均值不等式【高考题】

均值不等式【高考题】
均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21()21(x

y y x +++

的最小值是【 】 A .3 B .27 C .4 D .29 例2、设y

x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 2

1 练习1.若0x >,则2x x

+的最小值为 . 练习2.设,x y 为正数, 则14()()x y x y

++的最小值为【 】 A.6 B. 9 C. 12 D. 15

练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】

A.2 B .3 C .6 D .9

练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域:

(1)22

213x x y += (2)x

x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2

()a b cd

+的最小值是【 】 A.0 B.4 C.2 D.1

例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c

---最小值为【 】 A. 5 B. 6 C. 7 D. 8

凑系数

例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 .

练习1.已知,x y R +∈,且满足

134

x y +=,则xy 的最大值为 . 练习2. 当40<

凑项 例5、若函数)2(2

1)(>-+

=x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4

练习1.已知54x <,求函数14245

y x x =-+-的最大值. 练习2.函数1(3)3

x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5

练习3.函数232(0)x x x

+>的最小值为【 】 A.3932 B. 39423952392

两次用不等式

例6、已知22log log 1a b +≥,则39a b

+的最小值为__________.

例7、已知0,0a b >>,则

11a b

++ 】

A.2 B ..4 D .5

例8、设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是【 】

A.2

B.4

C.5

练习1.设0a b >>,则()

211a ab a a b +

+-的最小值是【 】 A. 1 B. 2 C. 3 D. 4

练习2.设0a b >>,则21()

a b a b +-的最小值是【 】 A. 2 B. 3 C. 4 D. 5

练习3.设0a b ≥>,则1(2)

a b a b +-的最小值是【 】

A. C. 练习4.设20a b >>,则29()(2)a b b a b -+-的最小值是 . 换元

例9、若y x y x -=+则,422的最大值是 .

练习1.设b a b a b a +=+∈则,62,,2

2R 的最小值是【 】 A .22- B .335-

C .3-

D .27- 例10、设,x y 是实数,且224,x y +=则22xy S x y =+-的最小值是【 】

A.2-

B.

C. 2-1)

练习1.若221,x y +=1

xy x y +-则最大值是 练习2.若01,01,a x y <<<≤<且(log )(log )1a a x y =则xy 【 】

A.无最大值也无最小值

B.无最大值但有最小值

C.有最大值但无最小值

D.有最大值也有最小值

消元

例11、设,,x y z 为正实数,满足230x y z -+=,则2

y xz

的最小值是 . 练习1。已知实数,,0a b c >满足9,24,a b c ab bc ca ++=++=,则b 的取值范围为 两次用

例12、已知正数,,x y z 满足2221,x y z ++=则12z S xyz

+=的最小值是【 】

A. 3 C. 4 D. 1)

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

不等式高考真题汇编(含答案)

【2010 课标卷】设函数f(x)= 2x 4 1 (Ⅰ) 画出函数y=f(x) 的图像; (Ⅱ)若不等式f(x) ≤ax 的解集非空,求 a 的取值范围. 【答案】 【2011 课标卷】设函数 f ( x) x a 3x , 其中a 0。 (Ⅰ)当a 1时,求不等式 f (x) 3x 2 的解集 (Ⅱ)若不等式 f (x) 0的解集为x| x 1 ,求 a 的值。 解:(Ⅰ)当a 1时,f (x) 3x 2可化为| x 1| 2。 由此可得x 3或x 1。故不等式 f (x) 3x 2的解集为{ x | x 3或x 1} 。( Ⅱ) 由f (x) 0得:x a 3x 0 x a x a 此不等式化为不等式组x a x a 3x 0 或 x a a x 3x 0 即 a x 或 4 a a 2 a 因为 a 0,所以不等式组的解集为| x x 由题设可得 2 a 2 = 1,故a 2 1

【2012 课标卷】已知函数 f (x) x a x 2 (1)当a 3时,求不等式 f ( x) 3的解集; (2)若 f (x) x 4 的解集包含[1,2] ,求a 的取值范围。【解析】(1)当a 3时, f ( x) 3 x 3 x 2 3 x 2 3 x 2 x 3 或 2 x 3 或 3 x x 2 3 x 3 x 3 x 2 3 x 1或x 4 (2)原命题f (x) x 4 在[1,2] 上恒成立x a 2 x 4 x在[1,2] 上恒成立 2 x a 2 x在[1,2] 上恒成立 3 a 0 【2013 课标Ⅰ卷】已知函数 f (x) =|2x 1| | 2x a |, g(x) = x 3 . (Ⅰ)当 a =2 时,求不等式 f (x) <g( x) 的解集; (Ⅱ)设 a >-1, 且当x ∈[ a 2 , 1 2 ) 时, f (x) ≤g(x) , 求a 的取值范围. 【解析】当 a =-2 时,不等式 f (x) <g (x) 化为|2x 1| | 2x 2 | x 3 0 , 5x, x 1 2 设函数y =|2x 1| |2x 2 | x 3 ,y = 1 x 2, x 1 2 ,3x 6, x 1 其图像如图所示,从图像可知,当且仅当x (0,2) 时,y <0 ∴原不等式解集是{ x | 0 x 2} . a (Ⅱ)当x ∈[ , 2 ∴x a 2对x∈[ 1 2 ) 时, f (x) =1 a ,不等式 f (x) ≤g( x) 化为1 a x 3, 4 a 1 a ) 都成立,故, a 2,即a ≤ , 2 2 2 3 ∴a 的取值范围为(-1 ,4 3 ]. 【2013 课标Ⅱ卷】设a、b、c均为正数,且 a b c 1,证明:

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选 D.0040)1()1(|1||1|11 1 22

或③12 (21)(2)0 x x x ? ≤? ??--+-解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x << 7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和. (1)将y 表示成x 的函数; (2)要使y 的值不超过70,x 应该在什么范围内取值

2018年高考备考+均值不等式和柯西不等式+含历年高考真题

1 成立。 5、(2012 福建)已知函数 f(x)=m-| x-2|, m € R,且 f(x+2)》0解集为[-1,1]. 1 丄 丄 (1)求 m 的值; (2)若 a,b,c € R 且a + + 3c =m,求证:a + 2b +3c >9 1、(2008 江苏)设 a , b , c 为正实数,求证: 3 a 11 — 3 + abc 》2*; 3 . c b 3 2、(2010辽宁理数) 已知a,b, c 均为正数,证明: b 2 丄I )2 6.3,并确定a,b,c 为何值时,等号 b c 3、(2012江苏理数) 1 已知实数x , y 满足:|x y| -,|2x 3 y| 5 求证:|y| 18 - 4、( 2013新课标n ) 设a,b,c 均为正数,且a b c 1,证明: 1 (i )ab bc ca 一 3 2 a (n )— b b 2 c 2 1. c a

(n) a b c d 是 a b cd 的充要条件. 6、(2011浙江)设正数x, y, z 满足2x 2y z 1. (i)若 ab cd ,贝U a b c d ; ⑴求3xy yz zx 的最大值; (2)证明: 3 1 xy 1 1 1 yz 1 xz 125 26 7.(2017全国新课标II 卷)已知a 0,b 0,a b 2。证明: (1) (a b)(a 5 b 5) 4 ; (2) a b 2。 8.(2017 天津)若 a,b R , ab 0,则 a 4 4 b 4 1 -的最小值为 9. 【2015咼考新课标 ab 2,理24】设a, b, c, d 均为正数,且a c d ,证明:

高考真题 选修 不等式选讲

选修4-5 不等式选讲 考点不等式选讲 1.(2017?新课标Ⅰ,23)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x ﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.1.(1)解:当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x= 的二次函数, g(x)=|x+1|+|x﹣1|= , 当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x= ,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g (x)的解集为(1,]; 当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2. 当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2. 综上所述,f(x)≥g(x)的解集为[﹣1,]; (2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在

[﹣1,1]恒成立,则只需,解得﹣1≤a≤1, 故a的取值范围是[﹣1,1]. 2.(2017?新课标Ⅱ,23)已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 2.证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥(+ )2=(a3+b3)2≥4, 当且仅当= ,即a=b=1时取等号, (Ⅱ)∵a3+b3=2, ∴(a+b)(a2﹣ab+b2)=2, ∴(a+b)[(a+b)2﹣3ab]=2, ∴(a+b)3﹣3ab(a+b)=2, ∴=ab, 由均值不等式可得:=ab≤()2, ∴(a+b)3﹣2≤ , ∴(a+b)3≤2, ∴a+b≤2,当且仅当a=b=1时等号成立. 3.(2017?新课标Ⅲ,23)已知函数f(x)=|x+1|﹣|x﹣2|.

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21()21(x y y x +++ 的最小值是【 】 A .3B .27C .4D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则 若的最大值为【 】 A. 2B. 23 C. 1D. 2 1 练习1.若0x >,则2x x +的最小值为. 练习2.设,x y 为正数, 则14()()x y x y ++的最小值为【 】 A.6 B.9C. 12D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2B .3C .6D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨. 练习5.求下列函数的值域: (1)22 213x x y += (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0B.4C.2D.1 例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c ---最小值为【 】 A. 5 B.6 C.7 D.8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是. 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为. 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+B .31+C .3D .4 练习1.已知54x <,求函数14245 y x x =-+-的最大值. 练习2.函数1(3)3 x x x +>-的最小值为【 】 A. 2B. 3C. 4D.5 练习3.函数232(0)x x x +>的最小值为【 】 A.39323923952392

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

高考备考 均值不等式和柯西不等式 含历年高考真题

1、(2008江苏)设a ,b ,c 为正实数,求证: 333111a b c +++abc ≥. 2、(2010辽宁理数)已知c b a ,,均为正数,证明:36 )111(2222≥+++++c b a c b a ,并确 定c b a ,,为何值时,等号成立。 3、(2012江苏理数)已知实数x ,y 满足:1 1|||2|3 6 x y x y +<-<,,求证:5 ||18 y <. 4、(2013新课标Ⅱ)设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 5、(2012福建)已知函数f (x )=m -|x -2|,m ∈R,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值; (2)若a ,b ,c ∈R,且1a + 12b + 1 3c =m ,求证:a + 2b +3c ≥9 6、(2011浙江)设正数z y x ,,满足122=++z y x . (1)求zx yz xy ++3的最大值; (2)证明: 26 125 111113≥+++++xz yz xy 7. (2017全国新课标II 卷) 已知3 3 0,0,2a b a b >>+=。证明: (1)5 5 ()()4a b a b ++≥; (2)2a b +≤。 8.(2017天津) 若,a b ∈R ,0ab >,则4441 a b ab ++的最小值为___________. 9. 【2015高考新课标2,理24】设,,,a b c d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >+> (Ⅱ)>是a b c d -<-的充要条件. 10. 【2015高考福建,理21】选修4-5:不等式选讲 已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221 14 9 a b c ++的最小值. 11.【2015高考陕西,理24】(本小题满分10分)选修4-5:不等式选讲

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)2 2 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4 x <,求函数14245y x x =-+-的最大值. 练习2.函数 1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.39 32 B. 3942 C. 39 52 D. 39 2

不等式高考真题汇编(含答案)

【2010课标卷】设函数f(x)=241x -+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax 的解集非空,求a 的取值范围. 【答案】 【2011课标卷】设函数()3f x x a x =-+,其中0a >。 (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集 (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。 解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥。 由此可得 3x ≥或1x ≤-。故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-。 ( Ⅱ) 由()0f x ≤得: 30x a x -+≤ 此不等式化为不等式组30x a x a x ≥??-+≤?或30x a a x x ≤??-+≤? 即 4x a a x ≥???≤?? 或2x a a a ≤???≤-?? 因为0a >,所以不等式组的解集为{}|2a x x ≤- 由题设可得2a -= 1-,故2a =

【2012课标卷】 已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集; (2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。 【解析】(1)当3a =-时,()3323f x x x ≥?-+-≥ 2323x x x ≤???-+-≥?或23323x x x <??? , 其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0 ∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12 )时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2 a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 【2013课标Ⅱ卷】设a b c 、、均为正数,且1a b c ++=,证明:

均值不等式题型汇总

均值不等式题型汇总 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 1.设*,,1,a b R a b 求证:1125()()4 a b a b 2.设,,(0,),a b c 求证:2222222() a b b c a c a b c 3.设,,(0,),a b c 求证:222 b c a a b c a b c 4.设,,(0,),a b c 求证:222a b c ab bc ac 5.已知实数,,x y z 满足:2221x y z ,求xy yz 得最大值。 6.已知正实数,,a b c ,且1abc 求证:1818189 a b c

7.(2010辽宁)已知,,a b c 均为正实数,证明:2222111()63a b c a b c , 并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。 使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1.设11 ,(0,)1x y x y 且,求x y 的最小值。 2.设,(0,)1x y x y 且,求11 2x y 的最小值。 3.已知,a b 为正实数,且1a b 求1 ab ab 的最小值。 4.求函数11 (01)1y x x x 的最小值。 变式:求函数291 (0)122y x x x 的最小值。 5.设,(0,)x y ,35x y xy ,求34x y 的最小值。 6.设,(0,)x y ,6x y xy 求x y 的最小值。 7.设,(0,)x y ,6x y xy 求xy 的最大值。 8.(2010浙江高考)设,x y 为实数,若2241x y xy ,求 2x y 的最大值。 9.求函数216y x x 的最大值。 变式:152y x x 的最大值和最小值。 10.设0x 求函数21 x x y x 的最小值。

不等式选讲高考真题

不等式选讲综合测试 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.若||||a c b -<,则下列不等式中正确的是( ). A .a b c <+ B .a c b >- C .||||||a b c >- D .||||||a b c <+ 2.设0,0,1x y x y A x y +>>=++, 11x y B x y =+++,则,A B 的大小关系是( ). 2.B 11111x y x y x y B A x y x y y x x y +=+>+==++++++++,即A B <. 3.设命题甲:|1|2x ->,命题乙:3x >,则甲是乙的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知,,a b c 为非零实数,则222222111()()a b c a b c ++++最小值为( ) . A .7 B .9 C .12 D .18 4.B 22222222111111()()()(111)9a b c a b c a b c a b c ++++≥?+?+?=++=, ∴所求最小值为9. 5.正数,,,a b c d 满足a d b c +=+,||||a d b c -<-,则有( ). A .ad bc = B .ad bc < C .ad bc > D .ad 与bc 大小不定 5.C 特殊值:正数2,1,4,3a b c d ====,满足||||a d b c -<-,得ad bc >. 或由a d b c +=+得222222a ad d b bc c ++=++, ∴2222()()22a d b c bc ad +-+=-,(1) 由||||a d b c -<-得222222a ad d b bc c -+<-+,(2) 将(1)代入(2)得2222bc ad bc ad -<-+,即44bc ad <,∴ad bc >. 6.如果关于x 的不等式250x a -≤的非负整数解是0,1,2,3,那么实数a 的取值 范围是( ). A .4580a ≤< B .5080a << C .80a < D .45a > 6.A 250x a -≤,得≤,而正整数解是1,2,3,则34≤<. 7.设,,1a b c >,则log 2log 4log a b c b c a ++的最小值为( ).

均值不等式高考题

均值不等式高考题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++ 的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(2 3+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于 【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)22 213x x y + = (2)x x y 1 += 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4x <,求函数14245 y x x =-+-的最大值.

一元二次不等式及其解法(高考题)

一元二次不等式及其解法 链接高考 1.(2016浙江杭州中学期中,★☆☆)下列不等式中,与不等式<2解集相同的是() A.(x+8)(x2+2x+3)<2 B.(x+8)<2(x2+2x+3) C.< D.> 2.(2015天津南开中学月考,★☆☆)不等式≥2的解集是() A. B. C.∪(1,3] D.∪(1,3] 3.(2013江西,6,5分,★☆☆)下列选项中,使不等式x<0的解集是________. 6.(2015课标Ⅱ,1,5分,★★☆)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0} B.{0,1} C.{-1,0,1} D.{0,1,2} 7.(2015山东,1,5分,★★☆)已知集合A={x|x2-4x+3<0},B={x|2

(?R P)∩Q=() A.[0,1) B.(0,2] C.(1,2) D.[1,2] 9.(2014课标Ⅰ,11,5分,★★☆)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则 A∩B=() A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2) 10.(2016河北石家庄一中期中,★★☆)若不等式x2+2x+2>|a-2|对于一切实数x 均成立,则实数a的取值范围是________. 11.(2012福建,15,4分,★★☆)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是________. 12.(2015辽宁大连期末,★★☆)已知f(x)=ax2+x-a. (1)若函数f(x)有最大值,求实数a的值; (2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围. 三年模拟 1.(2016四川雅安中学月考,★☆☆)不等式-x2+3x+4<0的解集为() A.{x|-14或x<-1} C.{x|x>1或x<-4} D.{x|-40的解集是() A.{x|-11} D.{x|x<1且x≠-1} 4.(2016福建师大附中模块考试,★★☆)若关于x的方程x2+(m-1)x+m2-2=0的

2020高考数学--- 均值不等式

第45炼 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:12 111n n n H a a a = ++ + (2 )几何平均数:n G = (3)代数平均数:12n n a a a A n ++ + = (4)平方平均数: n Q = 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 特别的,当2n =时,22G A ≤?2 a b + ≤ 即基本不等式 3、基本不等式的几个变形: (1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 3y x x =+≥,右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两 个 2x ,则22422y x x x x x =+=++≥=

② 乘积的式子→和为定值,例如3 02 x << ,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2 112329 322322228 x x f x x x x x +-??=-=?-≤= ???(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突) ② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求 m n x y +的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求 32 x y +的最小值 解: ()3232942366y x x y x y x y x y ??+=++=+++ ??? 94121224y x x y =+ +≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值 解:()2 2 21 1222 228 x y x y xy x y ++??=??≤ = ? ?? 所以()() 2 224248 x y x y xy x y +++=?++ ≥ 即()()2 282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=

相关文档
最新文档