无机非金属材料粉体表面技术研究进展

无机非金属材料粉体表面技术研究进展
无机非金属材料粉体表面技术研究进展

学号:1003102111 姓名:杨高林

无机非金属材料粉体表面技术研究进展早在20世纪50年代研究人员就注意到,对于无机颜料,如钛白粉,用二氧化硅或三氧化铝进行表面复合或包膜处理可以改变其保光性和耐候性。但作为技术加工研究表面改性是在最近一二十年的事情,尤其是在现在有机/无机复合材料、无机/无机复合材料、涂料或涂层材料、吸附和催化材料、环境材料及超细粉体和纳米粉体的制备和应用具有重要意义。表面改性是无机粉体的主要要加工技术之一,对提高无机粉体的应用性能和应用价值有着至关重要的作用。我们都知道,粉体表面改性或表面处理与许多学科密切相关,其中包括粉体工程、物理化学、有机化学、无机化学、高分子化学、无机非金属材料、高分子材料、复合材料、结晶学、光学、电学磁学等。可以说分体表面改性是粉体工程或者颗粒制备技术与其他众多学科相关联的边缘学科。粉体表面改性主要包括以下四个研究内容:

1>粉体改性的原理与方法

2>表面改性剂

3>表面改性工艺与设备

4>粉体表面改性产品的检测与表征

一分体改性的原理

利用物理、化学机、械等方法对颗粒表面进行处理,根据应用的需要有目的地改变颗粒表面的物理化学性质,如表面晶体结构和官能团表面能、界面润湿性、电性、表面吸附和反应特性等,以满足现代

新材料,新工艺和新技术发展的需要。

二表面改性方法

表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、微胶囊包覆、机械力化学、等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、微胶囊包覆改性法和机械化学改性法及原位聚合改性法。

三表面改性剂

粉体的表面改性,主要是依靠表面改性剂在粉体颗粒表面的吸附、反应,包覆或包膜来实现的。因此,表面改性剂对于粉体的表面改性或表面处理具前应用的表面改性剂主要有偶联剂、表面活性剂、有机硅、不饱和有机酸及有机低聚物,超分散剂、水溶性高分子等。

四表面改性工艺

表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为机械化学与表面化学包覆改性复合工艺,干燥与表面化学包覆改性复合工艺,沉淀反应与表面化学包覆改性复合工艺等。干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷

颜料等,大多采用干法表面改性工艺。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间,但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置湿法工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的填料和颜料无机。

五表面改性设备

粉体表面改性的方法很多,可采用的设备也是各种各样。目前在这些设备中专用设备较少,大多数是从化工,塑料,粉碎,分散等行

业中引用过来的。根据所应用的表面改性工艺的不同,表面改性设备可分为干法设备和湿法设备两大类。其中干法设备主要有高速加热式混合机,卧式加热混合机,SLG型连续式粉体表面改性机,PSC型连续式粉体表面改性机,高速冲击式粉体表面改性机机械融合式粉体表面改性机,流态化床式粉体表面改性机,漩涡磨等,湿法设备主要是可控温反应釜,反应罐或搅拌反应筒。

六粉体表面改性产品的检测与表征

目前的表征方法大体上可分为直接法和间接法。直接法:通过测定表面改性或者处理后粉体的表面物理化学性质如表面润湿能,表面能,表面电性光学性能包覆量表面结构,形貌和表面化学组成等来表征表面改性的效果。间接法:通过测定表面改性后粉体在确定的应用领域中的应用性能如填充高聚物基复合材料的力学性能,电性能,涂料和涂层材料的光,电,热,化学性能等来表征表面改性的效果。表面改性技术的发展

(1)表面改性工艺与设备。发展适用性广、分散性能好、粉体与表面改性剂的作用机会均等、表面改性剂包覆均匀、改性温度和停留时间可调、单位产品能耗和磨耗应较低,无粉尘污染的先进工艺与装备集成,并在此基础上采用先进计算机技术和人工智能技术对丰要工艺参数和改性剂用量进行在线自动调控,以实现表面改性剂在颗粒表面的单分子层吸附、减少改性剂用量、稳定产品质量和方便操作。

(2)表面改性剂。在现有表面改性剂的基础上、采用先进技术降低生产成本,尤其是各种偶联剂的成本;同时采用先进化学、高分子、生

化和化工科学技术和计算机技术,研发应用性能好、成本低、在某些应用领域有专门性能或特殊功能并能与粉体表面和基质材料形成牢固作用的新型表面改性剂。

(3)粉体表面改性“软技术”。在多学科综合的基础上,根据目的材料的性能要求选择粉体材料和“设计”粉体表面;运用现代科学技术,特别是先进计算方法、计算技术以及智能技术辅助设计粉体表面改性工艺和改性剂配方,以减少实验室工艺和配方试验的工作量,提高表面改性工艺和改性剂配方的科学合理性,达到最佳的应用性能和应用效果。

新型无机非金属材料有哪些资料

新型无机非金属材料有哪些 新材料全球交易网 新型无机非金属材料有哪些?“新材料全球交易网”收集整理最全新型无机非金属材料知识点。更多增值服务,请关注“新材料全球交易网”。 一、重要概念 1、新型无机非金属材料 (1)是除有机高分子材料和金属材料以外的所有材料的统称。 (2)包括以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 2、陶瓷 (1)从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 (2)从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 (1)狭义:熔融物在冷却过程中不发生结晶的无机非金属物质。 (2)一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:玻璃态物质在玻璃态和高弹态之间相互转化的温度。 具有Tg的非晶态新型无机非金属材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,能在空气或水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的新型无机非金属材料 6、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 (1)可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) (2)弱塑性原料:叶蜡石、滑石 (3)非塑性原料:减塑剂——石英;助熔剂——长石 3、坯料的成型的目的

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

无机粉体分散剂-连接有机与无机的桥梁

无机粉体分散剂-连接有机与无机的桥梁 无机粉体分散剂是一种在无机材料和高分子材料的复合体系中,能通过物理和/或化学作用把二者结合,亦或能通过物理和/或化学反应,使二者的亲和性得到改善,从而提高复合材料综合性能的一种物质。 通过使用粉体分散剂,可在无机物质和有机物质的界面之间架起"分子桥",把两种性质悬殊的材料连接在一起,形成有机基体-粉体分散剂-无机基体的结合层,提高复合材料的性能和增加粘接强度。 那么无机粉体分散剂的应用性能主要体现在什么方面呢? 1.对无机粉体表面进行包覆处理 能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,

它对复合材料机械性能的提高,效果也十分显著。 2.增加相容性与分散性 可预先对填料进行表面处理,也可直接加入树脂中,从而改善填料在树脂中的分散性及粘合力,改善无机填料与树脂之间的相容性,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。 3.用作密封剂、粘接剂和涂料的增粘剂 提高材料的粘接强度、耐水、耐气候等性能。粉体分散剂之所以能作为增粘剂,其作用原理在于它本身有两种基团:一种基团可以和被粘的骨架材料结合;而另一种基团可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,提高粘接强度。 4.其他方面的应用: ①使固定化酶附着到玻璃基材表面;②油井钻探中防;③使砖石表面具有憎水性;④通过防吸湿作用,使荧光灯涂层具有较高的表面电阻;⑤提高液体色谱柱中有机相对玻璃表面的吸湿性能;⑥改善填充橡胶的物理加工性能等。 5.小结 随着科技的发展,对于高性能的材料的要求也会更加高,无机粉体分散剂在工业、复合材料工业、高分子工业中不可缺少的助剂之一。

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告 学院:资源加工与生物工程学院 班级:无机0801 姓名:魏军参 学号:0305080723 组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究 前言 SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。 以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。 在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。 水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。 本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。 文献综述 1.1 半导体纳米粉体 半导体定义 电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

化学无机非金属材料的专项培优练习题(含答案)及答案解析

化学无机非金属材料的专项培优练习题(含答案)及答案解析 一、无机非金属材料练习题(含详细答案解析) 1.某混合物X由Na2O、Fe2O3、Cu、SiO2中的一种或几种物质组成.某校兴趣小组以两条途径分别对X进行如下实验探究. 下列有关说法不正确的是() A.由Ⅱ可知X中一定存在SiO2 B.无法判断混合物中是否含有Na2O C.1.92 g固体成分为Cu D.15.6 g混合物X中m(Fe2O3):m(Cu)=1:1 【答案】B 【解析】 途径a:15.6gX和过量盐酸反应生成蓝色溶液,所以是铜离子的颜色,但是金属Cu和盐酸不反应,所以一定含有氧化铁,和盐酸反应生成的三价铁离子可以和金属铜反应,二氧化硅可以和氢氧化钠反应,4.92g固体和氢氧化钠反应后,固体质量减少了3.0g,所以该固体为二氧化硅,质量为3.0g,涉及的反应有:Fe2O3+6H+=2Fe3++3H2O;Cu+2Fe3+=2Fe2++Cu2+,SiO2+2NaOH=Na2SiO3+H2O,又Cu与NaOH不反应,1.92g固体只含Cu;结合途径b可知15.6gX和足量水反应,固体质量变为6.4g,固体质量减少15.6g﹣6.4g=9.2g,固体中一定还有氧化钠,其质量为9.2g, A.由以上分析可知X中一定存在SiO2,故A正确; B.15.6gX和足量水反应,固体质量变为6.4g,只有氧化钠与水反应,混合物中一定含有Na2O,故B错误; C.Cu与NaOH不反应,1.92g固体只含Cu,故C正确; D.设氧化铁的物质的量是x,金属铜的物质的量是y,由Fe2O3+6H+=2Fe3++3H2O、 Cu+2Fe3+=2Fe2++Cu2+得出:Fe2O3~2Fe3+~Cu,则160x+64y=6.4,64y﹣64x=1.92,解得 x=0.02mol,y=0.05mol,所以氧化铁的质量为0.02mol×160g/mol=3.2g,金属铜的质量为0.05mol×64g/mol=3.2g,则原混合物中m(Fe2O3):m(Cu)=1:1,故D正确; 【点评】本题考查了物质的成分推断及有关化学反应的简单计算,侧重于学生的分析和计算能力的考查,为高考常见题型,注意掌握检验未知物的采用方法,能够根据反应现象判断存在的物质,注意合理分析题中数据,根据题中数据及反应方程式计算出铜和氧化铁的质量,难度中等. 2.下列关于硅单质及其化合物的说法正确的是() ①硅是构成一些岩石和矿物的基本元素 ②水泥、玻璃、陶瓷都是硅酸盐产品 ③高纯度的硅单质广泛用于制作光导纤维

无机粉体

第四章 一. 惰性气体蒸发-冷凝法原理 该法所蒸发出来的气体金属粒子不断与环境中的惰性气体原子发生碰撞,既降低了动能又得到了冷却,本身成为浮游状态,从而有可能通过互相碰撞成核长大。惰性气体压力越大,离加热源越近,处于浮游状态的原子也越多,成核几率大,生长相对较快。当颗粒长到一定程度后就会沉积到特定的容器壁上,由于此时不在发生运动,粒子不再继续长大,这就有可能制备相对较小的超微粒子。 早期相关的装置很多,一般采用电或石墨加热器,在充有几百帕氩的压力下可制备10 nm左右的Al、Mg、Zn、Sn、Cr、Fe、Co、Ni和Ca等金属粉体。 图3-48为一种产物粉体可以原位压结的改进装置示意图 图3-48 惰性气体蒸发-冷凝装置示意图 1-蒸发源;2-液氮冷却的冷阱;3-惰性气体室;4-粉料收集和压 结装置 待蒸发金属如铁经电加热的器皿中蒸发后,进入压力约为1kPa的气氛中,经碰撞、成核、长大,最后凝结在直立指状冷阱上,形成一种结构松散的粉状晶粒集合体,然后将体系抽至真空,可用移动的特种刮刀将粉末刮入收集器或进入挤压装置压成快状纳米材料。 二.化学气相沉积法 化学气相法是利用挥发性的金属化合物的蒸气,通过化学反应生成所需要的化合物,在保护性气体环境下快速冷凝,从而制备各种超微粉体的方法。 化学气相沉积(CVD)乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。 三.作业题 1. 超微粉体气相合成时,不论采用物理气相合成还是化学气相反应合成中的哪一种具体方法,都会涉及气相粒子成核,晶核长大,凝聚等一系列粒子生长的基本过程。 2. 什么是过饱和度? 答:过饱和度就是指超过饱和度的那一部分溶质的质量与饱和度的比,它表示了溶液的过饱和程度。 3. 判断:气相反应平衡常数越大,反应率越大。(√) 判断:物理气相合成主要制备金属氧化物粉体(×)

无机纳米粉体表面改性研究进展

摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。 关键词: 纳米粉体; 团聚; 表面改性;表征 Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification. Key words: nanosizes power, accumulation, surface modification, manifetation 1、引言 物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。 目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。 2、纳米粒子的团聚 所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。 从热力学上, 纳米粒子的分散体系具有巨大的比表面积, 表面能很大, 系统会自动朝着表面积减小的方向变化, 导致纳米粒子发生团聚。粉末的团聚分为软团聚和硬团聚。软团聚主要是由于颗粒之间的范德华力和库仑力所致, 该团聚可通过施加机械能能消除粉末的硬团聚体内除了颗粒之间的范德华力和库仑力之外, 还存在化学键作用, 目前人们对粉末的硬团聚机理存在不同的看法, 其中最有代表性的是晶桥理论、毛细管吸附理论、氢键作用理论和化学键作用理论[2]。 图1 纳米粒子的团聚机理示意图 Fig1 agglomeration mechanism schematic diagram of nano2particles 为了解决纳米粉体的团聚问题以及改善粉体粒子表面活性,就需要对粉体粒子进行表面改性。

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

无机材料机械及设备教学大纲

《无机材料机械及设备》教学大纲 一、课程基本信息 1.课程编号: 2.课程名称:无机材料机械及设备 3.英文名称: 4.课程简介:无机材料机械及设备是材料科学与工程专业的一门专业主干课程。主要内容包括:粉体的基本性质;粉碎;筛分;分离;混合;练泥机械等设备的工作原理、构造、性能及应用。 二、课程说明 1.教学目的和要求 通过本课程的学习,使学生能够系统地掌握无机材料机械及 设备的基本理论和基础知识;处理工艺及装备技术;粉体加工工艺 原理及流程;机械设备的原理、构造、性能及应用。注重培养学生 分析与解决问题的能力。强调理论与实践的结合,培养高级应用型 工程技术人才。 2.与相关课程衔接 先修课程:机械制图、机械基础及化工原理。 3.学时、学分 总学时:48学时;周学时:3学时;学分:3分。 4.开课学期:第7学期。 5.教学方法:课堂教学,PPT。 6.考核方式:期末闭卷考试,总成绩=考试成绩×70%+平时成绩 (1)

30%。 7.教材及参考书 教材:无机非金属材料工业机械及设备,张庆今主编,华南理工大学出版社出版 8.主要参考书 [1] 张长森,程俊华等编.粉体工程.自编校内教材,2001.1 [2] 陶珍东、郑少华主编.粉体工程与设备.北京:化学工业 出版社,2003. [3] 陆厚根编著,粉体技术导论,上海:同济大学出版社, 1998. [4] 谢洪勇编著.粉体力学与工程. 2003. [5] 王奎生编著.工程流体与粉体力学基础.北京:中国计量 出版社,2002.9. [6] 卢寿慈主编.粉体技术手册. 北京:化学工业出版 社,2004. [7] 毋伟, 陈建峰, 卢寿慈编著.超细粉体表面修饰. 北 京:化学工业出版社,2004. [8] 李凤生等编著.超细粉体技术.北京:国防工业出版社, 2000. (2)

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

常用无机粉体材料种类及作用

常用无机粉体材料种类及作用 目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。 常用无机粉体材料种类及作用 据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半就是销往塑料行业的。此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。 碳酸钙 碳酸钙就是塑料加工时用得最广、用量最大的无机粉体填料。据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,就是各种用途中所占份额最大的,约50%左右。 根据加工方法不同,碳酸钙分为轻质与重质两种。轻质碳酸钙(简称轻钙)就是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙就是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。目前在塑料薄膜中使用的碳酸钙都就是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。 1) 重钙的细度对PE薄膜力学性能的影响十分明显,见表1。 表1 重质细度对PE薄膜力学性能的影响 2) 碳酸钙粒子的分散对PE薄膜的性能具有决定性作用 PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。特别就是在农用地膜中到底能够使用多少碳酸钙就是非常值得努力探讨的问题。宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

最新无机非金属材料工学知识点总结

1.为什么北方常采用烧氧化焰而南方烧还原焰? 答:我国北方制瓷原料大多采用二次高岭土与耐火粘土,含铁较少而含氧化钛、有机物较多,坯体粘性和吸附性较强,适宜用氧化气氛烧成。 南方制瓷原料大多采用原生高岭土和瓷石,含铁量较多而含氧化钛、有机物较少,粘性和吸附性较小,适宜用还原气氛烧成。 2.与金属材料相比,无机非金属材料在性能上有那些特点?原因是什么? 答:无机非金属材料的化学组分主要由元素的氧化物、碳化物、氮化物、卤素化合物、硼化物、以及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质,其化学键主要为离子键或离子—共价混合键。因此,无机非金属材料的基本属性主要体现为高熔点、高硬度、耐腐蚀、耐磨损、高抗压良好的抗氧化性、隔热性,优良的介电、压电、光学、电磁性能及其功能转换特性等。但大多数无机非金属材料具有抗拉强度低、韧性差等缺点。 3.玻璃浮法成型的原理? 答:玻璃液从池窑连续流入并浮在有还原气氛保护的锡液上,由于各物相界面张力和重力的综合作用,摊成厚度均匀,上下两平面平行,平整和火抛光的玻璃带,经冷却硬化后脱离锡液,再经退火、切割而得到浮法玻璃。 4.采用陶瓷注浆成型时坯料应满足哪些要求?为什么? 答:1)流动性好。保证泥浆浇注成形时要能充满模型的各个部位。 2)悬浮性好。浆料中各种固体颗粒能在较长的一段时间悬浮而不沉淀的性质称为泥浆的悬浮性。它是保证坯体组分均匀和泥浆正常输送、贮放的重要性能之一。 3)触变性适当。受到振动和搅拌时,泥浆粘度会降低而流动性增加,静置后又恢复原状,此外,泥浆放置一段时间后,在维持原有水分的情况下也会变稠,这种性质称为触变性。泥浆触变性过大,容易堵塞泥浆管道,且坯体脱模后易塌落变形;触变性过小,生坯强度较低,影响脱模和修坯。 4)滤过性好。滤过性也称渗 模性,是指泥浆能够在石膏模中滤水成坯的性能。滤过性好,则成坯速率较快。当细颗粒过多时,易堵塞石膏模表面的微孔脱水通道,不利于成坯。熟料和瘠性原料较多时有利于泥浆的脱水成坯。 5.陶瓷制品开裂的主要原因? 答:生坯在搬运过程中因被碰而产生的细微裂纹;坯体入窑水分过高、升温过急;高温阶段生温太快,收缩过大;坯体在晶体型转化阶段冷却过快;器形设计不合理。 6.实际生产中应该如何选择陶瓷的成型方法? 答:1)产品的形状、大小、厚薄等。一般形状复杂或较大,壁较薄的产品,可采用注浆法成形;而具有简单回转体形状的器皿可采用最常用的旋压、滚压法可塑成形。

无机材料化学

纳米陶瓷材料的概论 摘要 由于硬度高、耐高温、耐磨损、质量轻和导热性好,陶瓷材料是现代工业三大基本材料之一, 但其脆性大、韧性小而限制了在一些特殊领域的应用。纳米材料及技术运用到陶瓷材料中极大地改善了它的应用性能,对材料的电学、热学、磁学、光学性质产生重要影响,为材料的利用开拓了一个崭新的领域。本文介绍了纳米技术和陶瓷材料结合形成的纳米陶瓷材料的发展历程、性能和种类, 以及制备方法、应用和国内研究现状。 关键词:陶瓷纳米材料纳米陶瓷材料性能制备方法应用现状 Abstract Since hardness, high temperature, wear-resistant, light weight and good thermal conductivity, the ceramic material is one of three basic materials in modern industry, but its brittleness, toughness small and limited in some special areas of application. Nano-materials and technology applied to ceramic materials has greatly improved the performance of its application, the material of the electrical, thermal, magnetic, optical properties have important implications for the use of materials opens up a new frontier. This paper introduces nanotechnology and nano-ceramic material to form ceramic materials development process, performance and types of preparation methods, application and domestic research. Keyword: ceramic nano-materials nano-materials ceramics preparation method application status. 前言 陶瓷是人类最早使用的材料之一,在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大,韧性和强度较差、可靠性低,使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中,这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹,而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能,使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都将成为材料开拓应用的新领域,是当今材料科学研究的热点。 1.陶瓷的发展历程 中国的陶器可追溯到9000年前,瓷器也早在4000年前出现。最初利用火煅

无机非金属材料生产过程

第一章概论 第一节无机非金属材料生产过程的共性与个性无机非金属材料是三大材料之一,它不同于金属材料和有机高分子材料。而具有自身的特性。1.耐高温;2.化学稳定性高;3.高强度、高硬度;4.电绝缘性好;5.韧性差。材料工学的任务就是要研究如何选择合适的原料,通过各种工艺过程、生产出符合各种要求的材料.并能达到低投入高产出、无机非金属材料生产过程具有其共性与个性。可分别介绍如下: 一、无机非金属材料生产过程的共性 (一)原料 无机非金属材料的大宗产品,如水泥、玻璃、砖瓦、陶瓷、耐火材料的原料大多来自储量丰富的非金属矿物,如石英砂(SiO2)、粘土(Al2O3.2SiO2.2H2O)、长石(K2O.Al2O3.6SiO2等)、铝钒士(Al2O3.nH2O)、石灰石(CaCO3)、白云石(CaCO3.MgCO3)、硅灰石(CaO.SiO2)、硅线石(Al2O3.SiO2)等。 据统计,氧、硅、铝三者的总量占地壳中元素总量的90%、其中除天然砂和软质粘土外都是比较坚硬的岩石。 (二)粉料的制备与运输 因原料大多来自天然的硬质矿物,要使其重新化合、造型,必须进行矿物的破粉碎再利用粉料配料,然后才能进行各种热处理或成型。粉体颗粒的大小、级配、形状及其均匀性往往直接影响产品的质量和产量,也决定了采用设备的性质,随着机械化和自动化水平的提高,对产品质量要求和原料的均匀性要求愈来愈高,而天然矿物往往均匀性差,当前水泥工业采取种种措施进行原料的均化,陶瓷工业则成立了许多原料公司,通过对原料进行加工,成分检验、掺和,提供标准化、系列化的粉料。因此,粉体的制备和运输在无机非金属材料的生产过程中占有重要的地位。在粉体的制度和运输过程中容易产生粉尘和噪音污染,如何防治

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

《粉体材料表面改性》课程教学大纲

《粉体材料表面改性》课程教学大纲 课程代码:050542002 课程英文名称:Surface Modification of powder (A2) 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:粉体科学与工程专业 大纲编写(修订)时间:2017.3 一、大纲使用说明 (一)课程的地位及教学目标 粉体表面改性是粉体科学与工程专业方向课,为选修课。本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。 通过本课程的学习,学生将达到以下要求: 1.掌握粉体材料表面改性工艺的方法和原理; 2.使学生掌握目前工业表面改性典型设备; 3.使学生了解表面改性剂的种类、性质、使用条件; 4.掌握粉体改性前后的物性变化及相关的检测方法; 5. 进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。 2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。 3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。了解特种粉体的生产工艺、制备技术及行业发展趋势。具备制备、加工特种粉体的必要的基础知识和基本技能。 (三)实施说明 本课程安排在第七学期学习,共24学时,其中理论讲课24学时。根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。 1.教学方法:课堂讲授中重点对基本概念、基本原理和基本方法的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;积极增加课堂教学的趣味性和互动性,充分调动学生学习的主观能动性;注意培养学生独立进行科学研究的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业课,涉及到许多物粉体表面改性的设备,因此在教学中采用ppt与课堂讲授相结合的教学手段,培养学生浓厚的学习兴趣,确保在有限的学时内,高质量地完成课程教学任务。 (四)对先修课的要求

相关文档
最新文档