高三数学等差数列测试题百度文库

高三数学等差数列测试题百度文库
高三数学等差数列测试题百度文库

一、等差数列选择题

1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60

B .11

C .50

D .55

2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11

B .10

C .6

D .3

4.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了

3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 5.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2

6.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -

B .

3

22

n - C .

3122

n - D .

31

22

n + 7.已知数列{}n a 的前n 项和n S 满足()

12n n n S +=,则数列11n n a a +??????

的前10项的和为

( ) A .

89

B .

910

C .10

11

D .

1112

8.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29

B .38

C .40

D .58

9.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

10.在数列{}n a 中,129a =-,()

*

13n n a a n +=+∈N ,则1220a a a ++

+=( )

A .10

B .145

C .300

D .320

11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( )

A .3(4)f x x =+

B .2

()4f x x =

C .3()4x

f x ??= ???

D .4()log f x x =

12.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4

B .6

C .7

D .8

13.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107 C .109 D .105 14.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )

A .24

B .23

C .17

D .16

15.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

2

1

1n n -+ B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

16.若数列{}n a 满足121

()2

n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020

D .2021

17.已知数列{}n a 的前n 项和为n S ,且()1

1213n n n n S S a n +++=+-+,现有如下说法:

①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0

B .1

C .2

D .3

18.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++????

+-=

???????

,数列{}n b 满足1111n n n

b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1

B .2

C .3

D .4

19.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24

B .39

C .104

D .52

20.已知数列{}n a 中,132a =

,且满足()*

1112,22

n n n a a n n N -=+≥∈,若对于任意

*n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

A .(1)1()2

n n F n -+=

B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==

C .(

)n n

F n ???=-?????? D .(

)n n F n ???=+??????

22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足111

40(2),4

n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n

= B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1

{

}n

S 为递增数列 23.(多选)在数列{}n a 中,若2

2

1(2,,n n a a p n n N p *

--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .

(){}1n

- 是等方差数列

C .{}2

n

是等方差数列.

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列

24.若不等式1(1)(1)2n n

a n

+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2

25.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =-

B .122a =

C .3430a a +=

D .当且仅当11n =时,n S 取得最大值

26.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <

B .10a <

C .当5n =时n S 最小

D .0n S >时n 的最小值为8

27.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )

A .若100S =,则280S S +=;

B .若412S S =,则使0n S >的最大的n 为15

C .若150S >,160S <,则{}n S 中8S 最大

D .若78S S <,则89S S <

28.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .24

37

d -

<<- C .S n <0时,n 的最小值为13 D .数列n n S a ??

?

???

中最小项为第7项 29.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <

D .613S S =

30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >

B .170S <

C .1819S S >

D .190S >

【参考答案】***试卷处理标记,请不要删除

一、等差数列选择题 1.D 【分析】

根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】

因为在等差数列{}n a 中,若n S 为其前n 项和,65a =,

所以()

1111161111552

a a S a +===.

故选:D. 2.B 【分析】

画出图形分析即可列出式子求解. 【详解】

所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:

由图可得:3612107y x y -=??-=? ,解得155

48x y =??=?

.

故选:B. 3.A 【分析】

利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】

由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,

213a a d =+=,

解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.B 【分析】

利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】

根据题意:小李同学每天跑步距离为等差数列,设为n a ,

则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故

143600a =,

则()()11521411

151********

n S a a a a =

+?=+?=. 故选:B. 5.C 【分析】

利用等差数列的性质直接计算求解 【详解】

因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 6.C 【分析】

根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】

因为数列{}n a 为等差数列,11a =,34a =, 则公差为313

22

a a d -=

=, 因此通项公式为()331

11222

n a n n =+-=-. 故选:C. 7.C 【分析】

首先根据()12

n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得

到答案. 【详解】

当1n =时,111a S ==, 当2n ≥时,()()11122

n n n n n n n a S S n -+-=-=

-=. 检验111a S ==,所以n a n =. 设()11111

11

n n n b a a n n n n +=

==-++,前n 项和为n T , 则10111111101122310111111T ??????=-+-++-=-= ? ? ???????

…. 故选:C 8.A 【分析】

根据等差中项的性质,求出414a =,再求10a ; 【详解】

因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 9.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 10.C 【分析】

由等差数列的性质可得332n a n =-,结合分组求和法即可得解。 【详解】

因为129a =-,()

*

13n n a a n N +=+∈,

所以数列{}n a 是以29-为首项,公差为3的等差数列, 所以()11332n a a n d n =+-=-,

所以当10n ≤时,0n a <;当11n ≥时,0n a >; 所以()()12201210111220a a a a a a a a a ++

+=-++???++++???+

1101120292128

101010103002222a a a a ++--+=-

?+?=-?+?=. 故选:C. 11.D 【分析】

把点列代入函数解析式,根据{x n }是等比数列,可知1

n n x x +为常数进而可求得1n n y y +-的结

果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】

对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以

1

n n

x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的

数,故{y n }不是等差数列;

对于B ,函数2

()4f x x =上的点列{x n ,y n },有y n =2

4n x ,由于{x n }是等比数列,所以1

n n

x x +为

常数,

因此1n n y y +-=()

2222

14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;

对于C ,函数3()4x

f x ??= ???上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1

n n

x x +为常数, 因此1n n y y +-=133()()44n n x x

+-=3

3

()()144n q

x

??

-????

,这是一个与n 有关的数,故{y n }不是等

差数列;

对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x

,由于{x n }是等比数列,所以

1

n n

x x +为常数, 因此1n n y y +-=11

444

4log log log log n n n n

x x x x q ++-==为常数,故{y n }是等差数列;

故选:D . 【点睛】 方法点睛:

判断数列是不是等差数列的方法:定义法,等差中项法. 12.A 【分析】

由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得154

52252

a ?+

?=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ?-=,解得4m =, 故选:A 13.B 【分析】

根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】

根据题意可知正整数能被21整除余2,

21+2n a n ∴=, 5215+2107a ∴=?=.

14.A 【分析】 由题意可得52820

45252

a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,52820

45252

a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 15.D 【分析】

先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212

2

n n n a -+=,进而求出n a .

【详解】 解:11n

n n

a a na +=

+, ()11n n n a na a ++=∴,

化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:

111

n n

n a a +-=, 即2111

1a a -=,32112a a -=,43

113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:

213243111111+a a a a a a --+-+ (111)

123n n a a -+-=+++…1n +-, 即111(1)

2

n n n a a --=, 2111(1)(1)2=1(2,)222

n n n n n n n n n z a a ---+∴=++=≥∈, 又

1

1

1a =也满足上式, 212()2

n n n n z a -+∴=∈, 2

2

()2

n a n z n n ∴=

∈-+. 故选:D.

易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 16.B 【分析】

根据递推关系式求出数列的通项公式即可求解. 【详解】 由121

()2n n a a n N *++=

∈,则11()2

n n a a n N *+=+∈, 即11

2

n n a a +-=

, 所以数列{}n a 是以1为首项,

1

2

为公差的等差数列, 所以()()11111122

n n a a n d n +=+-=+-?=, 所以2021a =20211

10112

+=. 故选:B 17.D 【分析】

由()

1

1213n n n n S S a n +++=+-+得到()

1

1132n n n a a n ++=-+-,再分n 为奇数和偶数得

到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】

因为()1

1213n n n n S S a n +++=+-+,

所以()

1

1132n n n a a n ++=-+-,

所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,

从而15941a a a a ===???=,

22162k k a a k ++=-,222161k k a a k ++=++,

则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,

()()()()234538394041...a a a a a a a a =++++++++,

()()20

1411820622

k k =+?=-=

=

∑1220,

故①②③正确.

故选:D 18.B 【分析】 由题意可得

2

2

1114n n

a a +-

=,运用等差数列的通项公式可得2143n n a =-

,求得1

4n b =,然后利用裂项相消求和法可求得结果

【详解】

解:由11a =,1111114n n n n a a a a ++????

+-= ???????

,得22

1114n n

a a +-=, 所以数列21n a ??

????是以4为公差,以1为首项的等差数列,

所以21

14(1)43n

n n a =+-=-,

因为0n a >

,所以n a =,

所以

1111n n n

b a a +=+=

所以1

4

n b =

=,

所以201220T b b b =++???+

11

1339(91)244=++???+=?-=, 故选:B 【点睛】

关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得

2

2

1114n n a a +-

=,从而数列21n a ??????

是以4为公差,以1

为首项的等差数列,进而可求n a =

,1

4

n b =

=,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 19.D 【分析】

根据等差数列的性质计算求解. 【详解】

由题意()()357101341041073232236()1248a a a a a a a a a a ++++=?+?=+==,

74a =,∴11313713()

13134522

a a S a +=

==?=. 故选:D . 20.A 【分析】 将11122

n n n a a -=

+变形为11221n n n n a a --=+,由等差数列的定义得出2

2n n n a +=,从而得

出()

22n

n n λ+≥,求出()max

22n n n +??????的最值,即可得出答案. 【详解】 因为2n ≥时,111

22

n n n a a -=

+,所以11221n n n n a a --=+,而1123a = 所以数列{

}

2n

n a 是首项为3公差为1的等差数列,故22n

n a n =+,从而2

2

n n n a +=

. 又因为n a n λ

≥恒成立,即()22n

n n λ+≥恒成立,所以()max 22n n n λ+??≥????. 由()()()

()()()()

1

*121322,221122n n n

n n n n n n n n n n n +-?+++≥??∈≥?

+-+?≥??N 得2n = 所以()()2

max

2222222n n n +?+??

==????,所以2λ≥,即实数λ的最小值是2 故选:A

二、多选题

21.BC 【分析】

根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】

解:斐波那契数列为1,1,2,3,5,8,13,21,……,

显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,

()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;

由()()()11,2F n F n F n n +=+-≥, 所以(

)(

)(

)()11F n n F n n ?+-

=--???

所以数列(

)()1F n n ????+??????

是以

12+

为首项,12+为公比的等比数列, 所以(

)(

)1n

F n n +-=??

11515()n F F n n -

+=++, 令

1

n

n n F b

-=

??

,则11n n b +=

+,

所以1

n n b b +=-

, 所以n

b ??

????

?

的等比数列,

所以1

n n b -

+, 所以

()11

15n n n n

F n --?

???

+??=+=- ? ?????????

?

?????

??; 即C 满足条件; 故选:BC 【点睛】

考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】

11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1

11

04n n n S S S -≠∴

-= 因此数列1{

}n S 为以1

1

4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n

=+-=∴=,即A 正确;

当2n ≥时111144(1)4(1)

n n n a S S n n n n -=-=

-=--- 所以1,141,24(1)

n n a n n n ?

=??

=??-≥-??,即B ,C 不正确;

故选:AD 【点睛】

本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题. 23.BD 【分析】

根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】

对于A ,若{}n a 是等差数列,如n a n =,则12222

(1)21n n a a n n n --=--=-不是常数,故

{}n

a 不是等方差数列,故A 错误;

对于B ,数列

(){}1n

-中,222121[(1)][(1)

]0n n n n a

a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2

n

中,()(

)

2

2

2

21

112

234n n n n n a

a ----=-=?不是常数,{}

2n

∴不是等方差

数列,故C 错误; 对于D ,

{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数

列,()()2

2

2

112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,

故220d =,故0d =,所以(2)0m d d +=,22

10n n a a --=是常数,故D 正确.

故选:BD. 【点睛】

关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断. 24.ABC 【分析】

根据不等式1(1)(1)2n n

a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n

-<恒成立,当n 为偶数时有1

2a n

<-恒成立,分别计算,即可得解. 【详解】

根据不等式1(1)(1)2n n

a n

+--<+对于任意正整数n 恒成立,

当n 为奇数时有:1

2+a n

-<恒成立, 由12+

n 递减,且1

223n

<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:1

2a n

<-恒成立, 由12n -

第增,且31

222n ≤-<, 所以3

2

a <

, 综上可得:322

a -≤<, 故选:ABC . 【点睛】

本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 25.AC 【分析】

先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】

解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.

所以120a =,342530a a a a +=+=,11110201020a a d =+=-?=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】

本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:

(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;

(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 26.BD 【分析】

由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误.

【详解】

由于等差数列{}n a 是递增数列,则0d >,A 选项错误;

753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;

()()()22

171117493222224n n n d n n d n n d S na nd n d -??

--??=+=-+==--?? ??

?????,

当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.

n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.

故选:BD. 27.BC 【分析】

根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】

A 选项,若101109

1002

S a d ?=+

=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++

++=+=,

又因为10a >,所以前8项为正,从第9项开始为负, 因为()

()116168916802

a a S a a +=

=+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502

a a S a +=

=>,()

()116168916802a a S a a +=

=+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;

D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】

本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型. 28.ABCD 【分析】

S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得24

7

-

<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ??

????

中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断

出D 是否正确. 【详解】

∵S 12>0,a 7<0,∴

()

67122

a a +>0,a 1+6d <0.

∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴24

7

-<d <﹣3.a 1>0. S 13=

()

113132

a a +=13a 7<0.

∴S n <0时,n 的最小值为13. 数列n n S a ??

?

?

??

中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,

n

n

S a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:

n

n

S a <0,但是随着n 的增大而增大. ∴n =7时,n

n

S a 取得最小值.

综上可得:ABCD 都正确. 故选:ABCD . 【点评】

本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题. 29.AD 【分析】

由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】

解:1385a a S +=,111110875108,90,02

d

a a d a a d a ?++=+

+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.

9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.

61656+

5415392

d

S a d d d ?==-+=-, 131131213+

11778392

d

S a d d d ?==-+=-,故D 正确. 故选:AD

【点睛】

考查等差数列的有关量的计算以及性质,基础题. 30.ABD 【分析】

先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则

190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质

和求和公式可知()0117917917

217

172

2

a a a S a <+??=

=

=,()1191019

1019219

1902

2

a a a S a +??=

=

=>,故BD 正确. 【详解】

根据题意可知数列为递增数列,90a <,100a >,

∴前9项的和最小,故A 正确;

()117917917

217

1702

2a a a S a +??===<,故B 正确; ()11910191019

219

1902

2

a a a S a +??=

=

=>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.

故选:ABD . 【点睛】

本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.

相关主题
相关文档
最新文档