有限元分析圆柱开孔应力集中

有限元分析圆柱开孔应力集中
有限元分析圆柱开孔应力集中

题目内容:

筒中开有半径为a 的小圆孔,该筒的两端承受有扭矩M z

求解:

(1)问题描述及数学建模;的应力变大的现象,应力集中是结构疲劳强度的薄弱环节,任何结构或零件几乎都存在应力集中。

(2)有限元建模;

用有限元求解时,圆筒扭转的单元类型以及板的厚度对计算结果没有影响,因此在

求解时,单元类型为8节点固体单元SOLID45,圆筒外径R=0.5m ,壁厚δ=0.01m ,扭矩M z = 50N ·m ,开孔半径a=0.08m 。材料特性按超硬铝(LY12-CZ):弹性模量E=71GPa ,泊松比μ=0. 33。有限元3D 建模如下图1 所示。

图 1 有限元模型

(3)Ansys求解;

(1)单元选取:8节点固体单元SOLID45,材料特性选取材料特性按超硬铝(LY12-CZ):弹性模量E=71GPa,泊松比μ=0. 33。

(2)模型创建:圆筒:创建Volume s → Cylinder →By Dimensions,输入外径R=0.5m,r= 0.4m。开孔:旋转坐标轴,Z轴旋转90°,创建Volume s → Cylinder →By Dimensions,输入外径R=0.08m,r=0m,用Booleans(布尔运算)得到圆孔,模型如图2所示:

图 2 创建的模型

(3)网格划分:选择Mesh Tool里面的Smart Size,数值选为8,划分网格,如图3所示:

图 3 圆柱体网格划分

(4)施加载荷:变换当前坐标为柱状坐标,选取面积为圆柱筒上、下表面,选取面上的所有节点,激活节点位置,选取所有节点,施加FY方向的扭矩M z= 50N·m。扭矩施加如图4所示:

图 4 圆柱扭矩的施加

(5)求解及后处理:在General Postproc中的Plot Result中,各结果显示如下图所示:

图 5 圆筒的形变图

图6 圆筒UX方向位移

图7 圆筒UY方向位移

图8 圆筒单元内力图

图9 节点应力图

(4)结果分析及建议;

由图6~9结果分析:在圆孔附近UX,UY方向的位移比圆筒其他地方的要大得多,圆孔附近的节点应力较其他地方大得多,出现应力集中的现象。减少应力集中的办法是尽量使构建的圆柱外形圆滑过渡,例如使用倒圆,倒角等,可明显降低局部应力集中。

(5)体会及建议;

基于MARC的含圆孔正方形薄板四周受力性能的有限元分析报告

基于MARC的含圆孔正方形薄板四周受

标题:针对含圆孔的正方形板四周受力性能的有限元分析 摘要:采用通用的有限元程序MARC研究含圆孔的正方形板四周受力问题。在工件工作时,小孔的边缘会产生应力集中的现象,极端情况下甚至会 发生破坏,导致失效。通过对该模型的分析,计算出其最大应力、最 大位移及所发生的位置,得出其承载能力和变形特征,使该力学模型 更好服务于建造等工程方面。 关键词:圆孔、正方形板、受均布力、最大应力、最大位移、位置、四分之一 Title: hole for a square plate with four weeks of the force Finite Element Analysis Abstract: In view of daily life, building structure, mechanical steel structure of the existence of multi-shaped plate with a circular hole is the mechanical model, its bearing capacity and design studies and calculations of concern. In this paper, general finite element program MARC square hole of the plate four weeks with the force the issue. Through analysis of the model to calculate the maximum stress, maximum displacement and the location of occurrence, reached its carrying capacity and deformation characteristics. So that the mechanical model to better serve the construction and other projects. Keywords: round hole, square plate, force, maximum stress, maximum displacement, position, deformation characteristics,horizontal direction, vertical direction, a quarter 正文 1.引言: 鉴于日常生活中建筑结构,机械钢架等结构中多存在含圆孔的正形板的力学模型,其承载性能和设计方法的研究和计算值得关注。有限元分析在模具行业应用广泛,初步学习弹性力学及有限元的知识,分析平面应力应变问题,以解决平面薄板在受均不力时的有限元分析。从而解决了,在薄板上中心椭圆孔,在均布力的作用下产生的应力、位移的问题。 2.理论分析: 如图所示,在厚度为t=1cm的正方形板中有一只r=0.5cm的圆孔,正方形板四周受分布力p的作用。已知:E=210GPa,u=0.3,l=10cm,p=1KN/cm。计算最

有限元分析 均布荷载作用下深梁的变形和应力

有 限 元 分 析 上 级 报 告 学院: 专业: 姓名: 班级: 学号:

均布荷载作用下深梁的变形和应力 两端简支,长度l=5m,高度h=1m的深梁,在均布荷载q =5000N/m作用下发生平面弯曲(如图4.1所示)。已知弹性模量为30Gpa,泊松比为0.3,试利用平面应力单元PLANE82,确定跨中的最大挠度,和上下边缘的最大拉压应力。 4.1 均布荷载作用下深梁计算模型 1.理论解 具有两个简支支座支承的简支梁,它的变形和应力分布在理论上是没有解析表达式。 在一般的弹性力学教科书中,只有将两边支座简化为等效力的条件,即在两个支座的侧表面上作用有均匀分布的剪力情况,才可以得到理论解答。 (1) 设定应力函数。 获得这种情况下的解答的主要思路是:按照应力解法,考虑到应力分量关于该梁中心 位置(x=2.5,y=0.5)有对称和反对称关系。可以首先假定一个应力函数为: Φ = A(y - 0.5)5+ B(x - 2.5)2 (y -0.5)3 +C(y -0.5)3+ D(x- 2.5)2+ E(x -2.5)2 (y - 0.5) (4.1) 依据这个应力函数,可以获得各个应力分量,按照上表面受均布压力作用简支梁的上 下表面和左右侧表面的应力边界条件,确定出应力函数(4.1)中的各个待定系数A,B,C,D和E。 按照应力求解平面应力问题方法,应力函数应该满足双调和函数: ?2?2Φ = 0 (4.2) 将(4.1)应力函数代入上式后,得到: 24 B( y - 0.5) +120A(y - 0.5) = 0 (4.3) 即: B = -5A (4.4) (2)确定应力分量。 应力函数与应力分量之间的关系为: (3) 利用梁的上下表面边界条件确定积分常数。 上表面受均布压力作用简支梁的上表面(y=h=1m)的应力边界条件:

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

薄板有限元分析

板中圆孔的应力集中 问题:如图所示为一个承受单向拉伸的无限大板,在其中心位置有一个小圆孔。材料属性为弹性模量E=Pa,泊松比为0.3,拉伸载荷q=1000Pa,平板厚度t=0.1. 1、定义工作名和工作标题 (1)定义工作文件名:在弹出的Change Jobname对话框中输入Plate。选择New log and error files复选框,单击OK按钮。 (2)定义工作标题:在弹出的的Change Title对话框中输入The analysis of plate stress with small circle,单击OK按钮。 (3)重新显示:执行replot命令。 2、定义单元类型和材料属性 (1)选择单元类型:在弹出的Element Type中,单击Add按钮,弹出所示

对话框,选择Structural Solid和Quad 8node 82选项,单击OK,然后 单击close。 (2)设置材料属性:在弹出的define material models behavior窗口中,双击structural/linear/elastic/isotropic选项,弹出linear isotropic material properties for material number 1对话框,EX和PRXY分别输入2e11和 0.3,单击OK,执行exit命令。 (3)保存数据:单击SAVE_DB按钮。 3、创建几何模型 (1)生成一个矩形面:执行相应操作弹出create rectangle by dimensions对话

框,输入数据,单击OK,显示一个矩形。 (2)生成一个小圆孔:执行创建圆的操作弹出对话框,输入数据,单击OK,生成一个圆。 (3)执行面相减操作:执行Booleans/Subtract/Areas命令,生成结果如图示。 (4)保存几何模型:单击SAVE_DB按钮。 4、生成有限元网格(自由网格划分) (1)设置网格的尺寸大小:执行size cntrlsl-global-size命令,弹出对话框,在element edge lenge文本框中输入0.5,单击OK. (2)采用自由网格划分:执行mesh/areas/free命令,生成网格模型如图示。 (3)保存结果:单击SAVE_DB按钮。 5、施加载荷并求解

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

圆孔孔边应力集中

4.8 半无限平面边界上受法向集中力作用的问题一 弗拉芒一布辛涅斯克问题 没有边界的无限大物体称为无限体。将它用平面分成两半,每一半就称半无限体。本节分析的是半无限的弹性平面体在边界上受一法向集中力作用的问题(图4-8)。这一问题在实际工程问题中会经常遇到,如建筑物地基的应力和沉陷问题等。最近发展起来的边界元数值计算法也利用这问题的解答。 假定在边界面上沿半无限平面厚度上分布有均匀压力P。这样,半无限体就处于平面应变状态,单位厚度上分布的压力就可视为集中力P,其量纲为[力×长度-1] 解题:如图4-8所示,估计应力呈扇形分布,因此采用极坐标。为解题方便,取X轴方向向下,y轴方向向右,相应地极坐标r方向向外,θ方向由x轴逆时针旋转。 图4-8半无限平面边界受法间集中力 (1)初定应力函数:根据应力的函数形式决定应力函数的形式,而应力的函数形式是根据估计的应力分布情况面定。本题中估计σr的

分布与P ,r ,θ都有关系,与P 成正比,与r 成反比。 故σr 的函数形式估计为 )(θσF r P r = (a ) 式中σr 与P ,r 都是一次幂关系,这是因为只有这样,等式两边的量纲才能相等(皆为[力×长度-2])。 列出应力函数与应力分量的关系式,即(4.18)式的第一式 22211θ??σ??+??=r r r r 由此式可见,为使等式两边r 的幂次相等,应力函数中的r 的幂次应当比应力分量中r 的幂次高两次,所以初选应力函数的形式为 )(θ?rf = (b ) 式中f (θ)可通过双调和方程得到。将(b )式代入双调和方程(4.17)式得 )(1)(11122 22222=????????+??+??+??θθθθf r f r r r r r )( 即 0)]()(2)([122443=++θθθθθf d f d d f d r (c ) 删去因子3 1r ,(c )式为常系数线性微分方程,其通解为 ) sin cos (sin cos )(θθθθθθD C B A f +++= (d ) 代入(b )得 )] sin cos (sin cos [θθθθθ?D C B A r +++= (e )

有限宽中心圆孔板应力集中系数数值实验

有限宽中心圆孔板应力集中系数数值实验 冯美生,张红珠 辽宁工程技术大学力学与工程科学系,辽宁阜新 (123000) 摘 要:在anays 平台上,采用有限元方法对拉伸有限宽中心圆孔板应力集中问题进行了数值实验,定义了应力集中的特征参数,定量分析特征尺度的变化规律,研究应力集中系数与孔径尺度的关系见图3,并与解析解比较,给出了解析解的适用范围。 关键词: 应力集中,应力集中系数,圆孔,特征尺度,数值实验 1 引言 受力的弹性平面板具有小孔,则孔边的应力将远大于无孔时的应力,也远大于距孔稍远处的应力,这种现象称为孔边应力集中。应力集中现象是局部现象。在几倍于孔径以外,应力几乎不受孔的影响,应力的分布情况以及数值都与无孔时相同。一般来说,集中的程度越高,集中的现象越是局部性的,就是说应力随着与孔的距离增大而越快的趋进于无孔时的应力。应力集中的程度,首先与孔的形状有关,一般来说,圆孔孔边的集中程度最低。另外集中系数还与相对孔径尺度有关。基于ansys 平台,通过数值试验的方法,研究不同板宽,不同孔径时的孔边应力集中问题,并与弹性力学的解析解进行比较,研究应力集中系数与孔径尺度的关系。 2 实例分析 2.1力学模型及假设 如图1所示,平面带孔平板,孔位于板正中,假设板为各向同性完全弹性,板左端固定,右端受均布荷载q 0=10N/mm 作用,长为200mm ,厚为10mm ,泊松比为0.3,E=2.1×1011Pa,板宽和孔径变化,数值实验其应力集中时的特征参数。定义一个描述板宽与孔径的相对尺度的特征参数,0 B R ε=,定义应力集中系数max 0k q σ=,其中B 为板宽,R 0为孔半径,max σ为孔边最大应力,q 0为均布荷载。 2.2数值实验 在ansys 平台上变化各种ε值,计算相应的k 值,进行相应的数值研究。整个过程采用

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

板中孔应力集合ANSYS有限元分析

一、自选题目 如图所示为承受双向拉伸的板件,其中心位置有一个小圆孔,其尺寸 (mm )如图所示。其中(弹性模量 E=2Gpa, 泊松比v=0.3, 右端拉伸载荷q=20N/mm, 平板的厚度t=20mm ) 。 图1-1 平面应力支架简化模型 二、题目分析 此题为平面应力问题,板件中间圆孔应力集中较大,为了保证求解精度,划分网格时,应该采用8节点四边形单元;使用ansys 分析问题时,输入的 实常数单位要进行统一,此题统一单位为毫米单位,E=200000N/mm 2。 三、操作步骤 3.1 定义工作文件和工作标题3.1.1 定义工作文件名 执行Utility Menu-File→Change Jobname→20128195,单击OK 按钮。 3.1.2 定义工作标题 执行Utility Menu-File→Change Tile→hebingbing20128195,单击OK 按钮。 3.1.3 更改当前工作目录 执行Utility Menu-File→Change the working directory→E/STUDY/ANSYS/dazuoye 。

3.2 定义单元类型、实常数和材料属性 3.2.1 设置计算类型 执行Main Menu→Preferences→select Structural→OK。 3.2.2 选择单元类型 执行Main Menu →Preprocessor→Element Type→Add/Edit/Delete →Add →select Solid→Quad 8node 82→OK 。 Options→select K3→Plane strs w/thk→OK→Close ,如图3-1 所示。 图3-1 3.2.3 定义实常数 执行Main Menu→Preprocessor→Real Constants →Add/Edit/Delete→ Add→OK→输入板厚20→OK→Close。 3.2.4 设置材料属性执行Main Menu→Preprocessor→Material Props→Material Models→Structural→Linear→Elastic→Isotropic→输入实常数(在EX 框中输入200000,在PRXY 框中输入0.3)→OK,如图3-2 所示。 图3-2

基于有限元ANSYS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 (1) 1.1 设计参数 (1) 1.2 计算及评定条件 (1) 1.3 材料性能参数 (1) 2 结构有限元分析 (2) 2.1 理论基础 (2) 2.2 有限元模型 (2) 2.3 划分网格 (3) 2.4 边界条件 (5) 3 应力分析及评定 (5) 3.1 应力分析 (5) 3.2 应力强度校核 (6) 4 分析结论 (8) 4.1 上封头接头外侧 (9) 4.2 上封头接头内侧 (11) 4.3 上封头壁厚 (13) 4.4 筒体上 (15) 4.5 筒体左 (17) 4.6 下封头接着外侧 (19) 4.7 下封头壁厚 (21)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 正常设计压力MPa 7.2 最高工作压力MPa 6.3 设计温度℃0~55 工作温度℃5~55 工作介质压缩空气46#汽轮机油 焊接系数φ 1.0 腐蚀裕度mm 2.0 容积㎡ 4.0 容积类别第二类 计算厚度mm 筒体29.36 封头29.03 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 设计载荷工况工作载荷工况 设计压力7.2MPa 工作压力6.3MPa 设计温度55℃工作温度5~55℃ 注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

孔边应力集中 由于开孔

孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。

点支承中空玻璃板孔边应力的有限元分析

点支承中空玻璃板孔边应力的有限元分析 1 前言 点支承玻璃幕墙是用金属连接件和紧固件将玻璃与支承结构连接成整体的建筑结构形式,玻璃板往往需要点支承处开孔以安装连接件。中空玻璃是在两层钢化玻璃之间的封闭空间内充入惰性气体[1][2],在国家大剧院等项目中得到了广泛使用。国内外试验资料表明,开孔玻璃面板的最大应力往往在钻孔处。同时孔边缘在切割过程中形成的大量微裂纹,使该处强度有所降低。故开孔周边是点支式玻璃幕墙的薄弱处[3,4,5]。现行规范、规程尚未对玻璃孔边应力的计算做出严格、定量的规定,国内外对于点支承单层玻璃板孔边应力的研究较多,而关于中空玻璃孔边应力的研究还不多见[5,6]。本文使用有限元方法,对四点支承中空玻璃的孔边应力进行计算,分析了孔心边距、玻璃板、中空层厚度等因素对于孔边最大应力的影响,提出了必要的设计建议。 2 孔边应力的有限元分析方法 2.1 点支承中空玻璃基本承载特点 流体静止时,起作用的只是垂直于各接触面的力,中空玻璃板中空层中的气体不具有抗弯刚度,也不能阻止内、外片在面内的相对滑移。设中空玻璃承受的总荷载集度为ps;外、内片分别承担荷载为p0和pi。中空层中气体的作用,即为在垂直于玻璃板的方向上,将pi从中空层的上表面传递至内片的上表面,同时中空层内压产生增量:pg=pi。故考虑中空玻璃受弯承载性能,只需考虑中空层在垂直于玻璃板方向上的作用[2,7]。 2.2 点支承中空玻璃有限元计算方法 本文使用综合有限元程序ANSYS建立模型。为了能够模拟点支承中空玻璃支承孔边缘的构造,外、内片玻璃采用Solid单元建模,并在板面大范围内通过Sweep方式生成规则分布的单元(图1)。 使用ANSYS提供的Combin单元模拟气体层行为。Combin(弹簧-阻尼组合单元)具备二个节点,可以计算轴向的压缩及阻尼行为。本文根据清华大学及同济大学完成的点支承中空玻璃试验建立模型[2,8],几何参数如表1。根据对称性建立1/4模型,使用Solid单元模拟玻璃板,在外、内板之间除点支承外,均匀的设置n个Combi 单元模拟气体层的压缩性能(图1)。Combin单元的弹性模量由式(1)计算:

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

相关文档
最新文档