计算流体力学总复习

计算流体力学总复习
计算流体力学总复习

计算流体力学课程复习提纲

考试时间:6月7日下午2:30

考试地点:8201

绪论

计算流体力学是一门新兴学科、交叉学科。它是20世纪60年代伴随着计算机科学迅速崛起而形成的,是通过数值模拟和可视化处理,对流体流动和热传导等相关物理现象进行计算机数值分析和研究的一门力学分支学科。

一般研究与解决流体动力学问题的方法有三种:一是进行实验测量研究,二是理论分析研究,三是数值模拟计算。

实验研究是进行大量实验,并对所得数据进行分析,总结出流动的规律。

理论研究是运用基本概念、定律和数学工具,把握问题的主要因素,忽略次要因素,选取某种抽象或建立简化模型,作定量分析,从而获得规律和结果,给出所研究问题的解析解或简化方程。(数学问题)

数值模拟方法是在计算机应用基础上,采用各种离散化方法,建立数值模型,通过计算机进行数值计算和实验,得到在时间和空间上许多数据组成的集合体,最终获得描述流场的数值解。

流体力学基本方程组

几个基本概念

连续介质假设:流体质点连续地充满所在的整个空间,他的宏观流动量应该满足一切宏观物理规律及性质。流场中的特征尺度比流体分子平均自由程大得多。

牛顿流体与非牛顿流体

在流体力学中描述流体运动的观点和方法主要有两种: 即Lagrange 方法和Euler 方法。

Lagrange 方法着眼于流体的质点,以质点的位移作为基本变量。主要研究流体质点流动量随时间的变化,分析任意时间立体质点的运动轨迹、速度、压力、密度等。

Euler 方法着眼于空间点,以空间点的速度作为基本变量。主要研究一个指定位置上流动量随时间的变化,分析流体流过指定位置时流体质点的瞬间速度、压力、密度。 推导流体力学基本方程组的基本思路 流体力学基本方程组

微分形式的方程组(统一形式)

积分形式的方程组

()

()()V

S t

ρρΦΦ

?Φ+??Φ=??Γ?Φ+?()()

()

()()()()

()()()()()0t t t t t t t t t dV V ndS t V dV VV ndS FdV n dS t E dV E V ndS F Vd n V dS q nd t ρ

ρρρρσρρρσΩ?ΩΩ?ΩΩ?ΩΩ?ΩΩ?Ω?Ω

?+?=??+?=+???+?=?Ω+??-?????????????

偏微分方程的分类及数学性质

在数学上偏微分方程一般划分为双曲型、抛物型和椭圆型三种类型。不同类型方程所描述的流动主要特征与物理背景都很不一样,他们的数学性质、定解条件提法和数值算法也大相径庭。

如果有特征方程:0

2=

+

+C

B

λ

当AC

B4

2->0时,方程为双曲型方程

当AC

B4

2-=0时,方程为抛物型方程

当AC

B4

2-<0时,方程为椭圆型方程

定解条件的提法

在数值求解流动的基本方程组时必须给出合适的定解条件。定解条件分为初始条件和边界条件。

初始条件由特定的流动问题本身来确定。一般说来,初始条件就是给出某一时刻计算区域内速度、压力和密度的分布。边界条件比较复杂。

1)刚性壁面(固体壁面)条件

对于无粘流动,壁面满足不可穿透条件

对于粘性流动,在固壁面上满足无滑移条件2)自由面条件

流体与大气之间的界面特别成为自由面。

=?n

V

= V

在自由面上流体随自由面运动。设自由面方程为

有限差分法

有限差分法的计算步骤

1)求解区域划分为差分网格 2)变量信息存储在网格节点上 3)将偏微分方程的导数用差商代替 4)带入偏微分方程的初始条件和边界条件 5)推导出关于网格节点变量的代数方程组 6)编写程序(如Fortran )求解代数方程组 7)通过计算机获得偏微分方程的近似解 有限差分网格

一维情况 二维情况

()()()000,,,,,,,=??+??+??=??+??===-==y

v x u t F V t F

const p p t y x z t z y x F t y x z a ηηηηη则

或()()11

x O u u u x O x u u x u x

u

i i

i i i

?+-=??

???+?-=???

??????-+后差

前差的几种差分格式近似一阶导数

推导过程:

+?????

????+????? ????+????

????+=+!

3!23332221

x x u x x u x x u u u i i i i i -????? ????-????? ????-?-=???

????+?????

????+????? ????+????

????=-++!

3!2!

3!22332213332221x x u x x u x u u x u x x u x x u x x u u u i i i i i i i i i i i

x u ???

????为微分项在节点处的值 x

u u i

i ?-+1为微分项在节点处的有限差分形式

后面称为截断误差 同理可推导

+?????

????-????? ????+????

????-=-!

3!23332221

x x u x x u x x u u u i i i i i 二阶导数(u xx )的中心差分

()

22112

2

4

4422

2112!42!222x x u u u x u

x x u x x u

u u u i i i i

i

i i i i ?O +?-+=???? ?

????+????? ????+????? ????=-+-+-+

差分方程

偏微分方程一般含有多个导数项

1)u t 对时间的一阶导数项,称为非定常项(瞬态项、非恒定项)

2)u x 对空间的一阶导数项,称为对流项 3)u xx 对空间的二阶导数项,称为扩散项 差分格式的构造

一维非恒定热扩散方程,构造其差分格式的不同形式

对流方程u t +au x =0(a 是常数),构造其差分格式的不同形式

例对于一维非定常对流扩散方程0u u a t

x

??+=??(其中a 为常数),

写出此模型方程时间为全隐格式,对流项为一阶迎风差分格式,具体写出空间项离散采用Taylor 级数展开形式的过程。 解:采用Taylor 展开空间离散过程:

223212326

i i i i i u u x u x u u x x x x +???????????

=+?+++

? ? ?????????

?

可以得到:

()1i i

i

u u u O x x x +-???=

+? ????? (向前差分)

223212326

i i i i i u u x u x u u x x x x -???????????

=-?+-+

? ? ?????????

?

可以得到:

()1

i i i

u u u O x x x --???=

+? ????? (向后差分)

1.当0a >时,一阶迎风格式采用向后差分,则可以得到模型

()

为常数为温度变量,ααT x T

t T 2

2??=??

方程的离散格式:

111

10n n n n i i i i u u u u a t x

+++---+?=??

2.当0a <时,一阶迎风格式采用向前差分,则可以得到模型方程的离散格式:

111

10n n n n i i i i u u u u a t x

++++--+?=??

差分方程有效性分析

一个偏微分方程可以得到不同的差分方程。但不同的差分方程和原偏微分方程有完全不同的对应关系,它们有不同的数学性质,数值结果也不完全相同。因此,有些差分方程是有效和可靠的,有些则在一定条件下是有效和可靠的,有些则完全无效。

相容性、收敛性和稳定性

相容性是考虑差分方程与其微分方程的近似性。 收敛性是考虑差分方程解与其微分方程解的近似性。 稳定性是讨论数值解计算每一步产生的数值误差对后来步的计算的影响。

差分方程相容性是讨论时,、当00→?→?t x 差分方程逼近于偏微分方程的程度 差分格式的稳定性分析

将微分方程的解展开为Fouier 级数,即解由无穷多个单波叠加而成。

例对流方程的FTBS 、FTFS 、FTCS 、Lax-Friedrich 、全隐格式、Leap-Frog scheme (蛙跳格式)等差分格式的稳定性分析

例题一维对流方程的Leap-Frog Scheme 格式为:

11

11

022n n n n

i

i

i i a

t

x

u

u u u +-+---+=??,写出此格式的放大因子G 和G 放大系

数,并根据放大系数判断此格式的稳定条件。

解:格式为:

()11

11

n n n n

i

i i i u

u u

u λ

+-+-=--

其中:t a x

λ?=?

采用Fourier 展开表达:

()

11

()

()[(1)][(1)]n n n n

ik i x ik i x ik i x ik i x k

k k

k e

e e

e B

B B

B λ

+-??+?-?=--

进一步可以得到:

()i

k A k e

A u k k

i

t kx k 为圆频率,纯虚数的单波振幅,为波数为为波长,

,其中波数ωλλ

π

ω2=

=∑-()()()的振幅

的单波在时刻表示波数为t k e A t B e t B e e A e A u t i k k k

ikx

k k

ikx t i k k

i t kx k ωωω---====∑∑∑α

αα

αααααα

αα

αsin cos sin cos 2

sin 2

cos i e i e e e i

e e i i i i i i -=+=--=+=

---

()()11

1

2sin n n n

n n

ik x ik x k

k k k k e e i k x B

B B B B λλ+--?-?=--=-?

令:()2sin i k x αλ=-? 则可以得到:11110n n k k n n k k B B B B α+-??????????=???????

?????

则放大因子为: 110G α??=????

进一步求出它的特征值:

1010αξ

ζ-=-可以求出:2

124

ααξ=±+ 则放大系数:

2222sin 1sin 1k x k x ξλλ=?+-?≤,即为11≤显然满足,

但是必须还满足: 221sin 0k x λ-?≥

即为:

1t

a

x

λ?=≤?即为稳定性条件

有限差分离散的数值效应

数值效应:在数值求解微分方程问题时,以一个有限自由度的离散模型逐时间步地求解原来时空皆连续的系统,使原来系统的物理性质受到某些歪曲甚至破坏。

数值耗散效应:由于截断误差存在偶阶导数项而引起解的振幅衰减现象。(非物理的耗散效应)

流动本身所固有的耗散,例如N-S方程中粘性耗散项,称为物理耗散效应。

数值色散效应:由于截断误差存在奇阶导数项,引起的相位变化。一般说来长波的色散效应小,短波的色散效应大。

有限体积法

有限体积法(Finite Volume Method,FVM)又称控制容积积分法。

有限差分法是从流体力学基本方程组微分形式出发的。

有限体积法是从流动方程组积分形式出发的。

有限体积法是在有限差分法基础上,吸收了有限单位算法中一些思路和做法逐步发展起来的。它的网格划分方法和有限差分法类似,而它的控制体单元思想和局部近似离散做法,又和有限单元法的加权余量法十分相似。

有限体积法基本思路:把计算区域近似离散成有限个互不重叠的网格。围绕每个网格点取一系列互不重叠的控制体单元,在每个控制体单元中只包含一个节点。并把待求流动量设置在网格节点上,然后利用流动量守恒律对每个控制体单元进行积分,导出一组离散格式。对它进行求解,得到流

动的数值解。

控制体单元的构造方法

(1)单元中心型控制体单元(Cell-centered ):控制单元直接由网格单元来构成,网格单元的边就是控制体单元的边,计算节点放在控制体单元的中心,流动量放在控制体单元的中心。

(2)节点中心型控制体单元(Node-centered ):首先定义节点位置,围绕它构造控制体单元。控制体单元可以直接由相邻网格单元形心来构造或形心与他们各边的中点依次连线来构造。流动量在节点上。 计算网格设置 一维

二维(交错网格) 面积分近似计算

已知数值矢通量f 在e 表面的分布 (1)取平均值:Se f fds F Se

e ==? 一阶精度

(2)取两个角点()se ne Se

e f f Se fds F +=

=?

2

1

二级精度 (3)取三个点()se e ne Se

e f f f Se fds F ++=

=?

46

1

三阶精度 状态变量分布的近似

用有限体积法推导离散化方程时,必须确定物理量的局部分布,这是历史过程极为重要的一步,不仅关系到守恒性

是否保持,而且关系到算法的精度。

(1)梯形分布。一阶格式(迎风)E P e φφφ或= (2)分段线性分布。二阶精度。 中心差分格式 2

E

P e φφφ+=

(3)抛物线分布。三阶精度

QUICK 格式 EE E P e φφφφ8

1

8683-+=

一维定常对流扩散问题

方程

()d u d d dx dx dx ρφφγ??

= ???

对方程在控制体上积分:

dx

d φ

由线性插值(中心差分法) PE P E e

e x x dx d δφφφ

φ-=??≈?

?? ?? WP

W P w

w

x x

dx d δφφφ

φ-=

??≈?

??

??

令u F ρ=,表示单元面上的对流质量通量 x

D δγ

=

,表示单元界面上的扩散传导率 ()()W P w P E e w w e e D D F F φφφφφφ---=-?

令()γ

δρδγρx u x u D F P e ===

/,表示对流与扩散的程度比 若对流项采用中心差分格式为:

()()

E e e W w w P e e w w W P w P E e P

W w

E

P E

F D F D F D F D D D F F φφφφφφφφφφφ??? ??

-+??? ??+=????????? ??++??? ?

?-?---=+-+?22222

2

因为流动满足连续性条件,所以有

()0=dx

u d ρ

在控制体上积分整理可得0=-w e F F 方程写成通式为:

E W P e

e E w w W E E W W P P a a a F

D a F D a a a a +=-=+

=+=2

2φφφ

一维有源项的瞬态对流扩散问题

方程:()()u S t x x x ρφρφφγ??????

+=+ ???????

其中时间采用全隐格式,空间采用中心差分格式。 对模型方程在控制体内进行积分:

()()u dtdV dtdV dtdV SdtdV t x x x ρφρφφγ??????+=+

???????

???????? 1.对瞬态项进行积分:

()

()t t V t dtdV dt dV t t ρφρφ+??????=??????

???? ()()()11n n n n n

P

P

V

dV V ρφρφρφ

φ

++???=

-=-???

?

2. 对对流项进行积分:

()

()t t

t V u u dtdV dV dt x x ρφρφ+??????=???????

???? ()()

()t t

t t

e e

w w e

w

t

t

u u dt F F dt ρφρφφ

φ+?+???=

-?=

-?????

采用中心差分:22t t

W P E P

e w t

F F dt φφφφ+?++??=

-? ??

??

3.对扩散项进行积分:

t t

t

V dtdV dV dt x x x x φφγγ+??????????

??=???

? ???????

???????

? t t

e w t

dt x x φφγ

γ+???

??????=

-? ? ???????????

?

采用中心差分: ()()t t

E P P W e w t

dt x x γγφφφφδδ+???????

=

---? ? ?????????

?

()()t t

e E P w P W t

D D dt φφφφ+?=

---??????

4.对源项进行积分:

()t t

C

P P t

SdtdV S

S V dt φ+?=+?????

5.对于上述的时间积分,采用加权处理:

()[]

1011≤≤?--=?+?+?θθθ其中,t y y dt y n

n t

t t

(1)当0=θ时, 即为显式时间积分方案 (2)当1=θ时, 即为全隐式时间积分方案 (3)当2/1=θ时,即为Crank-Nicolson 时间积分方案 (4)当10≤≤θ时,即为隐式时间积分方案

二维问题的离散

压力-速度耦合问题的有限体积法

普通网格若遇压力场为棋盘式分布时,压力计算处处为0。事实不符。引用交错网格,会解决此类问题。

求解二维压力-速度耦合问题的离散方程时,若采用分离式求解法,方程组中没有关于压力的独立控制方程。直接对方程组中各方程离散无法单独求解压力场。可通过由连续性方程推导出的压力修正方程循环迭代,基本算法成为SIMPLE 算法。

它的基本步骤如下: (1)假设一个压力分布P *。

(2)求解动量方程组得到速度近似值u *和v *。

(3)求解由连续性方程导出的压力修正方程,得到压力修正值P '。

(4)根据压力修正值计算压力、速度改进值,即

()

()

','1,,*,,',',1,*,,',*,,J I J I j I j I j I J I J I J i J i J i J

I J I J I p p d u v p p d u u p p p -+=-+=+=--

(5)解其他场变量φ的离散输运方程。 (6)重复2-5过程,直至φ、、、v u p 收敛。

例在图中所示的情形中,已知:60W

p =,40S p =,7e u =,21n v =。

又给定0.7()w W P u p p =-,0.6()s S P v p p =-。以上各量的单位都是协调的。试采用SIMPLE 算法确定P p ,w u 和s v 的值

解:假设:*10P p =

则:

*0.7()35w W P u p p =-= *0.6()18s S P v p p =-= 由图示连续性方程为:

n e w s v u u v =++

按SIMPLE 算法:

*'350.7('')w w w W P u u u p p =+=+-

*'180.6('')s s s S P v v v p p =+=+-

由于,W S p p 已知,即'0,'0W S p p == 将上述方程代入连续性方程可得到:

60 1.3'21P p -=

由此得:

'30P p =

则: *'40P P P p p p =+=

350.7('')14w W P u p p =+-=

180.6

('')s S P v p p =+-=

W

E

S

N

P

v s

v n

u e

u w

流体力学期末考试计算

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3/850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力:RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)22 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1222121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的 压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

流体力学知识点总结55410

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) ΔF ΔP ΔT A ΔA V τ 法向应力 周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =2m s

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 3 /1000m kg =ρ3 /2 .1m kg =ρdu T A dy μ=? h u u+du U y dy x dt dr dy du ?=?=μμτdu u dy h =ρμ ν=

流体力学知识点大全

流体力学-笔记参考书籍: 《全美经典-流体动力学》 《流体力学》张兆顺、崔桂香 《流体力学》吴望一 《一维不定常流》 《流体力学》课件清华大学王亮主讲 目录: 第一章绪论 第二章流体静力学 第三章流体运动的数学模型 第四章量纲分析和相似性 第五章粘性流体和边界层流动 第六章不可压缩势流 第七章一维可压缩流动 第八章二维可压缩流动气体动力学 第九章不可压缩湍流流动 第十章高超声速边界层流动 第十一章磁流体动力学 第十二章非牛顿流体 第十三章波动和稳定性

第一章 绪论 1、牛顿流体: 剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。 2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。此时,流体内部没有内摩擦,也就没有内耗散和损失。 层流:纯粘性流体,流体分层,流速比较小; 湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。因 为流速增加导致层流出现不稳定性。 定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变, 3、欧拉描述:空间点的坐标; 拉格朗日:质点的坐标; 4、流体的粘性引起剪切力,进而导致耗散。 5、无黏流体—无摩擦—流动不分离—无尾迹。 6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dt ρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。是一个过程方程。 7、流体的几种线 流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ??=

迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=????= 涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团 准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。 第二章流体静力学 1、压强:0lim A F dF p A dA ?→?==? 静止流场中一点的应力状态只有压力。 2、流体的平衡状态: 1)、流体的每个质点都处于静止状态,==整个系统无加速度; 2)、质点相互之间都没有相对运动,==整个系统都可以有加速度; 由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有: 体积力(重力、磁场力)和表面力(压强和剪切力)存在。 3、表面张力:两种不可混合的流体之间的分界面是曲面,则在曲面两边存在一 个压强差。 4、正压流场:流体中的密度只是压力(压强)的单值函数。() dp p ρ? 5、涡量不生不灭定理 拉格朗日定理:理想正压流体在势力场中运动时,如某一时刻连续流场无旋,则 流场始终无旋。0,,ndA U ωω?==??? 有斯托克斯公式得:00,A l U x ndA δωΓ=?=?=??

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

47全国自考流体力学知识点汇总

3347流体力学全国自考 第一章绪论 1、液体和气体统称流体,流体的基本特性是具有流动性。流动性是区别固体和流体的力学特性。 2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。 3、流体力学的研究方法:理论、数值和实验。 4、表面力:通过直接接触,作用在所取流体表面上的力。 5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。重力是最常见的质量力。 6、与流体运动有关的主要物理性质:惯性、粘性和压缩性。 7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。 8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。粘性是流体的内摩擦特性。粘性又可定义为阻抗剪切变形速度的特性。 9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。 10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。 11、压缩性:流体受压,分子间距离减小,体积缩小的性质。 12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。 13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。 14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。 第二章流体静力学 1、精致流体中的应力具有一下两个特性: 应力的方向沿作用面的内法线方向。 静压强的大小与作用面方位无关。 2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。 3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、 4、相对压强是以当地大气压强为基准起算的压强。 5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个·又称负压,这种状态用真空度来度量。 6、工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。因此,先跪压强又称为表压强或计示压强。 7、z+p/ρg=C: z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。 p/ρg=h p,称为测压管高度或压强水头,其物理意义是单位重量的液体具有的压强势能,简称压能。 z+p/ρg称为测压管水头,是单位重量液体具有的总势能,其物理意义是静止液体中各点单位重量液体具有的总势能相等。 第三章流体动力学基础 1、描述流体运动的两种方法:拉格朗日法和欧拉法。 2、拉格朗日法:从整个流体运动是无数个质点运动的综合出发,以个别质点为观察对象来描述,再讲每个质点的运动情况汇总起来,就描述了流体的整个流动。 3、欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个时刻的情况汇总起来,就描述了整个运动。

计算流体力学作业习题

2014级西安理工大学计算流体力学作业 1.写出通用方程,并说明其如何代表各类守恒定律。 由守恒型对流-扩散方程: ()()() div U div T grad S t φφρφρφφ?+=+? 其中φ为通用变量;T φ为广义扩散系数;S φ为广义原项。 若令1;1;0T S φφφ===时,则得到质量守恒方程(mass conservation equation ) ()()()() 0u v w t x y z ρρρρ????+++=???? 若令;i u φ=时,则得动量守恒方程(momentum conservation equation ) 以x 方向为例分析,设;u P u S S x φφ?==- ?,通用方程可化为: ()()()()(2)u uu vu wu P u divU t x y z x x x ρρρρλη???????+++=-++??????? z v u u w F y x y z z x ηηρ???????????? ??+++++?? ? ????????????????? 同理可证明y 、z 方向的动量守恒方程式 若令;;T p T T S S C φφλ φ===时,则得到能量守恒方程(energy conservation equation) ()()() ()h h div Uh div U div gradT S t ρρρλφ?+=-+++? ()()()T p h div Uh div gradT S t C ρλ ρ?+=+? 证毕 2.用控制体积法离散 0)(=+++s dx dT k dx d dx dT u dt dT ,要求对S 线性化,据你的理解,谈谈网格如何划分?交界面传热系数何如何计算?边界条件如何处理? 根据守恒型对流-扩散方程: ()()()u T S t x x x ρφρ?φ ????' +=+????,对一维模型 进行分析,则有: 0)(=+++s dx dT k dx d dx dT u dt dT

计算流体力学复习题

设流经某多孔介质的一维流动的控制方程为:0=+ dx dp c μμ;()0=dx F d μ其中,系C 与空间位置有关,F 为流道的有效截面积。对于下图所示的均匀网格,已知:2,38,200,4,5,2.0,25.031=?======x p p F F C C C B C B 。 以上各量的单位都是调的,试采用SIMPLE 算法确定C B u u p 和,2的值。 解:在一项无源的流动中药是连续性方程得到满足,不同几何位置上的流速必是同向的,故 u u 实际上是2u 项。在作数值计算时,变量的平方项要作线性化处理。为加速迭代收敛过 程,采用如下线性化方法:设0u 为上一次计算值或(初始假定值),u 为本次计算值,则: () 2 02022u u u u -? 此式的导出过程与导出Newton 迭代法求根公式相似。于是,对于B 、 C 界面有: x C u p p u u B B B B ?--=0120 * 22 (a ) x C u p p u u C C C C ?--=0 23 0* 22(b ) 而压力修正值2p 相应的速度修正值则为: x C u p u B B B ?'-= '02 2 (c ) x C u p u C C C ?'='0 22 (d ) 利用这些公式,即可进行关于2,p u u C B 以及的迭代计算。设,,120 p 15020 0===C B u u 则由式(a )与(b )得: 12.8335.3337.52150.580 --215u *B =+=??= 14.3336.8337.515 40.282215u *C =+=??+= 这两个速度值不满足连续方程。计算修正后的速度: 2 2 B *B B 06666.0833.1215 40.25p - 12.833u u u p '-=??'='+= 22 C *C C 08333.0333.141542.0p 14.333u u u p '+=??'+='+= 代入连续方程,得: ()()22 08333.03333.14406666.0833.125p p '+='- 833.66666.02 ='p 251.102='p C

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

中空纤维膜接触器的计算流体力学模拟

中空纤维膜接触器的计算流体力学模拟 杨毅,王保国× (清华大学化学工程系,北京 100084) 摘要:本文利用随机顺序添加算法(Random Sequential Addition, RSA)建立中空纤维膜组件壳层三维几何模型,研究膜组件壳层复杂结构条件下的流体力学特征,进行组件壳层流动的数值模拟。结果表明,高雷诺数有利于组件壳层传质。较低的填充密度下,组件壳层对流作用明显,有利于减少死区,充分利用膜接触面积。另一方面,增加填充密度有利于提高相际接触面积,但会降低对流在传质中的作用,并造成成本的提高和膜丝表面积的浪费。 关键词:计算流体力学;中空纤维膜接触器;传质;填充密度 中图分类号:TQ028.8 文献标识码:A 文章编号: 引言 中空纤维膜组件壳层的复杂几何特征给研究其中的流体流动造成了很大困难。然而,液体在膜组件壳层的流动状态对组件的分离性能具有直接的影响,对其的定量描述是组件及相关过程设计的重要步骤。目前定量描述中空纤维膜组件的分离性能主要有数学模型和经验关联式两种方法。前者利用的数学模型大致可分为四类,即I. 只考虑单根膜丝及其内部(管层)流场分布的模型[1-5] II. 只考虑单根膜丝并考虑其内侧和外侧(管层和壳层)流场分布的模型[6] III. 考虑膜丝规则分布的膜组件的壳层流场分布的模型[7,8];IV. 考虑膜丝随机分布的膜组件的壳层流场分布的模型[9-12]。数学模型法大多基于简化的几何特征及流动状态假设,无法体现壳层的沟流、死区以及湍流等重要因素对组件分离性能的影响。另一种研究思路是建立特定类型膜组件的经验关联式。然而就膜组件的几何特征而言,文献中存在的关联式适用范围较小,对其应用造成很大的局限[13]。 计算流体力学可以很好地解决上述方法研究壳层流动时遇到的问题。但是,由于能够体现中空纤维膜组件壳层复杂结构特征的三维几何模型的建立较为困难,尚无利用计算流体力学方法研究膜组件壳层流动的报道。本文利用随机顺序添加(RSA)算法在Gambit软件中建立中空纤维膜接触器的三维几何模型,并着重研究膜丝填充密度对组件分离性能的影响。1 数学模型 1.1几何模型 本文采用RSA算法在三维建模软件Gambit 中建立了小型聚丙烯中空纤维膜气-液接触器的几何模型,并在轴向上体现了拧转和弯曲两种膜丝放置的非理想结构特征。模型采用了非结构化网格划分,在接近壁面及膜丝处采用了较为细致的网格结构(图1)。 图1 本次模拟采用的几何模型及截面非结构化网格示意图Fig. 1 Module geometry used in the simulation and the unstructured mesh of the cross-section 1.2流体控制方程及边界条件 本文模拟稳态层流状态下中空纤维膜组件进行富氧水的氧气解吸时壳层的流体流动状况。建立组件的几何模型后,用FLUENT求解流场的连续性方程、动量传递方程组以及氧气组分的输运方程。

相关文档
最新文档