管道流动阻力的计算

管道流动阻力的计算
管道流动阻力的计算

流动阻力的计算

流体在管道中流动,其流动阻力包括有:

(1) (1) 直管阻力:流体流经直管段时,由于克服流体的粘滞性及与管内壁间的磨

擦所产生的阻力。它存在于沿流动方向的整个长度上,故也称沿程直管流动阻力。记为fz h 。

(2) (2) 局部阻力:流体流经异形管或管件(如阀门、弯头、三通等)时,由于流

动发生骤然变化引起涡流所产生的能量损失。它仅存在流体流动的某一局部范围办。记为fJ h 。

因此,柏努利方程中 ∑f

h 项应为: fJ fz f h h h

+=∑ 说明:流动阻力可用不同的方法表示, ∑f h ——1kg 质量流体流动时所损失的机械能,单位为J/kg;

g h

f ∑——1N 重量流体流动时所损失的机械能,单位为m;

∑f h ρ——13m 体积流体流动时所损失的机械能,单位为Pa 或2/m N 。

1. 1. 直管段阻力(h fz )的计算

流体流经直管段时,流动阻力可依下述公式计算:

2

2

u d l h fz λ= [J/kg] 或 g

u d l g h fz 22

λ= [m]

2

2

u d l h fz ρλ= [pa] 式中,λ——磨擦阻力系数; l ——直管的长度(m ); d ——直管内直径(m );

ρ——流体密度 )/(3m kg ;u ——流体在直管段内的流速(m/s )

2.局部阻力(h fJ )的计算

局部阻力的计算可采用阻力系数法或当量长度法进行。

1) 1) 阻力系数法:将液体克服局部阻力所产生的能量损失折合为表示其动

能 若干倍的方法。其计算表达式可写出为:

2

2

u d le h fJ ξ= [J/kg] (a )

g

u d le g h fJ 22

ρξ= [m] (b) [pa]

22

u d le h fJ ρξρ= [pa] (c 其中,ξ称为局部阻力系数,通常由实验测定。下面列举几种常用的局部阻力

系数的求法。

*突然扩大与突然缩小

管路由于直径改变而突然扩大或缩小,所产生的能量损失按(b )或(c)式计算。式中的流速u 均以小管的流速为准,局部阻力系数可根据小管与大管的截面积之比从管件与阀门当量长度共线图曲线上查得。

*进口与出口

流体自容器进入管内,可看作很大的截面A 1突然进入很小的截面A 2,即A 2 /A 1约等于0。根据突然扩大与突然缩小的局部阻力系数图的曲线(b ),查出局部阻力系数c ξ=,这种损失常称为进口损失,相应的系数c ξ又称为进口阻力系数。若管口圆滑或喇叭状,则局部阻力系数相应减少,约为~。

流体自管子进入容器或从管子直接排放到管外空间,可看作很小的截面A 1突然进入很大的截面A 2截面 即,A 1 /A 2约等于0 , 从突然扩大与突然缩小的局部阻力系数图中曲线(a )可以查出局部阻力系数e ξ=1,这种损失常称为出口损失,相应的阻力系数e ξ又称为出口阻力系数。

*管件与阀门

管路上的配件如弯头,三通,活接头等总称为管件。不同管件或阀门的局部阻力系数可

从有关手册中查出。

2) 2) 当量长度法:将流体流经某一管中或阀门等所引起的局部阻力损失折

合成与其直径相同的一定长度直管段阻力的方法。其计算表达式可写出为: 22u d le h fJ λ= [J/kg] g

u d le g h fJ 22

ρλ= [m] 2

2

u d le h fJ ρλρ= [pa] 其中,le 称为管件或阀门的当量长度,单位为(m)。le 通常由实验测定。在湍流情况下某些管件与阀门的当量长度从共线图或有关化工手册查得。

3.总阻力(能量)损失的计算

综合考虑直管段阻力与局部阻力,柏努利方程中

∑hf 项的计算式可改写出为:

以1kg 质量流体流过管道系统表示, g u d le l H g hf

f 2)(2∑∑++==∑ξλ [m]

以1N 重量流体流过管道系统表示,

2

)(2u d le l hf ∑∑∑++=ξλ

[J/kg] 以13m 体积流体流过管道系统表示,

2)(2

u d le

l H P f f ρξλρ∑∑∑++==? [pa]

注意:①由直径不同管段所组成的管路,应先分段计算,然后再求和;

②u 为相同管径任一截面的流速。但伯努利方程式中的u 是指相应衡算截面处

的流速。

管道压力降计算

中国石化集团兰州设计院标准 SLDI 233A13-98 中国石化集团兰州设计院

目次 1 单相流(不可压缩流体) (1) 1.1 简述 (1) 1.2 计算方法 (1) 1.3 符号说明 (24) 2 单相流(可压缩流体) (25) 2.1 简述 (25) 2.2 计算方法 (25) 2.3 符号说明 (36) 3 气-液两相流(非闪蒸型) (37) 3.1 简述 (37) 3.2 计算方法 (38) 3.3 符号说明 (48) 4 气-液两相流(闪蒸型) (49) 4.1 简述 (49) 4.2 计算方法 (49) 4.3 符号说明 (57) 5 气-固两相流 (58) 5.1 简述 (58) 5.2 计算方法 (59) 5.3 符号说明 (74) 6 真空系统 (76) 6.1 简述 (76) 6.2 计算方法 (76) 6.3 符号说明 (87) 7 浆液流 (88) 7.1 简述 (88) 7.2 计算方法 (88) 7.3 符号说明 (97)

1 单相流(不可压缩流体) 1.1 简述 1.1.1 本规定适用于牛顿型单相流体在管道中流动压力降的计算.工艺系统专业在化工工艺专业已基本确定各有关主要设备的工作压力的情况下,进行系统的水力计算.根据化工工艺要求计算各主要设备之间的管道(包括管段、阀门、控制阀、流量计及管件等)的压力降,使系统总压力降控制在给定的工作压力范围内,在此基础上确定管道尺寸、设备接管口尺寸、控制阀和流量计的允许压力降,以及安全阀和爆破片的泄放压力等。 1.1.2 流动过程中剪应力与剪变率之比为一常数,并等于其动力粘度的流体称牛顿型流体.凡是气体都是牛顿型流体,除工业上的高分子量液体、胶体、悬浮液、乳浊液外,大部分液体亦属牛顿型流体。 1.2 计算方法 1. 2.1 注意事项 1.2.1.1 安全系数 计算方法中未考虑安全系数,计算时应根据实际情况选用合理的数值。通常,对平均需要使用5~10年的钢管,在摩擦系数中加20%~30%的安全系数,就可以适应其粗糙度条件的变化;超过5~10年,条件往往会保持稳定;但也可能进一步恶化。此系数中未考虑由于流量增加而增加的压力降,因此须再增加10%~20%的安全系数。规定中对摩擦压力降计算结果按1.15倍系数来确定系统的摩擦压力降,但对静压力降和其它压力降不乘系数。 1.2.1.2 计算准确度 在工程计算中,计算结果取小数后两位有效数字为宜。对用当量长度计算压力降的各项计算中,最后结果所取的有效数字仍不超过小数后两位。 1.2.2 管径 1.2.2.1 确定管径的一般原则 a) 应根据设计条件来确定管道直径.当需要时,可增加设计条件下压力降15%~25%的富裕量,但以下情况除外: 1) 有燃料油循环管路系统的排出管尺寸,应考虑一定的循环量; 2) 泵、压缩机和鼓风机的管道,应按工艺最大流量(在设备设计允许的流速下)来确定尺寸,而不能按机器的最大能力来确定管道尺寸; 3) 间断使用的管道(如用于开工的旁路管道)尺寸,应按可能得到的压差来确定。 b) 在允许压力降范围内,应采用经济管径。某些管道中流体允许压力降范围见表1.2.2-1。 c) 某些对管壁有腐蚀及磨蚀的流体,由流速决定管径,其流速见表1.2.2-2。 1.2.2.2 管径计算 计算公式如下: 5.05.0f )( 8.18)( 8.18μρ μ W V d == (1.2.2-1) 式中 d ——管道内直径,mm ; V f ——流体体积流量,m 3/h μ——流体平均流速,m/s; W ——流体质量流量,kg/h ; ρ——流体密度,kg/m 3。 通常可由图1.2.2-1或图1.2.2-2查得管径。

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

管道阻力的基本计算方法

管道阻力计算 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρ λ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3 ; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρ λ 22 v D R m ?= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: ) Re 51 .27.3lg( 21 λλ +-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ;

Re ——雷诺数。 υvd = Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2 /s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。 图5—2 圆形钢板风管计算线解图 [例] 有一个10m 长薄钢板风管,已知风量L =2400m 3 /h ,流速υ=16m /s ,管壁粗糙

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

管道阻力计算

第三节 管道阻力 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρ λ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρ λ 22 v D R m ?= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: ) Re 51 .27.3lg( 21 λλ +-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。 υvd = Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2/s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算 第一部分管径选择 1.应用范围和说明 1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。 1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。 1.0.3当按预定介质流速来确定管径时,采用下式以初选管径: d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1) 或d=18.81V00.5 u-0.5(1.0.3—2) 式中 d——管道的内径,mm; W——管内介质的质量流量,kg/h; V0——管内介质的体积流量,m3/h; ρ——介质在工作条件下的密度,kg/m3; u——介质在管内的平均流速,m/s。 预定介质流速的推荐值见表2.0.1。 1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径: d=18.16W0.38ρ-0.207 μ0.033⊿P f100–0.207(1.0.4—1) 或d=18.16V00.38ρ0.173 μ0.033⊿P f100–0.207(1.0.4—2) 式中 μ——介质的动力粘度,Pa·s; ⊿P f100——100m计算管长的压力降控制值,kPa。 推荐的⊿P f100值见表2.0.2。 1.0.5本规定除注明外,压力均为绝对压力。

管道摩擦阻力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通 三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部 阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。. 在管道设计时应注意以下几点:

管道的阻力计算

6.1.1 管道的阻力计算 [ 2007-9-4 14:50:31 | By: rsjang ] 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1)对于圆形风管,摩擦阻力计算公式可改为: (6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; R s——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5)

管道摩擦阻力计算资料

精品文档长距离输水管道水力计算公式的选用常用的水力计算公式:.1目前工程设计中普遍采用的管道水力计供水工程中的管道水力计算一般均按照均匀流计算,: 算公式有DARCY)公式:达西(2v?l??h 1)(f g?d2 chezy)公式:谢才(v?C?R?i(2) 海澄-威廉(HAZEN-WILIAMS)公式: 1.852?l?10.67Qh? 3)(f1.8524.87C?d h式中h------------沿程损失,m fλ―――沿程阻力系数 l――管段长度,m d-----管道计算内径,m 2 m/sg----重力加速度, C----谢才系数 i----水力坡降; R―――水力半径,m 2 m/sQ―――管道流量v----流速m/s C----海澄――威廉系数n其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式 精品文档.

4.公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截λ值的确定是水头损失计面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。 -62舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10 m/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 1?2.51?lg()2??? (Δ为当量粗糙度,Re为雷诺数柯列勃洛可公式)是 3.7d??Re 根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上 精品文档. 精品文档8大量的试是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

水系统管道阻力计算

Summary of work performed during the quarter considered important and convering what was learned from these experiences, including as necessary examples of detailed analysis or the presentation of a particular aspect of the training undertaken during the period. Engineering Supervisor Comments: 空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空 调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的 叫做沿程阻力,即 (1-1) 若直管段长度l=1m 时, 则 式中 λ——摩擦阻力系数,m ; ——管道直径,m ; R ——单位长度直管段的摩擦阻力(比摩阻),Pa/m ; ——水的密度,kg/m 3 ; ——水的流速,m/s 。

Summary of work performed during the quarter considered important and convering what was learned from these experiences, including as necessary examples of detailed analysis or the presentation of a particular aspect of the training undertaken during the period. Engineering Supervisor Comments: 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩 擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比 摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU 机组管道管径 进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负 荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管 方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m ,通常不应超过 400Pa/m 。 二、局部阻力 (一)局部阻力及其系数 在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分 损失习惯上称为局部阻力()。 (2-1) 式中 ——管道配件的局部阻力系数; ——水流速度,m/s 。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、 过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公 式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查 询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、 末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m):

管道阻力计算

通风管道沿程阻力计算选用表: 08K508-1《通风管道沿程阻力计算选用表》国家建筑标准设计图集适用于工业及民用建筑低、中、高压通风空调工程常用风管的沿程阻力计算选用。 本图集主要包括各类风管、如薄钢板法兰矩形风行风管、螺旋风管、玻纤复合风管、聚氨酯风管、玻镁风管的实测数据经拟合推导出的沿程阻力计算公式,及上述风管在不同风速及断面组合下的沿程阻力计算表。 目录: 编制总说明 钢板风管计算表 钢板风管特性及选用要点 薄钢板法兰矩形风管绝对粗糙度 薄钢板法兰矩形风管沿程阻力计算表(1~3.4m/s) 薄钢板法兰矩形风管沿程阻力计算表(3.6~6.0m/s) 薄钢板法兰矩形风管沿程阻力计算表(6.5~13.0m/s) 薄钢板法兰矩形风管沿程阻力计算表(13.5~20.0m/s) 螺旋风管沿程阻力计算表(1~3.4m/s) 螺旋风管沿程阻力计算表(3.6~6.0m/s) 螺旋风管沿程阻力计算表(6.5~13.0m/s) 螺旋风管沿程阻力计算表(13.5~20.0m/s) 玻纤风管计算表

玻纤风管特性及选用要点 玻纤风管(一)绝对粗糙度 玻纤风管(一)沿程阻力计算表(1~3.4m/s) 玻纤风管(一)沿程阻力计算表(3.6~6.0m/s) 玻纤风管(一)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(一)沿程阻力计算表(13.5~20.0m/s) 玻纤风管(二)绝对粗糙度 玻纤风管(二)沿程阻力计算表(1~3.4m/s) 玻纤风管(二)沿程阻力计算表(3.6~6.0m/s) 玻纤风管(二)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(二)沿程阻力计算表(13.5~20.0m/s) 玻纤风管(三)绝对粗糙度 玻纤风管(三)沿程阻力计算表(1~3.4m/s) 玻纤风管(三)沿程阻力计算表(3.6~6.0m/s) 玻纤风管(三)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(三)沿程阻力计算表(13.5~20.0m/s) 聚氨酯复合风管计算表 聚氨酯复合风管特性及选用要点 聚氨酯复合风管绝对粗糙度 聚氨酯复合风管沿程阻力计算表(1~3.4m/s) 聚氨酯复合风管沿程阻力计算表(3.6~6.0m/s) 聚氨酯复合风管沿程阻力计算表(6.5~13.0m/s)

水管摩擦阻力计算表

DN15DN20DN25DN150DN200DN250DN300KW 0.6 2.3 3.6KW 666126719842828L 0.030.110.17L 31.860.594.7135R11439569R123715812096R218312086DN32R2295 196147118DN350KW 0.6 2.9 4.88.4KW 1337209329754211L 0.030.140.230.4L 63.899.9142201R124416311182R117613310787R2319 209150102DN40DN50R2218164131105DN400KW 3.8 6.110.513.823.0KW 14082200314344415468L 0.180.290.50.66 1.1L 67.2105150212261R124818012510175R11951481199684R2323 23115813193DN65R2241182145117103KW 7.112.616.627.745.7KW 14792305328946725740L 0.340.60.79 1.32 2.18L 70.6110157223274R125517614710677R121416213110593R2330 22518713295DN80R2266200160129113KW 14.719.332.353.275.4KW 15482430345749026013L 0.70.92 1.54 2.54 3.6L 73.9116165234287R123719314210382R1235178143115102R2DN100304 253179129102R2292 219176141124KW 13122.036.960.886.3KW 2535360351126285L 6.27 1.05 1.76 2.9 4.12L 121172244300R181256183133106R1194156126111R2101DN125328 233167133R2240192154135KW 14823041.568.397.0KW 2640377153426557L 7.0611 1.98 3.26 4.63L 126180255313R110277230167134R1211170137121R2 127 95 293 210 167 R2 261 209 168 147 动压Pd (Pa) 水流速v (m/s) 参数公称管径 DN(mm) L—流量(L/S) R1,R2—每米长水管的摩擦阻力(Pa/m)180 319 0.9 404 0.6 45 0.3 0.4 80 0.5 125 2.4 2875 2640 2.3 2.2 2416 2201 2.1 1996 2 1802 1.9 1.8 1617 动压Pd (Pa) 0.7 245 0.8 公称管径 DN(mm) L—流量(L/S) R1,R2—每米长水管的摩擦阻力(Pa/m)参数水流速v (m/s)

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

相关文档
最新文档