(完整版)§定积分的应用习题与答案

(完整版)§定积分的应用习题与答案
(完整版)§定积分的应用习题与答案

第六章 定积分的应用

(A )

1、求由下列各曲线所围成的图形的面积 1)2

2

1x y =与822=+y x (两部分都要计算)

2)x

y 1

=与直线x y =及2=x

3)x

e y =,x

e y -=与直线1=x

4)θρcos 2a =

5)t a x 3

cos =,t a y 3

sin =

1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的

面积

2、求对数螺线θ

ρae

=()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2

π=

x 处的切线以及直线π=x 所围成的图形的面积和它绕

x 轴旋转而成的旋转体的体积

4、由3

x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体

的体积

5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形

的立体体积

6、计算曲线()x y -=33

3

上对应于31≤≤x 的一段弧的长度

7、计算星形线t a x 3

cos =,t a y 3

sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→

F (单位:N )与伸长量S (单位:cm )

成正比,即:kS =→

F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功

9、一物体按规律3

ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0

=x 移到a x =时,克服介质阻力所作的功

10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?

11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与

水面相齐,计算闸门的一侧所受的水压力

12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处

有一质量为m 的质点M ,试求这细棒对质点M 的引力

(B)

1、设由抛物线()022

>=p px y 与直线p y x 2

3

=

+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

2、求由抛物线2

x y =及x y =2

所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体

3、求由x y sin =,x y cos =,0=x ,2

π=x 所围成的图形的面积,并求该图形绕x 轴旋

转所成旋转体的体积

4、求抛物线px y 22

=及其在点??

?

??p p ,2处的法线所围成的图形的面积

5、求曲线422

+-=x x y 在点()4,0M 处的切线MT 与曲线()122

-=x y 所围成图形的面

6、求由抛物线ax y 42

=与过焦点的弦所围成的图形面积的最小值

7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=

2)θρsin a =,()θθρsin cos +=a ,0>a

8、由曲线()1652

2

=-+y x 所围成图形绕x 轴旋转所成旋转体的体积

9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积

10、计算半立方抛物线()32

132

-=x y 被抛物线3

2x y =截得的一段弧的长度

(C)

1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为

??? ?

?

-=32H R H V π

2、分别讨论函数x y sin =??

?

?

?

≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值

3、求曲线x y =

()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线

x y =所围成的平面图形的面积最小

4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?

第六章 定积分应用 习 题 答 案

(A )

1、1)342+

π,346-π 2)2ln 23- 3)21

-+e

e 4)2

a π 5)28

3a π

2、2

3a π 3、()

π

π2224--e e a 4、12-π,42π 5、7128π,5

64π 6、

3334R 7、3

4

32- 8、a 6 9、kJ 18.0 10、3

7

32

7

27a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒???

?

??+-=2211t a a

Gmu F y 2

2t a a Gmu F x +-=λ

(B)

1、1)?-=???

? ??--=p

p p dy p y y p S 32

2316223 或(

)

??=??

?

??+-++=

20

229

2

31622322p

p p p dx px x p dx px px S

2)??--=???

?

??-???

??-=p

p p p p dy p y dy y p V 3332

22

15272223πππ 2、(

)

?=

-=10

231

dx x x A ()()ππ?=???

??-=102

22

10

3dx x x V

3、()()??-=-+-=

24

4

222

cos sin sin cos π

ππdx x x dx x x A

()()(

)

()()()

??=-+-=

24

2240

2

2

cos sin sin cos π

ππ

ππdx x x dx x x V

4、抛物线在点??

?

??p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122

-=x y 的交点坐标为??

?

??1,23,()2,3- ?-=???

? ??---=1

2249

1224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α

则弦所在直线的方程为()a x y -=αtan

由()a x y -=αtan ,ax y 42

=得两交点纵坐标为

()()21csc 2csc 2y ctg a ctg a y =+<-=αααα

所以

()()dy a y yctg a A y y ?

??

????-+=2

1

42αα ()()3

2222csc 3

4csc 4csc 4ααααa ctg a a -+=

()()3232csc 34csc 4ααa a -=()3

2csc 3

8αa =

因为πα<<0 当2

π

α=时 ()3

csc α取得最小值为1

所以 当2

π

α=

时 过焦点的弦与抛物线ax y 42

=所围成的图形面积

()3

2csc 3

82απa A =??? ??最小

7、1)()()πθθθθπ

ππ4

5cos 321cos 1212232

302=??????++=??d d A

2)()()[]??

-=++=

πππ

πθθθθθ22220

241cos sin 2

1sin 21

a d a d a A 8、(

)()?

?----

--+=

4

4

44

2

2

2

2

165165dx x

dx x

V ππ

()()?-=?

???

??--

--+=4

42

2

22

2160165165π

πdx x

x

9、解法同题8

10、提示:()32

132-=x y ,32

x y = 联立得交点???? ??36,2,???

? ??-36,2 所求弧长()

?

+=2

1

2

'12

dx y s

由()3

2

132-=x y 得()y

x y 2

'1-=

于是()

()()()

()12313

21134

2

2

2

'-=--=???? ?

?-=x x x y x y

于是得()??

?

?????-??? ??=??????-+=?

1259812312

232

1

221dx x S

(C)

1、证明:此处球缺可看作由如图阴影(图2

2

2

R y x =+的一部分)绕y 轴旋转而成

所以()?

?

---==

R

H

R R

H

R dy y R dy x V 2

2

2

ππR H

R R H

R y y

R ---=3

32

π

π

()[]()[]

3

3

23

H R R H R R R ---

--=π

π??? ?

?-=32H R H π

2、解:()?-=

t

dx x t S 11sin sin ()?-=22

sin sin π

t

dx t x S

()()?-=

t

dx x t t S 1

sin sin +()?-2

sin sin π

t

dx t x

=??? ?

?

≤≤-???

?

?-

+201sin 22cos 2ππt t t t ()0cos 22'

=???

?

?

-

=t t t S π,得驻点2

4

21π

π

=

=t t

易知()()00

2''1'

'<>t S t S

122max -=??? ??=∴ππS S ,124min -=??

?

??=πS S

3、解:设()00,y x 为曲线x y =

()40≤≤x 上任一点,易得曲线于该点处的切线方程为:

()00

021

x x x y y -=

- 即0022x x y y +=

得其与0=x , 4=x 的交点分别为??? ??2,00y ,???

?

??+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =

所围的平面图形面积为:

3164222004

000-+=???

? ??-+=?x y dx x x x y S

3

16

4200-+

=x x 问题即求316

42-+

=x

x S ()40≤≤x 的最小值 令022

32

1

=+=-

-

x

x

S 得唯一驻点2=x 且为唯一极小值

所以 当2=x 时,S 最小 即所求切线即为:2

22

2+

=

x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系

易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x

因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面

上提升时,做功微元为

()

()dx x r x r g dW +-=22π

()

()g r dx x r x r g dW W r r r r 4223

4

ππ??--=+-==

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分及其应用练习 带详细答案

定积分及其应用 题一 题面: 求由曲线2 (2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323 . 变式训练一 题面: 函数f (x )=???? ? x +2-2≤x <0, 2cos x ? ? ???0≤x ≤π2的图象与x 轴所围成的封闭图形的面积 为( ) B .2 | C .3 D .4 答案:D. 详解: 画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π 202cos x d x =2+2sin x |π20=4. 变式训练二 题面: 由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) ¥ A .2 3 B .9-23 答案: 详解:

注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的 面积为??-3 1(3-x 2-2x )d x =? ???? 3x -13x 3-x 2??? 1 -3=3×1-13×13-12- ? ?? 3×-3-1 3×-3 3 ]- -3 2 =32 3,选D. 题二 ^ 题面: 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ). A .1 B .1 C .1 D .17 变式训练一 题面: 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分练习题

定积分 2.定积分的定义 函数f (x )在区间[a ,b ]上的定积分,记作____________,其中f (x )称为________________,x 称为________________,f (x )d x 称为__________, [a ,b ]为________________,a 为____________,b 为______________,“?”称为积分号. 3.?b a f (x )d x 的实质 (1)当f (x )在区间[a ,b ]上大于0时,?b a f (x )d x 表示______________________________, 这也是定积分的几何意义. (2)当f (x )在区间[a ,b ]上小于0时,?b a f (x )d x 表示________________________________. (3)当f (x )在区间[a ,b ]上有正有负时,?b a f (x )d x 表示介于x =a ,x =b (a ≠b )之间x 轴上、下相应的曲边梯形的面积的代数和. 4.定积分的运算性质 (1)?b a kf (x )d x =____________ (k 为常数). (2)?b a [f (x )±g (x )]d x =______________________. (3)?b a f (x )d x =__________________________. 5.微积分基本定理 一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么?b a f (x )d x =F (b )-F (a ).这个 结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a .即?b a f (x )d x =F (x )|b a =F (b )-F (a ). 6.利用牛顿——莱布尼茨公式求定积分的关键是____________________,可将基本初等函数的导数公式逆向使用. 要点梳理 2. ?b a f (x )d x 被积函数 积分变量 被积式 积分区间 积分下限 积分上限 3.(1)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积 (2)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积的相反数 4.(1)k ?b a f (x )d x (2)?b a f (x )d x ±?b a g (x )d x (3)?c a f (x )d x +?b c f (x )d x (a

定积分及其应用测试题10页

第五章 定积分及其应用 一、填空题 1.由[],a b 上连续曲线()y f x =,直线(),x a x b a b ==<和x 轴围成的图形的面积为 4.利用定积分的几何意义求10 d x x =? 5.积分1 213ln d x x x ?值的符号是 6.定积分()4 52 sin sin d x x x π -? 值的符号是 8.积分413 I ln d x x =?与4 223 I ln d x x =?的大小关系为 9.区间[][],,c d a b ?,且()0f x >,则()1I d b a f x x =?与()2I d d c f x x =?的大小关 系为 10.()f x 在[],a b 上连续,则()d b a f x x =? ()d a b f x x ? 11.若在区间[],a b 上,()0f x ≥,则()d b a f x x ? 0 12.定积分中值定理中设()f x 在[],a b 上连续,则至少存在一点(),a b ξ∈,使得()f ξ= 13.设()2 0,0x F x t x =>?,则()F x '= 15.设()() ()3 3sin d ,x F x t t x ??=? 可导,则()F x '=

16 .0 lim x t x →=? 18.设()()0 1d x f x t t t =-?,则()f x 的单调减少的区间是 19.函数()2 3d 1 x t f x t t t =-+?在区间[]0,1上的最大值是 ,最小值是 20.设()3 131 sin d x f x t t +=? ,则()f x '= 21.设()F x 是连续函数()f x 在区间[],a b 上的任意一个原函数,则 ()d b a f x x =? 22.1 23d x x x ?=? 23.sin 22 cos d x xe x π π-=? 24.设()f x '在[]1,3上连续,则() () 3 2 1d 1f x x f x '=+? 25.2 x π π=? 26.20cos d x x π =? 27.21 01 d 1 x x e x e -=-? 28 .20sin d x x π =? 29.2 1 e =? 30.235 4 5 sin d 1x x x x -=+? 31.设()f x 在[],a a -上连续,则()()sin d a a x f x f x x -+-=????? 32.设()21,0 ,0 x x f x x x +

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==? 若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2

定积分的应用练习题

定积分的应用练习题 Final revision by standardization team on December 10, 2020.

题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤-上的一段弧所围成的图形面积 为 . 6.椭圆)0,0(1sin 1 cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

定积分练习题1.doc

定积分练习题 一.选择题、填空题 1.将和式的极限 lim 1p 2 p 3p ....... n p 0) 表示成定积分 n P 1 ( p ( ) n 1 1 1 p dx 1 1 p dx 1 x p dx A .dx B . x C .() D . () 0 x 0 x n 2.将和式 lim ( 1 1 ......... 1 ) 表示为定积分 . n n 1 n 2 2n 3.下列等于 1 的积分是 ( ) A . 1 xdx B . 1 C . 1 1 1 ( x 1)dx 1dx D . dx 2 1 2 4 | dx = 4. | x ( ) A . 21 B . 22 23 25 3 3 C . 3 D . 3 5.曲线 y cos x, x [0, 3 ] 与坐标周围成的面积 ( ) 2 5 A .4 B .2 D . 3 C . 2 1 e x )dx = 6. (e x ( ) A . e 1 B .2e 2 D . e 1 e C . e e 7.若 m 1 e x dx , n e 1 dx ,则 m 与 n 的大小关系是( ) 1 x A . m n B . m n C . m n D .无法确定 8. 9 y x 2 1 和 x 轴围成图形的面积等于 S .给出下列结果: .由曲线 1 1)dx ; ② 1 1 ①( x 2 (1 x 2 )dx ; ③ 2 ( x 2 1)dx ; ④ 2 (1 x 2 )dx . 1 1 1 则 S 等于( ) A . ①③ B . ③④ C . ②③ D . ②④ 10. y x cost sin t)dt ,则 y 的最大值是( (sin t ) A . 1 B . 2 C . 7 D . 0 2 17 f ( x) 11. 若 f (x) 是一次函数,且 1 1 2 dx 的值是 f ( x) dx 5 , xf ( x)dx 6 ,那么 x 1 . 15.设 f (x ) sin x 3 x ,则 f (x) cos2 xdx ( ) 其余

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

最新定积分的简单应用测试题

一、选择题 1. 如图所示,阴影部分的面积为() 2. 如图所示,阴影部分的面积是() 面积(如图)是( A. 2(x2—1)dx '0 B . | 2(x2—1)dx| ■ 0 C. 2|x2 —1|dx D. '(x2—1)dx + 2(x2—1)dx J c J ▲ 0 1 4.设f(x)在[a, b]上连续,则曲线f(x)与直线x= a, x= b, y= 0 围成图形的面积为() A. b f(x)dx B. | b f(x)dx| 'a ' a 精品文档 A. b f(x)dx 'a C. b[f(x) —g(x)]dx 'a B. b g(x)dx 'a D. b[g(x)—f(x)]dx -a C.32 肿5 D.35 3.由曲线y= x2—1、直线x= 0、x= 2和x轴围成的封闭图形的

C. b |f(x)|dx 'a D .以上都不对 5. 16 曲线y =1—w 与x 轴所围图形的面积是() D.5 1 2 比较积分值0 e x dx 和 1 2 1 — U x dx 大于 0e x dx 2 1 C . U x dx 等于 0 7.由曲线y = x 2, y = x 3围成的封闭图形面积为( ) B.1 D. 12 6. 1 x >e dx fe"dx 的大小() 1 2 , 1 B . o e xdx 小于 ° 1 2 1 - D . o e x dx 和°e Xjx 不能比较 e dx A-12 Cl 8.求 1 /dx 的解( ) C . -1 9.求 12 x 2dx 的解( ) A.* C .- 3 10 .过原点的直线I 与抛物线y =x 2— 2ax (a>0)所围成的图形面 积 为9a 3,则直线I 的方程为( ) A . y = iax B . y = ax C . y = — ax D . y = — 5ax

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

相关文档
最新文档