贝叶斯决策例题

贝叶斯决策例题
贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。解:采用贝叶斯决策方法。

(1)先验分析

根据已有资料做出决策损益表。

根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析

完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)

完全信息价值:EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)

即,完全信息价值大于信息成本,请气象中心进行预报是合算的。(3)后验分析

①补充信息:气象中心将提供预报此时期内两种天气状态x1(好天气)、x2(坏天气)将会出现哪一种状态。

从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9

②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:

111111()(/)

(/)()

P P x P x P x θθθ?=

=0.3×0.8/0.31=0.77

预报天气好而天气坏的概率:

212211()(/)

(/)()

P P x P x P x θθθ?=

=0.7×0.1/0.31=0.23

预报天气坏而实际天气好的概率:

121122()(/)

(/)()

P P x P x P x θθθ?=

=0.3×0.2/0.69=0.09

预报天气坏且实际天气也坏的概率: 222222()(/)

(/)()

P P x P x P x θθθ?=

=0.7×0.9/0.69=0.91

上述计算可以用表格表示:

③ 后验决策:

若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62

E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2

选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)=3.62 若气象中心预报天气不好(x2) E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2

选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2 ④ 计算补充信息的价值:

得到天气预报的情况下,后验决策的最大期望收益值:

1122*()()()()()EMV P x E x P x E x =?+?后=0.31×3.62+0.69×(-0.2)=0.9842

则补充的信息价值为:EMV*(后)- EMV*(先)=0.9842-0.8=0.1842

补充信息价值大于信息费(800元),即这种费用是合算的。 ⑤ 画出决策树(略)

决策分析的论文

关于决策分析的论文 选择方案的一般原则,也就是指导人们选择行动方案的一般原则。被称为决策准则。传统的决策理论认为,决策者是“理性人”或“经济人”,在决策时他们受“最优化”的行为准则支配,应当选择“最优”方案。 现代决策理论认为,由于决策者在认识能力和时间、成本、情报来源等方面的限制,不能坚持要求最理想的解答,常常只能满足于“令人满意的”或“足够好的”决策。因此。实际上人们在决策时并不考虑一切可能的情况,而只考虑与问题有关的特定情况,使多重目标都能达到令人满意的、足够好的水平,以此作为行动方案。下面举例来详细说明决策分析中的乐观主义决策和悲观主义决策两种方法。 举例:某城市需建立垃圾焚烧炉,并用来发电,提供给附近工业新区用电,制定了三种方案:A1方案,引进进口炉;A2方案,引进国外厂商部分先进技术,国内生产;A3方案,采用国产焚烧炉。其中进口炉由于采用了先进技术,对垃圾中町燃烧热值利用较高,因此发电量较高,当然单位废物运行成本也高;国产炉由于技术不成熟,对于同样垃圾发电量要低,但是运行成本低;A2方案炉子发电量和运行成本居于二者之间。由于工业新区刚刚建立,对于其发展前途和发展规模缺乏必要资料和准确预测,因此对于其将来企业数以及用电量无法进行有效估计,因此有可能出现进口炉发电量虽大,但是面对状态N3,多生产的电卖不出去,而处理成本较高,因此可能亏本,如表3—1所述(一200),但是也有可能在状态N1下有较大收益,处理成本由卖电所抵消同时产生效益,因此收益受到未来发生自然状态影响,其他方案同样也是如此,这就需要做出一个科学合理的决策。 (1)乐观主义原则 采用这种方法的决策者一般为敢担当风险的人,决不放弃任何一个获得好结果的机会。 具体方法是:找出不同自然状态下的最好效益值,再从中选取出有最大收益的所对应方案为所求的决策方案,见表3—2。

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势 摘要本文介绍了在数据挖掘中数据分类的几个主要分类方法,包括:贝叶斯分类、决策树分类、感知器分类,及其各自的优势与劣势。并对于分类问题中出现的高维效应,介绍了两种通用的解决办法。 关键词数据分类贝叶斯分类决策树分类感知器分类 引言 数据分类是指按照分析对象的属性、特征,建立不同的组类来描述事物。数据分类是数据挖掘的主要内容之一,主要是通过分析训练数据样本,产生关于类别的精确描述。这种类别通常由分类规则组成,可以用来对未来的数据进行分类和预测。分类技术解决问题的关键是构造分类器。 一.数据分类 数据分类一般是两个步骤的过程: 第1步:建立一个模型,描述给定的数据类集或概念集(简称训练集)。通过分析由属性描述的数据库元组来构造模型。每个元组属于一个预定义的类,由类标号属性确定。用于建立模型的元组集称为训练数据集,其中每个元组称为训练样本。由于给出了类标号属性,因此该步骤又称为有指导的学习。如果训练样本的类标号是未知的,则称为无指导的学习(聚类)。学习模型可用分类规则、决策树和数学公式的形式给出。 第2步:使用模型对数据进行分类。包括评估模型的分类准确性以及对类标号未知的元组按模型进行分类。 常用的分类规则挖掘方法 分类规则挖掘有着广泛的应用前景。对于分类规则的挖掘通常有以下几种方法,不同的方法适用于不同特点的数据:1.贝叶斯方法 2.决策树方法 3.人工神经网络方法 4.约略集方法 5.遗传算法 分类方法的评估标准: 准确率:模型正确预测新数据类标号的能力。 速度:产生和使用模型花费的时间。 健壮性:有噪声数据或空缺值数据时模型正确分类或预测的能力。 伸缩性:对于给定的大量数据,有效地构造模型的能力。 可解释性:学习模型提供的理解和观察的层次。 影响一个分类器错误率的因素 (1) 训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。 (2) 属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。 (3) 属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。 (4) 待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。 评估方法 有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取自同样的样本分布。 (1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。 虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。 (2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69 预报天气好且天气实际也好的概率:

贝叶斯统计决策

叶斯统计决策理论是指综合运用决策科学的基础理论和决策的各种科学方法对投资进行分析决策。其应用决策科学的一般原理和决策分析的方法研究投资方案的比选问题,从多方面考虑投资效果,并进行科学的分析,从而对投资方案作出决策。涉及到投资效果的各种评价、评价标准、费用(效益分析)等问题。投资决策效果的评价问题首要的是对投资效果的含义有正确理解,并进行正确评价。 贝叶斯统计中的两个基本概念是先验分布和后验分布。 ①先验分布。总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。 ②后验分布。根据样本分布和未知参数的先验分布,用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及样本分布。 贝叶斯统计(Bayesian statistics),推断统计理论的一种。英国学者贝叶斯在1763年发表的论文《有关机遇问题求解的短论》中提出。依据获得样本(Xl,X2,…,Xn)之后θ的后验分布π(θ|X1,X2,…,Xn)对总体参数θ作出估计和推断。它不是由样本分布作出推断。其理论基础是先验概率和后验分布,即在事件概率时,除样本提供的后验信息外,还会凭借自己主观已有的先验信息来估计事件的概率。而以R.A.费希尔为首的经典统计理论对事件概率的解释是频率解释,即通过抽取样本,由样本计算出事件的频率,而样本提供的信息完全是客观的,一切推断的结论或决策不允许加入任何主观的先验的信息。以对神童出现的概率P的估计为例。按经典统计的做法,完全由样本提供的信息(即后验信息)来估计,认为参数p是一个“值”。贝叶斯统计的做法是,除样本提供的后验信息外,人类的经验对p 有了一个了解,如p可能取pl与户p2,且取p1的机会很大,取p2机会很小。先验信息关于参数p的信息是一个“分布”,如P(p=p1)=0.9,P(p=p2)=0.1,即在抽样之前已知道(先验的)p取p1的可能性为0.9。若不去抽样便要作出推断,自然会取p=p1。但若抽样后,除非后验信息(即样本提供的信息)包含十分有利于“p—=p2”的支持论据,否则采纳先验的看法“p=p1”。20世纪50年代后贝叶斯统计得到真正发展,但在发展过程中始终存在着与经典统计之间的争论。 [编辑]

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查? 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元) E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232 P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475 P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308 (2)由贝叶斯公式有 P(?1|H1)=0.9*0.2/0.232=0.776 P(?2|H1)=0.06*0.5/0.232=0.129 P(?3|H1)=0.04*0.3/0.232=0.052 P(?1|H2)=0.05*0.2/0.475=0.021 P(?2|H2)=0.9*0.5/0.475=0.947 P(?3|H2)=0.05*0.3/0.475=0.032 P(?1|H3)=0.04*0.2/0.308=0.026 P(?2|H3)=0.06*0.5/0.308=0.097 P(?3|H3)=0.9*0.3/0.308=0.877 (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)

朴素贝叶斯、决策树算法学习总结

基础算法学习总结 1. 朴素贝叶斯学习 1.1. 算法简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。 从数学角度来说,分类问题可做如下定义: 已知集合:123{,,,...,}n C y y y y =和123{,,,...,}n I x x x x =,确定映射规则()y f x =,使得任意 x i I ∈有且仅有一个y i C ∈使得()i i y f x =成立。(不考虑模糊数学里的模糊集情况)。其中C 叫做类别集合,其中每一个元素是一个类别,而I 叫做项集合,其中每一个元素是一个待分类项,f 叫做分类器。分类算法的任务就是构造分类器f 。 分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。 解决问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:P(B|A)表示事件B 已经发生的前提 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。 1.2. 算法流程 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

Bayes_判别分析及应用论文

Bayes判别分析及应用 班级:计算B101姓名:孔维文学号201009014119 指导老师:谭立云教授 【摘要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方法,在社会生产和科学研究上应用十分广泛。在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。本文着重于Bayes判别分析的应用以及SPSS的实现。 论文共分三部分。首先简单地介绍了判别分析的意义、主要应用及SPSS的优点;其次详细讲解了Bayes判别分析理论,举例说明利用SPSS实现Bayes判别分析的操作及结果分析;最后,在09年统计年鉴收集到“各地区农村居民家庭平均每人生活消费支出”数据资料,研究各地区经济发展程度说明Bayes判别分析在经济学方面的应用。 【关键词】判别分析Bayes判别Spss实现判别函数判别准则 Class: calculation B101 name: KongWeiWen registration number 201009014119 Teacher: TanLiYun professor .【Abstract】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS. Thesis is divided into three parts. First, a brief overview of the significance of discriminant analysis, the main applications and advantages of Spss; followed by detailed explanation of the Bayes discriminant analysis theory, an example implementation using Spss Bayes discriminant analysis and results of operations; finally, in the 2009 Statistical Yearbook of the collected " all areas of life of rural residents per capita household

决策树与贝叶斯

一台模铸机用于生产某种铝铸件。根据以前使用这种机器的经验和采用模具的复杂程度,这种机器正确安装的概率估计为0.8.如果机器安装正确,那么生产出合格产品的概率是0.9。如果机器安装不正确,则10个产品中只有3个是可以接受的。现在已铸造出第一个铸件,检验后发现: (a)第一个铸件是次品,根据这个补充资料,求机器正确安装的概率; (b)若第一个铸件是合格品,问机器正确安装的概率是多少? Hackers计算机商店的店主正在考虑如何安排接下来的五年业务。过去两年中它的销售增长势头非常好,但是如果它所属的地区建立一家主营电子产品的公司的话,销售就会充分增长。Hackers店主们有三种选择:第一就是扩张自己现有的商店,第二是转移到一个新的地方,第三种就是干等。扩张或者转移的决策几乎不需要多少时间,因此商店也不会有收入上的损失。如果第一年什么事都不做,但增长还在继续,那么他们就需要重新考虑扩张的路线。如果第一年什么也不做,且销售显著增长,那么就应该考虑扩大店面的决策。如果等待的时间超过一年,就会有竞争者进入,这样扩张就不切实际。 该案例的假设和条件如下 1、由于新建的电子公司而出现了大批的计算机爱好者,由此带来的销售量上浮的概率为55%. 2、在新址开店并且销售量显著增长,销售年收入为195 000美元;若在新址开店而销售量的增长不甚理想,销售年收入为115 000美元。 3、扩大商店现有经营规模且销售显著增长,销售年收入为190 000美元;扩大商店现有经营规模销售量的增长不甚理想,销售年收入为100 000美元。 4、维持现状不变,但销售量显著增长,销售年收入为170 000美元;但若销售量的增长不甚理想,销售年收入为105 000美元。 5、扩大现有商店的规模所需费用为87 000美元。 6、另行选址开设新店的费用为210 000美元。 7、若第一年维持现状不变,但是销售量增长迅速,如果第二年再扩大原店规模的话,费用仍为87 000美元。 8、各种方案的经营成本相等。

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

浅谈贝叶斯公式及其应用

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现,这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且1n i i B ==Ω ,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) () (/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑ 结论的证。

贝叶斯决策例子

贝叶斯决策练习 某石油公司拟在一片估计含油的荒地上钻井。如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。

解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。 若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。由题意可知: 1211211222()0.55 ()0.45 (|)0.8 (|)0.2(|)0.15 (|)0.85 P A P A P B A P B A P B A P B A ====== 由贝叶斯公式计算得到: 11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075 P A P B A P A B P A P B A P A P B A = ===++ 同理,有: 2112220.0675(|)0.1330.5075 0.11(|)0.2230.4925 0.3825(|)0.7770.4925P A B P A B P A B = ===== 该问题对应的决策树图 采用逆序的方法,先计算事件点②③④的期望值: 事件点 期望值 ② 800×0.867+0×0.133=693.6(万元) ③ 800×0.223+0×0.777=178.4(万元) ④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。 在事件点①处期望值为:543.6×0.5075+100×0.4925=325.13万元 最后在决策点1,按max[(325.13-20),290]=305.13万元,故选择进行地震试验方案。 故为了使该公司的期望收入为最大的决策是:先进行地震试验,当试验结果为油气显示好时,选择钻井;而油气显示不好时,选择出让开采权,该策略下期望收入为305.13万元。

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

模式识别实验一(最小贝叶斯决策及ROC曲线)讲解

实验一 一、 实验原理 1. 最小错误率贝叶斯决策规则: 对于两类问题,最小错误率贝叶斯决策有如下判决规则: 1212(|)(|),;P x P x x x ωωωω>∈∈则反之,则。 由于先验概率i (P ω)可以确定,与当前样本x 无关,所以决策规则也可整理成下面的形式: 121212(|)() (),() (|)P x P l x x x P P x ωωωωωω= >∈∈若,则否则。 2. 平均错误率 决策边界把x 轴分割成两个区域,分别称为第一类和第二类的决策区域.样本在中但属于第二类的错误概率和样本在中但属于第一类的错误概率就是出现错误的概率,再考虑到样本自身的分布后就是平均错误率: 212211()(|)()(|)()(|)P()(|)P()t t t t P e P x p x dx P x p x dx p x dx p x dx ωωωωωω∞ -∞ ∞ -∞ =+=+???? 3. 此实验中的判决门限和平均错误率 (1) 判决门限 假设随机脉冲信号f 中0的概率为,高斯噪声信号n 服从,信号叠加时的放大倍数为a ,叠加后的信号为 *s f a n =+。 由最小错误率贝叶斯决策可得:

1122()(|)()(|)P p x P p x ωωωω→→ > 化简计算得:220022(ln(1)ln ) 2a a a p p t μσ+---= (2) 平均错误率 由上述积分式可计算。 二、 实验内容 1、 已知均值和方差,产生高斯噪声信号,计算其统计特性 实验中利用MATLAB 产生均值为0,方差为1的高斯噪声信号,信号统计分布的程序和结果如下: %产生高斯噪声并统计其特性 x=0;%均值为0 y=1;%方差为1 n=normrnd(x,y,[1 1000000]);%产生均值为0,方差为1的高斯噪声 m1=mean(n);%高斯噪声的均值 v1=var(n); %高斯噪声的方差 figure(1) plot(n(1:400)); title('均值为0,方差为1的高斯噪声'); figure(2) hist(n,10000); title('高斯噪声的统计特性'); 得到m1=-4.6534e-005;v1= 0.9971。

相关文档
最新文档