磨损量较大,有的部位只有轻微的磨痕,并且呈零乱分布。 ⑨胎肩开裂 胎肩上有明显的裂口或撕裂处。 1.1.2轮胎异常磨损的影响因素

轮胎异常磨损的影响因素很多,主要涉及到汽车设计阶段的参数选用、制造工艺保障、使用维修措施等方面,具体分析如下: (1)前轮定位参数前轮定位参数在讨论轮胎异常磨损中致关重要。在车辆前束过大时,路面作用于轮胎的切向力位于轮胎外侧,如图4一1(a)所示,因此胎面外侧比内侧磨损量大。而当车轮外倾角过大时,地面的垂直作用力相对集中于轮胎内侧,轮胎内侧比外侧的磨损量大。如图4一1(b)所示。 (2)气压 充气压力对轮胎寿命的影响主要体现在以下几个方面: ①轮胎的气压越低,其侧偏刚度越小,在一定横向力作用下其滑移角越大,因此磨损越大。 ②较低的气压可使轮胎与路面间的实际接触面积增大,降低胎面上的平均接触压力,可减少磨损。但低气压在增加接触面积的同时,也增加了轮胎与路面间接触区域的长度,从而加大了轮胎的希思科滑移,使轮胎磨损加剧。 ③如果轮胎气压过高,则轮胎的胎冠部将明显突出,使胎冠部的磨损加剧。相反,如果轮胎的气压过低,则由于胎侧刚度的影响,胎肩部的压强将增大,而胎冠部的压强将减小,从而使胎肩部的磨损加剧,而胎冠部的磨损减轻。 ④低气压的轮胎在滚动时将使轮胎橡胶产生较大的弹性变形,从而使轮胎的弹性滞后损失增加,发热加剧,导致轮胎早期的疲劳破坏。 (3)速度 速度主要是通过下面两个方面来影响轮胎的磨损。

压缩机常见故障处理

一、活塞式压缩机打气量不足 产生原因: 1、吸排气阀漏气 (1)阀座与阀片之间有金属颗粒,因关闭不严引起漏气,影响气量。 (2)新的吸气阀弹簧,初用时刚性太大,引起开启迟缓;弹簧用久后,因疲劳引起开阀不及时,造成漏气。 (3)阀片与阀座磨损不均匀,因而引起密封不严而漏气,影响气量。 (4)吸气阀升起不够,流速加快阻力增大,影响气量。 消除方法: (1)拆检清洗,若吸气阀的阀盖发热,则故障在吸气阀上,否则是在排气阀上。 (2)检查弹簧刚性,或更换合适的弹簧。 (3)用研磨方法加以修理,或更换新的阀片和阀座。 (4)调整升程高度,更换适当的升程限制圈。 2、填料漏气 (1)填料或活塞杆磨损引起漏失。 (2)润滑油供应不足,降低气密性,引起漏失。

消除方法: (1)修理或更换密封圈或活塞杆。 (2)拆检吸、排气阀,发现气阀缺油,应增加润滑油量。 3、气缸与活塞环有故障 (1)气缸磨损(特别是单边磨损)超过最大允许限度,间隙增大,引起漏气,影响打气量。 (2)活塞环因润滑油质量不好,油量不足,缸内温度过高,将形成咬死现象,不但影响气量,而且影响压力。 (3)活塞环磨损,造成间隙大而漏气。 消除方法: (1)用镗削或研磨的方法进行修理,严重时更换新缸套。 (2)取出活塞,清洗活塞环或环槽,更换润滑油,改善净却条件。 (3)更换活塞环。 4、气缸余隙容积过大,降低了吸入量。 消除方法:

调整气缸余隙 二、某级压力升高 产生原因: 1、后一级的吸、排气阀漏气,必然增大前一级的排气压力。 2、活塞环泄漏引起排气量不足。 3、本级吸、排气阀因各种原因产生的泄漏。 消除方法: 1、更换后一级的吸、排气阀。 2、更换活塞环。 3、拆检气阀,并采取相应措施。 三、某级压力降低 产生原因:

离心压缩机常见故障诊断与排除

第30卷第9期摘 要:文章针对离心式压缩机在启动、加载以及运行过程中经常出现的故障,分析了出现问题的各种原因,并提出了 合理的处治措施,以确保压缩机的安全稳定运行。关键词:离心式压缩机;启动;运行;故障排除中图分类号:TH452 文献标识码:A 文章编号:1006-8937(2011)09-0081-02 Diagnosis and exclusion of the common faults of centrifugal compressor LIU Hai-tao (The Seventh M etallurgical Construction Corp.Ltd.,Guiyang ,Guizhou 550014,China ) Abstract:Against the common faults during the process of starting ,loading and process of centrifugal compressor ,this paper analyzes various causes and proposes reasonable treatment measures to ensure the safe and stable operation of the compressor.Keywords :centrifugal compressor ;starting ;operation ;trouble shooting 离心压缩机常见故障诊断与排除 刘海涛 (七冶建设有限责任公司,贵州贵阳550014) 收稿日期:2011-03-20作者简介:刘海涛(1971—),男,河南汝南人,大学本科,中级工程师, 研究方向:机械。 企业技术开发 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 2011年5月M ay 2011 第30卷第9期Vol.30No.9 离心式压缩机是现代化工厂的关键设备之一,具有结构紧凑、自动化程度高、运行安全可靠、操作直观方便等优点,目前广泛应用于石油、化工、冶金等行业,在现代化大生产中发挥着极其重要的作用。离心式压缩机在启动、加载以及运行过程中,难免会出现一些故障,若压缩机故障不及时排除,轻则致使生产无法正常进行造成经济损失,重则造成压缩机损坏报废甚至造成人员伤害等严重后果,我们常见的压缩机故障有设备无法启动、启动后无法加载;不明原因的故障报警;压缩机排气量不足、压缩机发生喘振、进水过滤器脏堵和排气温度高、油压低保护跳脱等。本文通过分析离心式压缩机在启动、加载、运行过程中出现的各种问题,提出相应的解决办法,确保离心式压缩机的安全稳定运行。 1离心式压缩机工作原理 离心式压缩机主要由转子和定子两大部分组成,其 工作原理简言之就是依靠动力带动压缩机主轴叶轮高速转动,气体随着叶轮高速旋转,在离心力作用下产生压力,与此同时气体获得速度被甩到工作轮后面的扩压器等通道内,在叶轮处不断形成真空地带,外界的新鲜气体不断进入叶轮,随着叶轮高速旋转,气体不断地吸入并甩出,从而保持了气体连续流动。 2 离心式压缩机启动常见故障分析及排除 2.1 开机时无法启动 离心式压缩机开机时无法启动,通常有以下几种原 因:①压缩机电源电路没有联通,如电源断电、开关接触 不良、 继电器触头断开、保险丝熔断等,这种情况排除的方法很简单,可以用万用表检查是否有电,查看各触头是否完好以及检查压缩机热保护器和继电器等附件是否正常工作;②电机绕组匝间短断,对于电机绕组匝间短断可用万用表检查接线柱与外壳是否短路,并测量各相电阻,如果短路或某相电阻较小说明电机绕组匝间有短路或断路现象,造成绝缘层被烧穿而无法工作,一般需要更换压缩机电机;③压缩机抱轴和卡缸等机械故障,设备的润滑系统油路堵塞或供油中断,有污物杂质使润滑系统黏度增大等都可能导致抱轴,卡缸是设备活塞和缸体之间的配合间隙过小或受热膨胀卡死;④压缩机系统报警或存在设备信号故障,造成压缩机不具备启动条件,针对压缩机报警或故障信号等情况,可分别分析故障原因,一般是报警后未及时恢复,这种情况比较简单,一般只需按下压缩机控制面板或高压启动柜上的复位健即可消除报警,恢复备机状态就可正常启动。2.2 启动后不能加载 所谓加载就是压缩机在运行过程中,主轴叶轮高速转动产气量大于排出气体的速度,机体内部气体压力陆续升高,顶开安全阀,此时压缩机就一直显示加载。压缩机启动后应缓慢、均匀的增加负荷,并随时检查机器运转情况及电机电流波动情况,对于压缩机启动后不加载,通常有以下几种原因:①加载电磁阀失效,当启动压缩机时,控制面板显示加载,此时PLC 控制程序给电磁阀打开信号,如电磁阀失效,就无法打开,压缩气体也无法通过电磁阀来顶开进气阀进行加载,可通过检查加载电磁阀是否完好,如加载电磁阀失效可进行更换;②空气滤清器滤芯严重堵塞,滤清器滤芯堵塞将无法吸进大量的气体进行压缩,造成启动后不加载,这种情况需要

相关文档
最新文档