气相色谱法测定油脂中棕榈酸单甘油酯与油酸单甘油酯含量

气相色谱法测定油脂中棕榈酸单甘油酯与油酸单甘油酯含量
气相色谱法测定油脂中棕榈酸单甘油酯与油酸单甘油酯含量

气相色谱法测定油脂中棕榈酸单甘油酯与油酸单甘油酯含

气相色谱法测定油脂中棕榈酸单甘油酯与

油酸单甘油酯含量第16卷第5期

1998年9月

谱色f谱

JOURNALOFCHROMATOGRAPHY VD1.16NO.5

Sept.1998

气相色谱法测定油脂中棕榈酸单甘油酯与油酸单甘油酯含量 ,

0传一刘师莲王晓明秦延疆V陈运久

(山东医科大学分子生物学实验室济南250012)(山东医科大学附属医院济南250012)

提娶建立了一种利用气相色谱法测定油脂中棕榈酸单甘油醇与油酸单甘油醑含样品中加入六量的方法.

甲基二硅氨烷,于95"C水浴中完成硅烷化反应.样品的平均加标回收率分别为96.3O%与97.82%,RD分别为

1.8%与

2.1%.最低检出限分别为0.01p.g/g与0.1p.g/g. 关键词气相色谱法,棕榈酸单甘油醇,油酸单甘油醇

分类号O658/TS2.

1前言(,

甘油脂肪酸酯(通常称单甘油酯)常被用作各种

食品加工的乳化剂[1].本文对酶法生产的单甘油酯

中的棕榈酸单甘油酯与油酸单甘油酯进行GC分析, 分析方法简便,快速,准确,获得了较理想的效果.

2实验部分

2.1仪器与试剂

仪器:日本岛津GC一15A气相色谱仪,配C.R4A 型微处理机.试剂:乙

醚,1,1,1,3,3,3-六甲基二硅氨烷,吡啶均为分析纯.棕榈酸单甘油酯与油酸单甘油酯标准品均为美国Sigma公司产品.样品由山东省商业科技研究所提供.

2.2色谱条件

2OV-17(2m×3rami.d.)玻璃填充柱,担体

ChromosorbWAw—DMCS.柱温25O?,汽化室及检测器(FID)温度290~C.载气(高

纯氮)35mL/min,氢气50mL/min,空气50OraL/rain.量程100,注样 1L.

2.3样品处理

根据样品内被测物组分的质量浓度精确称取适量,用乙醚溶解定容,使棕榈酸

单甘油酯与油酸单甘油酯的质量浓度在0.Ig/L与1.5g/L之间.取1, 3mL样品乙醚溶液,氮气吹干(无乙醚气味),加入 1?7mL吡啶及0.3mL六甲基二硅氨烷,置于95?水浴中10min.取出冷却,待GC分析.

2.4标准溶液的配制

分别准确称取棕榈酸单甘油酯与油酸单甘油酯各25mg,分别装入25mL容量瓶中,加乙醚溶解并稀释至刻度(溶液的质量浓度均为lg/L). 2.5标准系列溶液的配制

2.5.1棕榈酸单甘油酯系列溶液的配制分别精 ,确称取上述棕榈酸单甘油酯乙

醚液o.2,o.4,o.8,

本文收稿日期:1997—05—12.惨回日期;1997—10—28 渐钵

1.2与1.6mL,分别置于lOmL具塞试管中,氮气吹

干(无乙醚气味),其余步骤同"2.3节".

2.5.2油酸单甘油酯系列溶液的配制分别精确称取上述油酸单甘油酯的乙醚液1,1.5,2,2.5与 3mL,分别置于lOmL具塞试管中,氮气吹干(无乙醚气味),其余步骤同"2.3节".

3结果与讨论

3.1线性范围与检测限的测定

分别取上述标准系列溶液1L进行GC分析, 以棕榈酸单甘油酯的不同浓度(o.1,0.2,0.4,0.6,

0.8g/L)为纵坐标,不同峰面积(x)为横坐标进行线性回归,结果得回归方程

Y=0.0000129958X+

0.0132692,相关系数r=0.9947,线性范围在0.1 ,O.8g/L之间,最低检测限

0.O1/g.以油酸单甘油酯的不同浓度(O.5,0.75,i,1.25,1.5g/L)为纵坐标,不同峰面积(x)为横坐标进行线性回归,得回归方程y=o.00001674619X一0.0459785,相关系数r=0.9887,线性范围为0.5,1.5g/L,最低检测限0.1~g/g.样品与标准品色谱图见图1. 0Z468l0l2t/min

囝1气相色请圈

Fig.1Gas~hromategrams a.油酸单甘油醇,b.棕榈酸单甘油醇,C.样品.1.棕榈酸单甘油醇,2.油酸单甘油醇.a.monoolein,b.mono—

palmifin,C.sample.1.monopalmitin.2.monoolein.

5期刘传华等:气相色谱法测定油脂中棕榈酸堕苴堕壁堕苴堕盒量:垒曼:

3.2样品加标回收率测定

取每种样品液(棕榈酸单甘油酯0.3834g/L,油酸单甘油酯0.5106g/L)O.5mL各3份,分别加标准

液棕榈酸单甘油酯(1g/L)0.2mL及油酸单甘油酯

(1g/L))0.2mL,置于10mL具塞磨口试管中,作为

0.5mL置于10mL具塞磨口试管中作为被测样品,

组分含量为C..再取两种标准液各0.2mL,置于

10mL具塞磨口试管中作为标准样品液,组分含量为

C.以上样品按"样品处理项自"氮气吹干……起依

次操作.分析结果按回收率()=(C2--C,)/C~100 加标样品液,组分含量为.再取每种样品液各计算,测试结果见表1. 衰1檬橱奠簟甘油?与油奠簟甘油?回收率测定

Table1Recoveryofmonopalmitinandmonoolein

3.3精密度实验

平行测定样品6次,棕榈酸单甘油酯与油酸单

甘油酯的变异系数见表1.精密度试验结果见表2.

衰2精密度实验(?量,)

Table2Resultsoftestforprecision(xd.)

样品Sample123456RSD

棕榈酸单!酯6.336.356.396.256.376.151.3M0n0DalIllit.mb'bb.6'b.6'l' 警单酯8.438.328.558.228.478.121.8Monooleln

3.4讨论

据文献[2]报道,对甘油脂肪酸酯进行测定,硅

烷化试剂应该用1,1,1,3,3,3-六甲基二硅氨烷与三

甲基氯代硅烷,常温下放置5~10min来完成硅烷化

反应.由于我们无三甲基氯代硅烷,因此将方法改为

95?水浴中放置10min来完成硅烷化反应.经测试

取得令人满意的结果.

在柱的选择中,我们曾试用SE一30及聚乙二醇一

20M柱,分离效果均不如OV一17柱好,最后选用

0V一17柱.

参考文献

1张万福.食品乳化剂.北京:中国轻工业出版社,

1996.6

2WoodRD,RajaPK,ReiserR.JAmOilChemSoc,

1965,42:161—165

GasChromatographic(GC)Determinationof

MonopalmitinandMonooleininFatandOil

LiuChuanhua,LiuShilian,WangXiaoming,QinYanjiangandChenYunjiu .

(LaboratoryofMolecularBiology,ShandongMedicalUniversity,Jinan,250012) (HospitalAffiliatedShandongMedicalUniversity,Jinan,250012) AbstractAgaschromatographicmethodforthequantitativeanalysisofmonopal mitinandmonooleininfat

andoilwasdescribed?Thegaschr0mat0graphicseparationwasachievedonaglas scolumnpackedwith2

OV一17/ChromosorbWAW—

DMCSatacolumntemperatureof250"C.ThecarriergaswasN2.Theinjector anddetector(FID)temperaturewas290"C.Recoveriesofmonopalmitinandmonoolein were96.30and

97.82,respectively.TheRSDofmonopalmitinandmonooleinwere1.8and2.1,res pectively.The

linearrelationshipofcalibrationcurveswasgoodintherangeof0.1-0.8g/Land0.5-1.5g/Lfor monopalmitinandmonoolein.

Keywordsgaschromatography,monopalmitin,monoolein

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

气相色谱法及其应用(精)

气相色谱法及其应用 指导教师:趙建军 主要内容 气相色谱法的基本理论气相色谱仪的构造及各部分功能 气相色谱分析方法及其应用

色谱法引论 X “色谱法" 名 称的由来 石油瞇(流动相) 色谱法 是利用混合物不同组分在固定相和流 动相中分配系数(或吸附系数.渗透 性等)的差异,使不同组分在作相对 运动的两相中进行反复分配,实现分 离的分析方法。 碳酸钙■ 個定相) 色 带 11^

X色谱法的分类 气相色谱(GC) 豊響动巴叫液相 色谱(LC) 物态可分为1“亠曲 + ,丄如7 超临界流体^色诸■ (SFC) 吸附色谱( 分配色谱 离子交换色谱 排阻色谱

第一部分:气相色谱基本理论 一、简介: 气相色谱法(GC)是英国生物化学家Martin A T P等人在研究液液分配色谱的基础上,于1952年创立的一种极有效的分离方法它可分析和分离复杂的多组分混合物。 目前由于使用了高效能的色谱柱,高灵敏度的检测器及微处理机,使得气相色谱法成为一种分析速度快.灵敏度高.应用范围广的分析方法。如气相色谱与质谱(GC-MS )联用、气相色谱与Fourier红外光谱(GC-FTIR)联用、气相色谱与原子发射光谱(GC -AES)联用等. 气相色谱法可分为气固色谱(GSC)和气液色谱(GLC) -GSC是用多孔性固体为固定相,分离的对象主要是一些永久性的气体和低沸点的化合物; ■ GLC的固定相是用高沸点的有机物涂渍在惰性载体上.由于可供选择的固定液种类多,故选择性较好,应用亦广泛。

气相色谱分离原理 当载气携带样品进入色谱柱时,基于不同纽分在两相间的溶解或吸附能力不同(分配系数不同),当两相作相对运动时,试样中各组分就在两相中进行反复多次的分配,使得原来分配系数只有微小差异的各组分产生很大的分离效果,从而各组分彼此得以分离开来? ?sample Irit b detector signal

气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用 所在学院 专业班级学生姓名学号 指导教师 完成日期年月 1 文献综述 气相色谱法在食品分析中的应用 摘要:综述气相色谱法在食品分析中的应用,通过参考近20篇相关文献,本文阐述了气相色谱技术的原理和气相色谱技术在食品安全检测及监控中的实际应用, 对近年来气相色谱技术在食品检测方面的应用进行综述,主要包括农药残留分析,食品添加剂分析,兽药残留分析以及食品包装材料中挥发物分析,并对未来的应用进行了展望。 关键词: 气相色谱法;基本原理;食品安全检测;有害物质;添加剂 气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的,采用冲洗法的柱色谱分离技术。通过物质之间吸附和解吸附作用,能够实现对复杂样品组分的分离由于气相色谱技术具有技术成熟、易掌握、检测灵敏度高、分离效能高、选择性高、检出限低、样品用量少、方便快捷等特点和优势,可对卤素、硫、磷化物等进行分析,已被广泛应用于食品和酿酒发酵工业的安全检测中。为此,本文就主要谈谈气相色谱技术在食品安全检测中的应用,以供参考[1]。 1 气相色谱技术的基本原理 基本原理:混合物中各组份在一种流动相( 气体或液体的带动下,流经另一固定相( 固体或液体时,固定相对各组份的作用力不同( 溶解、解吸或吸附能力的不同,造成各组份在固定相中滞留时间产生差异,从而使混合物中各组份得以分

离。各组份分离后,随流动相逐一按次序进入一种叫做检测器的系统进行非电量转换,转换成与组份浓度成比例的电讯号→记录、绘图、计算[2]。 2 气相色谱技术在食品安全检测中的应用 目前, 气相色谱技术在食品安全检测方面的应用主要包括:蔬菜、水果及烟草中的农药残留分析; 畜禽、水产品中兽药残留及瘦肉精、三甲胺含量分析; 饮用水中的农药残留及挥发性有机物污染分析; 熏肉中的多环芳烃分析; 食品中添加剂种类与含量分析; 油炸食品中的丙烯酰胺分析; 白酒中的甲醇和杂醇油含量分析; 啤酒、葡萄酒和饮料的风味组分及质量控制分析; 食品包装袋中有害物质及含量的检测分析; 食用植物油中的脂肪酸组成分析等[3]。 2.1 农药和其他药物残留与污染检测分析 近年来,在蔬菜和水果中有机氯、有机磷农药残留和肉类、鱼类产品中的兽 药残留已被社会广泛关注。目前,可采用GC/ECD 气相色谱检测有机氯农药残留,如可利用GC/ECD 分析技术准确检测高丽人参中的有机氯农药残留;可采用 GC/NPD 气相色谱检测有机磷和有机氮农药残留;可采用GC/FPD 气相色谱检测有机磷和有机硫农药残留等。另外,胡彩虹等研究证明,采用GC/FID 气相色谱可检测出猪肉、鱼和虾中三甲胺的含量[4]。 2. 2 多环芳烃、添加剂及丙烯酰胺含量检测分析 多环芳烃( PAHs是一类重要的环境和食品污染物, 目前已知的2~7环PAHs 就有数百种, 其中很多种具有致突变性和致癌性。加工食品中以烟熏和烧烤食品中的PAHs 污染最为严重, 而我国烟熏食品风味独特, 为广大消费者所青睐, 分析检测烟熏类食品中PAHs 含量、了解我国烟熏类食品中PAHs 的污染程度并制定相应的卫生标准有着重要的食品安全意义。采用GC /MS技术可迅速检测与分析常见的20多种PAHs ,其中在熏肉制品中利用GC /MS技术已检出9种PAHs 污染[5]。

气相色谱仪的使用方法

气相色谱仪的使用方法 气相色谱仪的使用方法操作规程 一、开机前准备 1、根据实验要求,选择合适的色谱柱; 2、气路连接应正确无误,并打开载气检漏; 3、信号线接所对应的信号输入端口。 二、开机 1、打开所需载气气源开关,稳压阀调至0.3~0.5 mpa ,看柱 前压力表有压力显示,方可开主机电源,调节气体流量至实验要求; 2、在主机控制面板上设定检测器温度、汽化室温度、柱箱温度,被 测物各组分沸点范围较宽时,还需设定程序升温速率,确认无误后保存参数,开始升温; 3、打开氢气发生器和纯净空气泵的阀门,氢气压力调至0.3~0.4mpa , 空气压力调至0.3~0.5mpa ,在主机气体流量控制面板上调节气体流量至 实验要求; 当检测器温度大于100℃时,按《点火》按钮点火,并检查点 火是否成功,点火成功后,待基线走稳,即可进样; 三、关机 关闭fid 的氢气和空气气源,将柱温降至50℃以下,关闭主 机电源,关闭载气气源。关闭气源时应先关闭钢瓶总压力阀,待压力指针回零后,关闭稳压表开关,方可离开。 四、注意事项

1、气体钢瓶总压力表不得低于2mpa; 2、必须严格检漏; 3、严禁无载气气压时打开电源。 气相色谱的仪器保养1、仪器内部的吹扫、清洁气相色谱 仪停机后,打开仪器的侧面和后面面板,用仪表空气或氮气对仪器内部灰尘进行吹扫,对积尘较多或不容易吹扫的地方用软毛刷配合处理。吹扫完成后,对仪器内部存在有机物污染的地方用水或有机溶剂进行擦洗,对水溶性有机物可以先用水进行擦拭,对不能彻底清洁的地方可以再用有机溶剂进行处理,对非水溶性或可能与水发生化学反应的有机物用不与之发生反应的有机溶剂进行清洁,如甲苯、丙酮、四氯化碳等。注意,在擦拭仪器过程中不能对仪器表面或其他部件造成腐蚀或二次污染。 2、电路板的维护和清洁气相色谱仪准备检修前,切断仪器电源,首先用仪表空气或氮气对电路板和电路板插槽进行吹扫,吹扫时用软毛刷配合对电路板和插槽中灰尘较多的部分进行仔细清理。操作过程中尽量戴手套操作,防止静电或手上的汗渍等对电路板上的部分元件造成影响。 吹扫工作完成后,应仔细观察电路板的使用情况,看印刷电路板或电子元件是否有明显被腐蚀现象。对电路板上沾染有机物的电子元件和印刷电路用脱脂棉蘸取酒精小心擦拭,电路板接口和插槽部分也要进行擦拭。 3、进样口的清洗在检修时,对气相色谱仪进样口的玻璃衬管、分流平板,进样口的分流管线,epc 等部件分别进行清洗是十分必要的。 玻璃衬管和分流平板的清洗:从仪器中小心取出玻璃衬管,用镊子或其他小工具小心移去衬管内的玻璃毛和其它杂质,移取过程不要划伤衬管表面。

相关文档
最新文档