离散数学集合论部分综合练习

离散数学集合论部分综合练习
离散数学集合论部分综合练习

离散数学集合论部分综合练习

本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。

一、单项选择题

1.若集合A={a,b},B={a,b,{a,b }},则().

A.A?B,且A∈B B.A∈B,但A?B

C.A?B,但A?B D.A?B,且A?B

2.若集合A={2,a,{ a },4},则下列表述正确的是( ).

A.{a,{ a }}∈A B.{ a }?A

C.{2}∈A D.?∈A

3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).

A.{a,{a}}∈A B.{2}?A

C.{a}?A D.?∈A

4.若集合A={a,b,{1,2 }},B={1,2},则().

A.B? A,且B∈A B.B∈ A,但B?A

C.B ? A,但B?A D.B? A,且B?A

5.设集合A = {1, a },则P(A) = ( ).

A.{{1}, {a}} B.{?,{1}, {a}}

C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}

6.若集合A的元素个数为10,则其幂集的元素个数为().

A.1024B.10C.100 D.1

7.集合A={1, 2,3,4,5,6,7,8}上的关系R={|x+y=10且x,y∈A},则R 的性质为().

A.自反的 B.对称的

C.传递且对称的 D.反自反且传递的

8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为().

A.自反的 B.对称的

C.对称和传递的 D.反自反和传递的

9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.

A.0 B.2 C.1 D.3

10.设集合A={1 , 2 , 3 , 4}上的二元关系

R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},

则S 是R 的()闭包.

A .自反

B .传递

C .对称

D .以上都不对

11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如图一所示,若A 的子集B = {3 , 4 , 5},

则元素3为B 的().

A .下界

B .最大下界

C .最小上界

D .以上答案都不对 12.设A ={1, 2,3,4,5,6,7,8},R 是A 上的整除关系,B ={2,4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( ).

A .8、2、8、2

B .无、2、无、2

C .6、2、6、2

D .8、1、6、1

13.设A ={a ,b },B ={1,2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, ,},R 3={, },则( )不是从A 到B 的函数.

A .R 1和R 2

B .R 2

C .R 3

D .R 1和R 3

二、填空题

1.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为.

2.设集合A ={a ,b },那么集合A 的幂集是.

应该填写:{?,{a ,b },{a },{b }}

3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,

},,{B A y x B y A x y x R ?∈∈∈><=且且

则R 的有序对集合为.

4.设集合A ={0,1,2},B ={0,2,4},R 是A 到B 的二元关系,

},,{B A y x B y A x y x R ?∈∈∈><=且且

则R 的关系矩阵M R =

5.设集合A ={a ,b ,c },A 上的二元关系

R ={,},S ={,,}

则(R ?S )-1=.

6.设集合A ={a ,b ,c },A 上的二元关系R ={, , , },则二元关系R 具有的性质是.

7.若A ={1,2},R ={|x ∈A ,y ∈A ,x +y =10},则R 的自反闭包为.

8.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是

9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为.

5

图一

三、判断说明题(判断下列各题,并说明理由.)

1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.

2.如果R 1和R 2是A 上的自反关系,判断

结论:“R -11、R 1∪R 2、R 1?R 2是自反的” 是否

成立?并说明理由.

3.若偏序集的哈斯图如图一所示,

则集合A 的最大元为a ,最小元不存在.

4.若偏序集的哈斯图如图二所示,

则集合A 的最大元为a ,最小元不存在.

5.设N 、R 分别为自然数集与实数集,f :N

→R ,f (x )=x +6,则f 是单射.

四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求

(1)B ?A ; (2)A ?B ; (3)A -B ; (4)B ⊕A .

2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算

(1)(A -B ) (2)(A ∪B ) (3)(A ∪B )-(A ∩B ).

3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算

(1)(A -B ); (2)(A ∩B ); (3)A ×B .

4.设A ={0,1,2,3,4},R ={|x ∈A ,y ∈A 且x +y <0},S ={|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ?S ,R -1,S -1,r (R ).

5.设A ={1,2,3,4,5,6,7,8,9,10,11,12},R 是A 上的整除关系,B ={2,4, 6}.

(1)写出关系R 的表示式;(2)画出关系R 的哈斯图;

(3)求出集合B 的最大元、最小元.

6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.

(1)写出R 的表达式; (2)写出R 的关系矩阵; (3)求出R 2.

7.设集合A ={1,2,3,4},R ={|x ,y ∈A ;|x -y |=1或x -y =0},试

(1)写出R 的有序对表示; (2)画出R 的关系图;

(3)说明R 满足自反性,不满足传递性.

五、证明题

1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).

2.试证明集合等式A ? (B ?C )=(A ?B ) ? (A ?C ).

3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A

,存在

图一

图二

图三

b ∈A ,使得∈R ,则R 是等价关系.

4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ?也是A 上的偏序关系.

参考解答

一、单项选择题

1.A2.B3.C4.B 5.C6.A 7.B8.B

9.B 10.C 11.C12.B13.B

二、填空题

1.2n

2.{?,{a ,b },{a },{b }}

3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>

4.????

??????011000011 5.{,}

6.反自反的

7.{<1,1>,<2,2>}

8.{<1, a >, <2, b >},{<1, b >, <2, a >}

9.8

三、判断说明题(判断下列各题,并说明理由.)

1.解:错.

设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ≠C .

2.解:成立.

因为R 1和R 2是A 上的自反关系,即I A ?R 1,I A ?R 2。

由逆关系定义和I A ?R 1,得I A ?R 1-1;

由I A ?R 1,I A ?R 2,得I A ?R 1∪R 2,I A ?R 1?R 2。

所以,R 1-1、R 1∪R 2、R 1?R 2是自反的。

3.解:正确.

对于集合A 的任意元素x ,均有∈R

(或xRa ),所以a 是集合A 中的最大元.

按照最小元的定义,在集合A 中不存在最

小元.

4.解:错误.

集合A 的最大元不存在,a 是极大元.

5.解:正确.

设x 1,x 2为自然数且x 1≠x 2,则有f (x 1)=x 1+6≠x 2+6=f (x 2),故f 为单射.

四、计算题

1.解:(1)B ?A ={a , b , c }?{b , d , e }={ b }

(2)A ?B ={a , b , c }?{b , d , e }={a , b , c , d , e }

(3)A -B ={a , b , c }-{b , d , e }={a , c }

(4)B ⊕A =A ?B -B ?A ={a , b , c , d , e }-{ b }={a , c , d , e }

2.解:(1)(A -B )={{a , b }, 2}

(2)(A ∪B )={{a , b }, 1, 2, a , b , {1}}

(3)(A ∪B )-(A ∩B )={{a , b }, 2, a , b , {1}}

3.解:(1)A -B ={{1},{2}}

(2)A ∩B ={1,2}

(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,

<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,

<2, {1,2}>}

4.解:R =?,

S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} R ?S =?,

R -1=?,

S -1=S , r (R )=I A .

5.解:(1)R =I ?{<1,2>, <1,3>, …, <1,12> , <2,4>, <2,6>, <2,8>, <2,10>, <2,12>, <3,6>, <3,9> , <3,12>, <4,8>, <4,12>, <5,10>, <6,12>}

(2)关系R 的哈斯图如图四 (3)集合B 没有最大元,最小元是:2 6.解:R ={, , , } ?????

???????=1000000001000101R M R 2 = {, , , }?{, , , } ={, ,}

7.解:(1)R ={<1,1>,<2,2>,<3,3>,<4,4>,

<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>}

(2)关系图如图五

(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,

即A 的每个元素构成的有序对均在R 中,故R 在

A 上是自反的。

因有<2,3>与<3,4>属于R ,但<2,4>不属于R ,

所以R 在A 上不是传递的。

11

图四:关系R 的

哈斯图 ?? ? ? 1 2 3 4

五、证明题

1.证明:设,若x∈A? (B?C),则x∈A或x∈B?C,

即x∈A或x∈B且x∈A或x∈C.

即x∈A?B且x∈A?C,

即x∈T=(A?B) ? (A?C),

所以A? (B?C)? (A?B) ? (A?C).

反之,若x∈(A?B) ? (A?C),则x∈A?B且x∈A?C,

即x∈A或x∈B且x∈A或x∈C,

即x∈A或x∈B?C,

即x∈A? (B?C),

所以(A?B) ? (A?C)? A? (B?C).

因此.A? (B?C)=(A?B) ? (A?C).

2.证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B ∪C,即x∈A且x∈B或x∈A且x∈C,

也即x∈A∩B或x∈A∩C,即x∈T,所以S?T.

反之,若x∈T,则x∈A∩B或x∈A∩C,

即x∈A且x∈B 或x∈A且x∈C

也即x∈A且x∈B∪C,即x∈S,所以T?S.

因此T=S.

3.设R是集合A上的对称关系和传递关系,试证明:若对任意a∈A,存在

b∈A,使得∈R,则R是等价关系.

证明:已知R是对称关系和传递关系,只需证明R是自反关系.

?a∈A,?b∈A,使得∈R,因为R是对称的,故∈R;

又R是传递的,即当∈R,∈R?∈R;

由元素a的任意性,知R是自反的.

所以,R是等价关系.

4.若非空集合A上的二元关系R和S是偏序关系,试证明:S

R?也是A上的偏序关系.

证明:.①S

R

x

x

S

x

x

R

x

x

A

x?

>∈

?<

>∈

<

>∈

<

?,

,

,

,

,,所以S

R?有自反性;

②,

,A

y

x∈

?因为R,S是反对称的,

y

x

x

y

y

x

S

x

y

S

y

x

R

x

y

R

y

x S

x

y

R

x

y

S

y

x

R

y

x

S

R

x

y

S

R

y

x

=

?

=

=

?

>∈

<

>∈

<

>∈

<

>∈

<

?>∈

<

>∈

<

>∈

<

>∈

<

?

?

>

<

?

>

<

)

,

,

(

)

,

,

(

) ,

,

(

)

,

,

(

,

,

所以,R?S有反对称性.

③A

z

y

x∈

?,

,,因为R,S是传递的,

S

R

z

y

S

R

y

x?

>∈

<

?

>∈

<,

,

S

z

y

R

z

y

S

y

x

R

y

x>∈

<

>∈

<

>∈

<

>∈

?<,

,

,

,

S

z

y

S

y

x

R

z

y

R

y

x>∈

<

>∈

<

>∈

<

>∈

?<,

,

,

,

S

R

z

x

S

z

x

R

z

x?

>∈

?<

>∈

<

>∈

?<,

,

,

所以,S

R?有传递性.

总之,R是偏序关系.

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

离散数学(集合论)课后总结

第三章集合论基础 1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。 ⑴{a}∈A T ⑵?({a}? A) F ⑶c∈A F ⑷{a}?{{a,b},c} F ⑸{{a}}?A T ⑹{a,b}∈{{a,b},c} T ⑺{{a,b}}?A T ⑻{a,b}?{{a,b},c} F ⑼{c}?{{a,b},c} T ⑽({c}?A)→(a∈Φ) T 2、证明空集是唯一的。(性质1:对于任何集合A,都有Φ?A。) 证明:假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得Φ1 ?Φ2 。 因为Φ2是空集,则由性质1得Φ2 ?Φ1 。 所以Φ1=Φ2 。 3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念) a)是否Φ∈B?是否Φ?B? b)是否{Φ}∈B? 是否{Φ}?B? c)是否{{Φ}}∈B? 是否{{Φ}}?B? 解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}} 在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b} B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}} 然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}} 以后熟悉后就可以直接写出。 a) Φ∈B Φ?B b) {Φ}∈B {Φ} ? B c) {{Φ}}∈B {{Φ}}?B a)、b)、c)中命题均为真。 4、证明A?B ? A∩B=A成立。 证明:A∩B=A ??x(x∈A∩B ?x∈A) ??x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B)) ??x((x?A∩B∨x∈A)∧(x?A∨x∈A∩B)) ??x((?(x∈A∧x∈B)∨x∈A)∧(x?A∨(x∈A∧x∈B)) ??x(((x?A∨x?B)∨x∈A)∧(x?A∨(x∈A∧x∈B))) ??x(T∧(T∧( x?A∨x∈B))) ??x( x?A∨x∈B)??x(x∈A→x∈B)? A?B 5、(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) ?x∈(A-C)∧x?(B-C) ?(x∈A∧x?C)∧?(x∈B∧x?C) ?(x∈A∧x?C)∧(x?B∨x∈C) ?(x∈A∧x?C∧x?B)∨(x∈A∧x?C∧x∈C) ?x∈A∧x?C∧x?B?x∈A∧x?B∧x?C ?(x∈A∧x?B)∧x?C ?x∈A-B∧x?C?x∈(A-B)-C 所以(A-B)-C=(A-C)-(B-C)

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学测试(集合论)

《离散数学》单元测试(集合论) 3.1集合的基本概念 1.设A、B、C是集合,确定下列命题是否正确,说明理由。 (1)Ф?Ф (2)Ф∈Ф (3)Ф?{Ф} (4)Ф∈{Ф} (5)如果A∈B与B?C,则A?C (6)如果A∈B与B?C,则A∈C (7)如果A?B与B∈C,则A∈C (8)如果A?B与B∈C,则A?C 2.有n个元素的集合A的幂集ρ(A)的元素个数为多少?求下列集合的幂集合。 (1)Ф (2){Ф} (3){Ф,{Ф}} (4){a,b} (5){a,b,{a,b}} (6){1,{1},2,{2}} 3.2 集合的运算 1.设A,B是两个集合,A={1,2,3},B={2,3,4},则B-A= ,ρ(B)- ρ(A)= 。 2.全集E={a,b,c,d,e},A={a,d},B={a,b,e},C={b,d},求 ,ρ(A)∩ρ(B) A B C= () = 。 3.下列命题正确的是()。 A.φ∩{φ}=φB.φ∪{φ}=φC.{a}∈{a,b,c} D.φ∈{a,b,c} 4.确定下列各式的值: Ф∩{Ф}= {Ф,{Ф}}-Ф= {Ф,{Ф}}-{Ф}= 6.证明下列各等式: A∩(B-A)=Ф A∪(A∩B)=A 3.3 有穷集合的计数问题 掌握文氏图和容斥原理求解有穷集合的计数问题的方法,并会简单应用。以教材的示例为基础。

第4章 二元关系 4.1二元关系的定义、表示方法与特性 1. A 和B 是任意两个集合,若序偶的第一个元素是A 的一个元素,第二个元素是B 的一个 元素,则所有这样的序偶集合称为集合A 和B 的 , 记作A ?B ,即A ?B= 。A ?B 的子集R 称为A 到B 的一个 。若|A|=m , B|=n ,则A 到B 共有 个不同的二元关系。 2. 设集合A ={a,b},B ={x,y},求笛卡尔乘积A ×B,B ×A,,A ×ρ(B)。 3. 证明: (1) (A ∩B)×C=(A ×C)∩(B ×C) (2) (A ∪B)×C=(A ×C)∪(B ×C) 4. 设A={a,b},B={x,y},则从A 到B 的二元关系共有多少个?请分别列出。 5. 设集合A={a,b,c,d},B={1,2,3},R 是A 到B 的二元关系,R={,,,,,},写出R 的关系矩阵和关系图。 6. 设集合 A={1,2,3},A 上的关系R={<1,1>, <1,2>, <2,2>, <3,3>, <3,2>},则R 不具备( )。 A 自反性 B. 反自反性 C. 对称性 D. 反对称性 E. 传递性 7. 设集合A={a,b,c},R 是A 上的二元关系,R={〈a,a 〉,〈a,b 〉,〈a,c 〉,〈c,a 〉},那么R 具备( )。 A 自反性 B. 反自反性 C. 对称性 D. 反对称性 E. 传递性 4.2 关系的运算(合成、逆运算、闭包运算) 1. 集合A={a 1,a 2,a 3},B={b 1,b 2,b 3,b 4},C={c 1,c 2,c 3,c 4}; R 是A 到B 的二元关系,R={,,,,}; S 是B 到C 的二元关系,S={,,,,}。 求复合关系R оS 。 2. 设集合{1,2,,10}A = ,A 上的二元关系R={|x,y ∈A,x+3y=12},试求R n 。 3. 设R ,S 是二元关系,证明:111)(---=R S S R 。 4. 集合},,,{d c b a R =,R 是集合A 上的关系,{,,,,,}R a b b a b c =<><><>,求 )(),(),(R t R s R r ,并分别画出它们的关系图。 4.3 等价关系及划分 1. R 是集合A 上的二元关系,如果关系R 同时具有 性、 性 和 性,则称R 是等价关系。 2. R 是集合A={a ,b ,c ,d ,e ,f }是上的二元关系, R={〈a ,d 〉,〈d ,a 〉,〈a ,e 〉,〈e ,a 〉, }∪I A

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为(). A.自反的B.对称的 C.传递且对称的D.反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为(). A.自反的B.对称的 C.对称和传递的D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为(). A.自反的 B.对称的 C.传递且对称的 D.反自反且传递的 8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为(). A.自反的 B.对称的 C.对称和传递的 D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

厦门大学离散数学2015-2016期末考试试题答案年

一(6%)选择填空题。 (1) 设S = {1,2,3},R 为S 上的二元关系,其关系图如右图所示,则R 具有( )的性质。 A. 自反、对称、传递; B. 反自反、反对称; C. 自反、传递; D. 自反。 (2) 设A = {1, 2, 3, 4}, A 上的等价关系 R = {, , , } A I , 则对应于R 的A 的划分是( )。 A. {{a }, {b , c }, {d }}; B. {{a , b }, {c }, {d }}; C. {{a }, {b }, {c }, {d }}; D. {{a , b }, {c , d }}。 二(10%)计算题。 (1) 求包含35条边,顶点的最小度至少为3的图的最大顶点数。 (2) 求如下图所示的有向图中,长度为4的通路的数目,并指出这些通路中有几条回路,几条由3v 到4v 的通路。 23 三 (14%) (1) 求 )()(p r q p →→∨ 的主析取范式,主合取范式及真值表; (2) 求 )()),(),((x xH y x yG y x xF ?→?→??的前束范式。 四 (8%) 将下列命题符号化:其中 (1), (2) 在命题逻辑中,(3), (4) 在一阶逻辑中。 (1) 除非天下雨,否则他不乘公共汽车上班; (2) 我不能一边听课,一边看小说; (3) 有些人喜欢所有的花; 厦门大学《离散数学》课程试卷 学院 系 年级 专业 主考教师: 张莲珠,杨维玲 试卷类型:(A 卷)

(4)没有不犯错的人。 五(10%)在自然推理系统P中构造下面推理的证明: 如果他是计算机系本科生或者是计算机系研究生,则他一定学过DELPHI语言且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。 六(10%)在自然推理系统中构造下面推理的证明(个体域:人类): 每个喜欢步行的人都不喜欢坐汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。 七(14%)下图给出了一些偏序集的哈斯图,判断其是否为格,对于不是格的说明理由,对于是格的说明它们是否为分配格、有补格和布尔格(布尔代数)。 八(12%)设S = {1, 2, 3, 4, 6, 8, 12, 24},“ ”为S上整除关系, (1)画出偏序集> ,S的哈斯图; < (2)设B = { 2, 3, 4, 6, 12},求B的极小元、最小元、极大元、最大元,下界,上界。 九(8%)画一个无向图,使它是: (1)是欧拉图,不是哈密尔顿图; (2)是哈密尔顿图,不是欧拉图; (3)既不是欧拉图,也不是哈密尔顿图; 并且对欧拉图或哈密尔顿图,指出欧拉回路或哈密尔顿回路,对于即不是欧拉图也不是哈密尔顿图的说明理由。 十(8%)设6个字母在通信中出现的频率如下: 12 13 :c :b% 45 :a% % :e% :f 9 5 : d% % 16 用Huffman算法求传输它们的最佳前缀码。要求画出最优树,指出每个字母对应的编码,n个按上述频率出现的字母需要多少个二进制数字。 并指出传输)2 ( n 10≥

相关文档
最新文档