水杨醛合成技术的新进展

水杨醛合成技术的新进展
水杨醛合成技术的新进展

第28卷第3期2003年9月

广州化学

Guangzhou Chemistry

Vol. 28

2003

文章编号

江苏省中医学校

摘要氯化水解法和还原法的最新研究与发

展趋势

关键词定向邻位甲酰化还原

中图分类号A

水杨醛是苯甲醛最重要的衍生物之一

由于它具有令人愉快的香气

此外医药石油化工和高分子添加剂等工业领域[2]

咳喘宁杀虫剂近年来使得水杨醛的新工艺研究和开发成为活跃的领域之一

而传统的甲酰化方法如Duff Vislmeier或Gatterman 反应对酚醚类化合物引入甲酰基很有效通常其收率低或者对位产物占优势

在苯酚分子上引入甲酰基有很高的收率价格高

目前其中之一即是著名的Reimer-Tiemman反应水杨醛的合成原料为苯酚

2 以苯酚为原料的合成法

2.1 Reimer-Tiemman法

Reimer-Tiemman反应是以苯酚和氯仿为原料氯仿首先转化为二氯收稿日期

张珍明女江苏省中医学校高级讲师

发表研究论文20多篇

48广州化学第28卷

卡宾然后迅速水解为醛

反应过程如Scheme 1所示

收率20% ~ 35%[2]

生成的醛与未反应的苯酚钠形成聚合物另外,原料氯仿和NaOH的消耗量大但该法合成路线简单

原料价廉易得期盼提高原料的转化率及水杨醛的收率

使用相转移催化剂[4,5]叔胺

可加速反应总收率可提高20%以上

改变反应的溶剂可提高羟基苯甲醛的收率

例如使用一定的含水甲醇为反应溶剂其中水杨醛57.4%

相转移催化和微波技术联合

可缩短反应时间

2.2 苯酚

它以络合效应把甲醛固定在分子内发生羟甲基化反应再用Pd反应过程如Scheme 2所示

从苯酚可直接得到水杨醛氧化需要金属催化剂

甲醛和氧气法

苯酚与甲醛在碱性化合物的催化下缩合再经铂或钯催化空气或氧气氧化得到混合的羟基苯甲醛收率85%[9]

苯酚与甲醛的缩合物水杨醇用间接电解氧化收率为84%[10]

第3期张珍明

OH OH

CH2OH

OH

CHO

OH

CH2OH

OH

CHO

HCHO

2

Pt,Pd/C

++ Scheme 3

2.4 苯酚

后来又报道了更为有效的苯酚邻位甲酰化方法

之所以有邻位选择性

这种方法使用了有毒的溶剂HMPA

因而此法一直没有工业化

催化苯酚邻位甲酰化制备水杨醛的合成方法

开始时苯酚与SnCl

4

反应

然后形成类似Scheme 4所示的中间态结构氧化还原涉及到甲醛和中间态之间的氢直接转移过程

该法在实验有机化学中已成为制备水杨醛的标准方法

最近报道了应用MgCl

2为催化剂使苯酚与甲醛定向邻位甲酰化83%

反应如Scheme 5所示

更简单易行

乙醛酸或三氯乙醛法

苯酚与乙醛酸或三氯乙醛在NaOH的存在下经氧化形成α-酮酸

特点是对位选择性高

催化剂为CuO

中间体粘稠不易分离和纯化[14]

50广州化学第28卷3 以邻甲酚为原料的合成法

3.1 直接氧化法

邻甲酚溶解在甲醇和NaOH的溶液

中在

70 时通氧的速度为1L/h 约30 h

没有相应的醇生成[15]

直接氯化邻甲酚的产物非常复杂以邻甲酚为原料用氯化水解法制备水杨醛大多保护羟基反应如Scheme 6所示三氯氧磷和醋酐来保护酚羟基一般会有含氯杂质

该法已工业化,所生产的水杨醛由于含有微量的氯应用受到限制

以分子氢直接氢化

芳香羧酸为芳香醛的工艺

首先将芳香羧酸熔化

在固体催化剂的存在下与

氢气反应芳香醛在

冷却回收后经精馏得产品

流程如图3所示

产品种类多[18]

近来还原收率又有新的突破铅作阳极纯度为96%[19]

羧酸先和邻苯二胺脱水反应生成2-取代的苯并咪唑

水解后生成相应的醛和邻苯二胺该法简单方便

总收率小于20%[20]

第3期张珍明

已开发出许多种合成水杨醛的技

高选择性的无氯水杨醛制备技术的

开发研究用过

量的卤素

会逐渐被清洁的分子态氢

另外

仍是水杨醛制造的最佳技术之一

[1]Bruhne F, Wright E. Ullmann’s Encyclopedia of

Industrial Chemistry[M]. Vol.A3, fifth ed. Weinheim: VCH, 1985. 470~471.

[2]化工百科全书编辑委员会. 化工百科全书[M]. 第13卷. 北京: 化学工业出版社, 1997. 1~13.

[3]真木隆夫, 横山寿治. 芳香醛制造技术的最新进展[J]. 有机合成化学志, 1991, 49(3): 195~204.

[4]易佑华, 马文伟. 用相转移催化由苯酚制备水杨醛[J]. 化学世界, 1988, 29(8): 347~349.

[5]Neumann R, Sasson Y. Increased para selectivity in the Reimer-Tiemann reaction by use of polyethylene

glycol as complexing agent[J]. Synthesis, 1986(7):569~570.

[6]Niyazi F F, Budko E E, Dubrovina E A.Solvents effect on the Reimer-Tiemann reaction[J]. Izv Vyssh Uchebn

Zaved Khim Khim Tekhnol, 1999, 42(5): 122~123.

[7]刘云, 张军, 黄振, 等. 超声波催化和相转移催化合成羟基苯甲醛[J], 化学世界, 1998, 39(10): 529~533.

[8]Peer H G. The reaction of phenol with formaldehyde III Selective hydroxymethylation of phenol at the ortho-

position[J]. Rec Trav Chim Pas Bas,1960,79(8):825~835.

[9]Gradeff P F, Ville P S. Process for preparation of hydroxybenzenecarboxy aldehydes[P]. US 4351962, 1982-09-

28.

[10]于伯章薛万新

52广州化学第28卷

[16]罗方明. 水杨醛生产工艺路线分析[J]. 辽宁化工, 1992(2): 50~53.

[17]唐有根, 成本诚, 胡田举. Sommelet反应制备水杨醛[J]. 中南工业大学学报, 1995, 26(4): 527~531.

[18]横山寿治, 藤井和洋. 芳族羧酸氢化制芳族醛的技术开发及工业化[J]. 石油化工译丛, N1992, 13(1):25~30.

[19]张功成, 谭镇, 赵占奎. 水杨醛的电合成法[J]. 应用化学, 1989, 6(2): 67~68.

[20]史真, 顾焕. 羧酸经苯并咪唑还原为醛的新合成方法研究[J]. 化学通报, 1997(10): 55~58.

Recent T echnological Progress of The Synthesis of Salicylaldehyde

ZHANG Zhen-ming

Nanjing 210036

Abstract

salicylaldehyde chlorination-hydrolysis

广州化学广州化学

氨基酸与水杨醛合成一种手性希夫碱

手性希夫碱的实验合成及理论分析 【摘要】在乙醇溶液和常温条件下,直接缩合水杨醛和氨基乙酸合成了一种手性希夫碱对它进行了抽滤提纯并计算了及其产率,用了显微熔点测定仪测定熔点。 【关键词】氨基酸水杨醛手性希夫碱 1前言 希夫碱是指由含有醛基和氨基的两类物质通过缩水形成含亚胺基(-CH=N-)或甲亚胺基(-RC=N-)的一类有机化合物, 它的基本结构中含有(>C=N-), 是H.Schiff在1864年首先发现的。其杂化轨道上的氮原子上的孤对电子使得希夫碱配体具有极大的灵活性和良好的配位能力, 因而希夫碱金属配合物的研究一直受到广泛的重视。由于氨基酸Schiff碱合成相对容易, 能够选择多种胺类及带有羰基的不同醛和酮进行反应, 其特点是能够灵活地选择反应物,改变取代基给予体原子本性及其位置,可合成许多链状、环合且性能、结构不同的配体。自从六十年代末人们发现过渡金属希夫碱配合物具有生物活性以来,这个领域的研究逐渐活跃起来。希夫碱不仅可以和过渡元素形成配合物,和镧系、锕系及部分主族金属元素也能形成稳定的配合物,此外还有如Zr、Mo、Ru、Ir等贵金属。这些配合物在分析化学、立体化学、电化学、光谱学、分子自组装、超分子化学、生物化学模型系统、催化、材料、核化学化工等学科领域均具有重要意义。 近年来,对手性希夫碱配合物的研究日趋广泛,它的金属配位化合物在生物医药方面由于某些希夫碱具有特殊的生理活性,越来越引起医药界的重视。据报道,氨基酸类、缩氨脲类、缩胺类、杂环类、腙类希夫碱及其应用的配合物具有抑菌、杀菌、抗肿瘤、抗病毒等独特药用效果;催化方面希夫碱及其配合物在催化领域的应用也很广泛,概括而言,希夫碱做催化剂主要是应用于聚合反应,不对称催化环丙烷化反应以及烯烃催化氧化方面和电催化领域。分析化学方面许多希夫碱用来检测、鉴别金属离子,并可借助色谱分析、荧光分析、光度分析等手段达到对某些离子的定量分析;腐蚀方面长期以来,许多金属及其合金在工业、军事、民用等各个领域得到了广泛的应用,但是该金属及其合金在大气中、海水中很不稳定,因此研究寻找有效的缓蚀剂,引起了众多科学家的重视。希夫碱(尤其是一些芳香族的希夫碱)由于含有C=N双键,再加上含有的-OH极易与铜形成稳定的络合物,从而阻止了金属的腐蚀;光致变色方面许多共轭聚合物主链可视为扩展到生色团,它们表现出似燃料的光物理性质,如光致变色、光电导。 N-亚水杨基氨基酸希夫(Schiff) 碱配合物可以作为研究维生素B6酶反应的模型化合物, 具有催化氨基转移和外消旋作用[ 1~3], 并具有良好的抗癌、抗菌活性[ 4, 5], 因此受到化学家注意并引起人们的极大兴趣。通过对它们性质的认识有助于揭示维生素B6酶结构上的特点, 加深对其催化氨基转移机理的理解。因此,本文重述设计了L-亮氨酸与水杨醛反应合成一种手性希夫碱,其反应式: HO 甲醇 + HOC

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

水杨醛

国药集团化学试剂有限公司 CSDS 水杨醛 编制日期:2010-08-30 1. 化学品及企业标识 化学品中文名称:水杨醛 化学品英文名称:Salicylaldehyde 生产商:国药集团化学试剂有限公司 Sinopharm Chemical Reagent Co.,Ltd 地址:上海市宁波路52号 邮编:200002 传真:86-021-******** 应急电话:86-021-******** 电子邮件地址:qc@https://www.360docs.net/doc/c2173098.html, 公司网址:https://www.360docs.net/doc/c2173098.html, 技术说明书编码:SCRCCSDS801128 生效日期:2010-08-30 2. 危险性概述 2.1危险性类别:第6.1类 毒害品。 2.2侵入途径:吸入、食入、经皮吸收。 2.3健康危害:本品对呼吸道有刺激性,吸入后引起咳嗽、胸痛。对眼和皮肤有刺激性。 2.4环境危害:对水生生物有毒作用。 2.5燃爆危险:可燃,其蒸气与空气混合,能形成爆炸性混合物。 3. 成分/组成信息 纯品 ■ 混合物 □ 主要成分 CAS RN 含量(%) 水杨醛90-02-898.0 4. 急救措施 4.1皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 4.2眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 4.3吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。 就医。 4.4食入:饮足量温水,催吐。就医。 5. 消防措施 5.1危险特性:遇高热、明火及强氧化剂易引起燃烧并放出有毒气体。 5.2有害燃烧产物:一氧化碳。 5.3灭火方法:采用雾状水、泡沫、二氧化碳、干粉、砂土灭火。 5.4灭火注意事项及措施:消防人员必须佩戴空气呼吸器、穿全身防火防毒服,在上风向灭火。尽可能将容器从火场移至 空旷处。喷水保持火场容器冷却,直至灭火结束。 6. 泄漏应急措施 应急处理:根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。消除所有点火源。 建议应急处理人员戴正压自给式呼吸器,穿防毒服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可 能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用干燥的砂土或其它不燃材 料吸收或覆盖,收集于容器中。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内。 7. 操作处置与储存 7.1操作注意事项:密闭操作,提供充分的局部排风。操作尽可能机械化、自动化。操作人员必须经过专门培训,严格遵 守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防 毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止

水杨醛衍生物的合成方法研究

水杨醛衍生物的合成方法 徐文逸 09234037 (江苏师范大学化学化工学院徐州 221116) 摘要本文主要介绍了四种水杨醛衍生物的合成, 第一种是用聚乙二醇-400 为相转移催化剂,醋酸为溶剂,用硝酸铈铵与水杨醛反应得3-硝基水杨醛第二种是合成5-氟水杨醛.第三种是利用水杨醛与甲醛和浓盐酸反应得到5-氯甲基水杨醛. 最后是以苯酚为原料通过烷基化、硝化等单元反应设计合成了5-叔丁基水杨醛。通过研究了解水杨醛的结构、化学性质以及有关运用 关键词水杨醛; 硝基氯苯; 溴代反应; 衍生物 Synthetic Methods Of Salicylaldehyde Derivatives Xu Wen-yi (College of Chemistry and Chemical Engineering,Jiangsu Normal University,Xuzhou 221116) Abstract This article mainly introduced the four salicylaldehyde derivatives synthesis, the first kind is to use polyethylene glycol - 400 as the phase transfer catalyst, acetic acid as solvent, with ammonium ceric nitrate and salicylaldehyde reaction three - nitro salicylaldehyde the second is synthesis of 5 - fluorine salicylaldehyde. The third kind is using salicylaldehyde with formaldehyde and concentrated hydrochloric acid reaction get 5 - chlorine methyl salicylaldehyde. Finally based on phenol as raw materials through the alkylation, nitrification and unit reaction synthesis design for 5 - tert-butyl salicylaldehyde. Through the research to understand salicylaldehyde structure, chemical properties as well as the relevant use. Keywords Salicylic aldehyde, ammonium ceric nitrate, nitryl chlorobenzene, bromination reaction, derivatives 前言 水杨醛及其衍生物作为精细化工的重要中间体不仅在医药、染料、农用杀虫剂等方面有着广泛的应用,而且 在配位催化、电镀、香料、石油化工、液晶和高分子材料等领域也备受关注。5-氯甲基水杨醛作为一种取代型的水 杨醛,其合成方法均为水杨醛与甲醛或多聚甲醛以及浓盐酸在低温反应过程中得到粗产品。本文采取的方法针对 产品的后续纯化处理进行了改良,提出了一种省试剂、省时间、高产率、高纯度的纯化方法。由水杨醛及其衍生 物与二胺类化合物反应生成的席夫碱是金属化合物的重要配体,广泛应用于烯烃环氧化等领域。 一 3-硝基水杨醛的合成方法

水杨醛的合成

实验2水杨醛的合成 一、实验目的 1、掌握制备水杨醛的原理和方法 2、掌握水汽蒸馏的实验方法 二、实验原理: 酚与氯仿在碱性溶液中加热生成邻位及对位羟基苯甲醛。含有羟基的喹啉、吡咯、茚等杂环化合物也能进行此反应。常用的碱溶液是氢氧化钠、碳酸钾、碳酸钠水溶液,产物一般以邻位为主,少量为对位产物。如果两个邻位都被占据则进入对位。不能在水中起反应的化合物可在吡啶中进行,此时只得邻位产物。 水杨醛介绍: 外观与性状:无色澄清油状液体,有焦灼味及杏仁气味。 熔点(℃):-7 ,沸点(℃):197 ,相对密度(水=1):1.17 ,饱和蒸气压(kPa):0.13(33℃) 燃烧热(kJ/mol):3328.9 ,闪点(℃):76 ,溶解性:微溶于水,溶于乙醇、乙醚。 主要用途:用作分析试剂、香料、汽油添加剂及用于有机合成。 健康危害:本品对呼吸道有刺激性,吸入后引起咳嗽、胸痛。对眼和皮肤有刺激性。 燃爆危险:本品可燃,有毒,具刺激性。危险特性:遇高热、明火及强氧化剂易引起燃烧并放出有毒气体 Reimer-Tiemann Mechanism:芳环上的亲电取代反应 首先氯仿在碱溶液中形成二氯卡宾,它是一个缺电子的亲电试剂,与酚的负离子(Ⅱ)发生亲电取代形成中间体(Ⅲ),(Ⅲ)从溶剂或反应体系中获得一个质子,同时羰基的α-氢离开形成(Ⅳ)或(Ⅴ),(Ⅴ)经水解得到醛。 ⑴

⑵ 三、仪器与试剂: 1、试剂:苯酚氯仿氢氧化钠三乙胺亚硫酸氢钠,乙酸乙酯,盐酸,硫酸 2、仪器:电动搅拌器温度计球形冷凝管滴液漏斗恒压滴液漏斗分液漏斗250ml三口烧瓶布氏漏斗抽滤瓶阿贝折光仪 四、操作步骤: 在装有搅拌、温度计、回流冷凝管及滴液漏斗的250ml四口烧瓶中,加入38ml水,20g 氢氧化钠当其完全溶解后(加28ml水溶,留10 ml给苯酚。加NaOH时一定要将NaOH加

纳米材料几个热点领域的新进展

纳米材料几个热点领域的新进展  一、纳米组装体系的设计和研究 目前的研究对象主要集中在纳米阵列体系;纳米嵌镶体系;介孔与纳米颗粒复合体系和纳米颗粒膜。目的是根据需要设计新的材料体系,探索或改善材料的性能,目标是为纳米器件的制作进行前期准备,如高亮度固体电子显示屏,纳米晶二极管,真空紫外到近红外特别是蓝、绿、红光控制的光致发电和电子发光管等都可以用纳米晶作为主要的材料,国际上把这种材料称为“量子”纳米晶,目前在实验室中已设计出的纳米器件有Si-SiO2的发光二极管,Si掺Ni的纳米颗粒发光二极管,用不同纳米尺度的CdSe做成红、绿、蓝光可调谐的二极管等。介孔与纳米组装体系和颗粒膜也是当前纳米组装体系重要研究对象,主要设计思想是利用小颗粒的量子尺寸效应和渗流效应,根据需要对材料整体性能进行剪裁、调整和控制达到常规不具备的奇特性质,这方面的研究将成为世纪之交乃至下一个世纪引人注目的前沿领域。纳米阵列体系的研究目前主要集中在金属纳米颗粒或半导体纳米颗粒在一个绝缘的衬底上整齐排列的二维体系。 纳米颗粒与介孔固体组装体系近年来出现了新的研究热潮。人们设计了多种介孔复合体系,不断探索其光、电及敏感活性等重要性质。这种体系一个重要特点是既有纳米小颗粒本身的性质,同时通过纳米颗粒与基体的界面隅合,又会产生一些新的效应。整个体系的特性与基体的孔洞尺寸,比表面以及小颗粒的体积百分比数有密切的关系。可以通过基体的孔洞将小颗粒相互隔离,使整个体系表现为纳米颗粒的特性;也可以通过空隙的连通,利用渗流效应使体系的整体性质表现为三维块体的性质。这样可以根据人们的需要组装多种多样的介孔复合体。目前,这种体系按支撑体的种类可划分为:无机介孔和高分子介孔复合体两大类。小颗粒可以是:金属、半导体、氧化物、氮化物、碳化物。按支撑体的状态也可分为有序和无序介孔复合体。 二、高性能纳米结构材料的合成 对纳米结构的金属和合金重点放在大幅度提高材料的强度和硬度,利用纳米颗粒小尺寸 效应所造成的无位错或低位错密度区域使其达到高硬度、高强度。纳米结构铜或银的块体材料的硬度比常规材料高50倍,屈服强度高12倍;对

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

水杨醛的制备

水杨醛的制备 8学时 目的 1.学习回流、酸化、萃取、蒸馏的基本方法。 2.熟悉水蒸汽蒸馏操作。 实验原理 水杨醛,化学名称为邻羟基苯甲醛,是一种无色或浅褐色油状液体,有杏仁味沸点196 ℃, 熔点- 7 ℃, 闪点76 ℃。易溶于醇、醚, 微溶于水。水杨醛又称邻羟基苯甲醛, 是一种用途极广泛的精细化工产品, 广泛用于农药、医药、香料、螯合剂、染料中间体等的合成上。在农药方面, 卤代水杨醛、水杨醛腙和苯腙都是制备除草剂、杀虫剂、杀菌剂和防腐剂等的重要原料, 目前正在开发的一种新型杀线虫剂也是用水杨醛为原料与 2 - 氨基噻唑席夫碱进行合成的; 在医药方面, 水杨醛可用于制备抗菌药, 以及作为生产外消旋垂体促进性腺激素药的中间体和用于生产拟肾上腺素药和抗咳喘药; 水杨醛还用于制备香豆素和配制紫罗兰酮等香料。由水杨醛为原料合成的香豆素, 6 - 苄化香豆素, 3 - 甲基香豆素等已被广泛用于肥皂、洗涤剂、调合香料、糖果和烟草工业; 在国外, 水杨醛还是合成植物微量营养元素的重要成分 ; 水杨醛还可与多种金属形成螯合剂, 广泛应用于石油工业;水杨醛的许多加成物可提高燃料油、汽油和石油的高温稳定性; 水杨醛与硝酸反应制得的3 - 硝基水杨醛、5 - 硝基水杨醛、3 , 5 - 二硝基水杨醛等硝基水杨醛类都是染料的中间体; 水杨醛也可用于制备芳基偶氮染料; 另外, 水杨醛及其衍生物是吲哚啉螺苯并吡喃类有机感光材料的原料, 并可合成耐久的毛发整理剂, 还用于制备多孔塑料及用作塑料的抗氧剂、炼油工业用金属钝化剂等。水杨醛本身也有许多用处, 比如, 它作为一种增亮剂和均化剂被广泛用于电镀工业; 低浓度的水杨醛因具有很强的足以降低细菌活性的能力而常被作为防腐剂用于香精和香料中等。 仪器与药品 有机制备仪、水蒸气发生器、机械搅拌器、苯酚、氯仿、氢氧化钠、亚硫酸氢钠、乙酸乙酯、硫酸、盐酸、无水硫酸镁 实验步骤 1.回流:在装有搅拌、温度计、回流冷凝管及滴液漏斗的1000ml的三颈瓶中, 加入80ml水,80g氢氧化钠,当其完全溶解后,在搅拌下加入25g苯酚溶解

模板合成法制备纳米材料的研究进展

收稿日期:2006-11-28 江苏陶瓷 JiangsuCeramics 第40卷第3期2007年6月 Vol.40,No.3June,2007 0 前言 纳米微粒因其特有的表面效应、量子尺寸效应、 小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、 电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值。作为纳米材料研究的一个重要方向,探索条件温和、形态和粒径及其分布可控、产率高的制备方法是这方面研究的首要任务。 目前已经发展了很多制备方法[1],如:蒸发冷凝法、物理粉碎法、机械球磨法等物理方法和气相沉积法、溶胶-凝胶法、沉淀法、水(溶剂)热法和模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣。 模板法的类型大致可分为硬模板和软模板两大类。硬模板包括多孔氧化铝、二氧化硅、碳纳米管、分子筛、以及经过特殊处理的多孔高分子薄膜等。软模板则包括表面活性剂、聚合物、生物分子及其它有机物质等。利用模板合成技术人们已经制得了各种物质包括金属、 氧化物、硫化合物、无机盐以及复合材料的球形粒子、一维纳米棒、纳米线、纳米管以及二维有序阵列等各种形状的纳米结构材料。本文将简要介绍近年来国内外利用模板法制备纳米结构材料的一些进展[2]。 1 硬模板法制备纳米材料 这种方法主要是采用预制的刚性模板,如:多孔 阳极氧化铝膜、二氧化硅模板法、微孔、中孔分子筛(如MCM-41、SBA-15等)、 碳纳米管以及其它模板。1.1多孔阳极氧化铝法 多孔氧化铝膜是近年来人们通过金属铝的阳极 电解氧化得到的一种人造多孔材料,这种膜含有孔径大小一致、 排列有序、分布均匀的柱状孔,孔与孔之间相互独立,而且孔的直径在几纳米至几百纳米之间,并可以通过调节电解条件来控制[3]。利用多孔氧化铝膜作模板可制备多种化合物的纳米结构材料,如通过溶胶-凝胶涂层技术可以合成二氧化硅纳米管,通过电沉积法可以制备Bi2Te3纳米线[4]。这些多孔的氧化铝膜还可以被用作模板来制备各种材料的纳米管或纳米棒的有序阵列,如:TiO2、In2O3、Ga2O3纳米管阵列,BaTiO3、PbTiO3纳米管阵列,ZnO、MnO2、 WO3、Co3O4、V2O5纳米棒阵列以及Bi1-xSbx纳米线有 序阵列等[1]。 1.2二氧化硅模板法 分子筛MCM-41二氧化硅和通过溶胶-凝胶过 程形成的二氧化硅都可用作纳米结构材料形成的模板,其中MCM-41为介孔氧化硅模板,它具有纳米尺寸的均匀孔,孔内可形成有序排布的纳米材料,属于外模板,而溶胶-凝胶法形成的二氧化硅胶粒则属于内模板,在其上形成纳米结构材料,最后二氧化硅用氢氟酸溶解除去。 2002年Froba等报道了在中孔的分子筛MCM-41二氧化硅内部形成有序排布的Ⅱ/Ⅵ磁性半导体 量化线Cd1-xMnxS。2003年Zhao等报道以In(NO3)3为原料,以高度有序中孔结构的表面活性剂SiO2为模板剂和还原剂,采用一步纳米浇铸法合成了高度有序的单晶氧化铟纳米线阵列。2002年Dahne等以三聚氰胺甲醛为第一层模板,利用逐层(LbL)方法制备了PAH/PSS交替多层膜覆盖的三聚氰胺甲醛粒子,在PAH/PSS交替的多层膜上进一步通过溶胶-凝胶方法覆盖上二氧化硅作为第二层模板,再利用LbL方法制备PAH/PSS交替的多层膜,然后用盐酸溶解 模板合成法制备纳米材料的研究进展 黄 艳 (陕西科技大学材料科学与工程学院,咸阳710021) 摘 要 介绍了近年来国内外利用氧化铝、二氧化硅、碳纳米管、表面活性剂、聚合物、生物分子等作模板制备多种物质的纳米结构材料的一些进展。关键词 模板法;纳米材料;合成 1

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

金属氧化物纳米材料的制备新进展

摘要:综述了近5年来金属氧化物纳米材料的制备方法、研究现状;讨论了这些方法的优缺点。指出液相法,尤其是溶胶-凝胶法、沉淀法、水解法、微乳液法、水热溶剂热法等是目前制备纳米金属氧化物材料最广泛应用的方法。而超声技术、微波辐射技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等新技术与传统液相法的有机结合,是制备高纯度、小粒径、均匀分散的金属氧化物纳米粉体的最有前途的方法。最后对金属氧化物纳米材料研究的发展方向提出了展望。 关键词:金属氧化物;纳米;制备;进展 金属氧化物纳米材料广泛应用于制作催化剂、精细陶瓷、复合材料、磁性材料、荧光材料、湿敏性传感器及红外吸收材料等[1]。例如:纳米氧化锌在磁、光、电敏感材料方面呈现常规材料所不具备的特殊功能,使得高品质的氧化锌的应用前景广阔;纳米氧化铝作为重要的陶瓷材料,具有非常高的应用价值;高纯纳米级SnO2可用来制作气敏及湿敏元件;纳米氧化钛由于在精细陶瓷、半导体、催化材料方面的广泛应用,也越来越引起人们的关注。多年来,科技工作者们已经研制出多种制备金属氧化物纳米材料的方法,如:溶胶-凝胶法、醇盐水解法、强制水解法、溶液的气相分解法、湿化学合成法、微乳液法等。近年来材料科学家和化学家又将激光技术、微波辐射技术、超声技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等方法引入了金属氧化物纳米材料的传统制备方法中,使金属氧化物纳米材料的制备方法得到了较大的完善和发展。关于金属氧化物纳米材料,邓红梅[2]综述了化学法制备及EXAFS特征研究,汪信[3]对复合金属氧化物的制备进行了评述。本文着重评述近5年来单分散性金属氧化物纳米材料的制备方法、研究现状和发展方向。 1 金属氧化物纳米微粒的制备 根据原料状态的不同,制备金属氧化物纳米微粒的方法大致可分为3类:固相法、液相法和气相法。 1.1固相法 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[4]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。HengLi等[5]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[6]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[7]、ZnO、NiO等。 1 2液相法 液相法因其相关的工业过程控制与设备的放大技术较为成熟,具有更强的技术竞争优势。该法比较容易控制成核,从而容易控制颗粒的化学组成、形状及大小,而且该方法添加的微量成分和组成较均匀,即使是对于很复杂的材料也可以获得化学均匀性很高的粉体。不过,该法极易引入杂质(如部分阴离子等),造成所得粉体纯度不够。近年来,超声、微波辐射、电弧放电、共沸蒸馏等物理技术的引入,使普通液相法制备纳米粉体得到了新的发展。液相法大致可分为以下几种方法。 1.2.1溶胶-凝胶法(Sol-Gel) 溶胶-凝胶法是近期发展起来的,能代替高温固相合成反应制备陶瓷、玻璃和许多固体材料的新方法。作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中已

羧基水杨醛的制备及表征

西安建筑科技大学华清学院本科毕业设计(论文) 题目羧基水杨醛缩羟基乙胺的金属配 合物的制备 学生姓名黄乐 学号0805030233 院(系)华清学院材料与冶金工程系专业应用化学 指导教师 时间年月日

摘要 本文介绍了3-羧基水杨醛、Schiff碱、羧基水杨醛Schiff碱金属配合物。 通过Duff法制备了3-羧基水杨醛,并用3-羧基水杨醛与乙醇胺按1:1缩合形成单Schiff碱配体,利用该配体分别与Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)和Co (Ⅱ)的硝酸盐、氯化物、醋酸盐络合形成3-羧基水杨醛缩乙醇胺过渡金属配合物,再进一步与镧系金属Eu(Ⅲ)、La(Ⅲ)、Dy(Ⅲ)Gd(Ⅲ)配位,形成d-f异双核金属配合物。 其结构用红外光谱(KBr压片)及紫外可见分光光谱进行了表征,并利用溶液扩散和溶剂扩散的方法培养单晶。 关键词:3-羧基水杨醛、乙醇胺、Schiff碱、d-f异双核金属配合物。

Abstract This paper introduces three-inhibiting aldehyde, Schiff carboxyl acid alkali, inhibiting aldehyde Schiff base transition metal complexes. Through the Duff legal system for 3-carboxyl inhibiting aldehyde, use 3-inhibiting aldehyde and ethanol amino acid Schiff base form 1:1 condensa tion single ligands, using the ligand and Cu (Ⅱ), Cd (Ⅱ), Ni (Ⅱ) and Co (Ⅱ) of nitrate, chloride, acetic acid salt complex form 3-carboxyl inhibiting aldehyde shrink ethanol amine transition metal complexes and further and billows of metal Eu (Ⅲ), La (Ⅲ), Dy (Ⅲ) Gd (Ⅲ) even bridge, form 3-carboxyl inhibiting aldehyde shrink ethanol amine f-d metal complexes. Its structure infrared spectrometry (KBr tablets) and uv-vis spectral spectrum characterization, and use solution diffusion and solvent diffusion method training single crystal. Keywords: 3-carboxyl inhibiting aldehyde, ethanol amine, Schiff base, f-d different dual-core metal complexes.

水杨醛合成技术的新进展

第28卷第3期2003年9月 广州化学 Guangzhou Chemistry Vol. 28 2003 文章编号 江苏省中医学校 摘要氯化水解法和还原法的最新研究与发 展趋势 关键词定向邻位甲酰化还原 中图分类号A 水杨醛是苯甲醛最重要的衍生物之一 由于它具有令人愉快的香气 此外医药石油化工和高分子添加剂等工业领域[2] 咳喘宁杀虫剂近年来使得水杨醛的新工艺研究和开发成为活跃的领域之一 而传统的甲酰化方法如Duff Vislmeier或Gatterman 反应对酚醚类化合物引入甲酰基很有效通常其收率低或者对位产物占优势 在苯酚分子上引入甲酰基有很高的收率价格高 目前其中之一即是著名的Reimer-Tiemman反应水杨醛的合成原料为苯酚 2 以苯酚为原料的合成法 2.1 Reimer-Tiemman法 Reimer-Tiemman反应是以苯酚和氯仿为原料氯仿首先转化为二氯收稿日期 张珍明女江苏省中医学校高级讲师 发表研究论文20多篇

48广州化学第28卷 卡宾然后迅速水解为醛 反应过程如Scheme 1所示 收率20% ~ 35%[2] 生成的醛与未反应的苯酚钠形成聚合物另外,原料氯仿和NaOH的消耗量大但该法合成路线简单 原料价廉易得期盼提高原料的转化率及水杨醛的收率 使用相转移催化剂[4,5]叔胺 可加速反应总收率可提高20%以上 改变反应的溶剂可提高羟基苯甲醛的收率 例如使用一定的含水甲醇为反应溶剂其中水杨醛57.4% 相转移催化和微波技术联合 可缩短反应时间 2.2 苯酚 它以络合效应把甲醛固定在分子内发生羟甲基化反应再用Pd反应过程如Scheme 2所示 从苯酚可直接得到水杨醛氧化需要金属催化剂 甲醛和氧气法 苯酚与甲醛在碱性化合物的催化下缩合再经铂或钯催化空气或氧气氧化得到混合的羟基苯甲醛收率85%[9] 苯酚与甲醛的缩合物水杨醇用间接电解氧化收率为84%[10]

纳米材料的最新进展

纳 米 材 料 论 文 班级:材料物理081401 姓名:胡鹏飞 学号:200814020110

纳米材料几个热点领域的新进展 一、纳米组装体系的设计和研究 目前的研究对象主要集中在纳米阵列体系纳米嵌镶体系;介孔与纳米颗粒复合体系和纳米颗粒膜。目的是根据需要设计新的材料体系,探索或改善材料的性能,目标是为纳米器件的制作进行前期准备,如高亮度固体电子显示屏,纳米晶二极管,真空紫外到近红外特别是蓝、绿、红光控制的光致发电和电子发光管等都可以用纳米晶作为主要的材料,国际上把这种材料称为“量子”纳米晶,目前在实验室中Si 已设计出的纳米器件有Si-SiO2 的发光二极管掺Ni的纳米颗粒发光二极管,用不同纳米尺度的CdSe 做成红、绿、蓝光可调谐的二极管等。介孔与纳米组装体系和颗粒膜也是当前纳米组装体系重要研究对象,主要设计思想是利用小颗粒的量子尺寸效应和渗流效应,根据需要对材料整体性能进行剪裁、调整和控制达到常规不具备的奇特性质,这方面的研究将成为世纪之交乃至下一个世纪引人注目的前沿领域。纳米阵列体系的研究目前主要集中在金属纳米颗粒或半导体纳米颗粒在一个绝缘的衬底上整齐排列的二维体系。 纳米颗粒与介孔固体组装体系近年来出现了新的研究热潮。人们设计了多种介孔复合体系,不断探索其光、电及敏感活性等重要性质。这种体系一个重要特点是既有纳米小颗粒本身的性质,同时通过纳米颗粒与基体的界面隅合,又会产生一些新的效应。整个体系的特性与基体的孔洞尺寸,比表面以及小颗粒的体积百分比数有密切的关系。可以通过基体的孔洞将小颗粒相互隔离,使整个体系表现为纳米颗粒的特性;也可以通过空隙的连通,利用渗流效应使体系的整体性质表现为三维块体的性质。这样可以根据人们的需要组装多种多样的介孔复合体。目前,这种体系按支撑体的种类可划分为:无机介孔和高分子介孔复合体两大类。小颗粒可以是:金属、半导体、氧化物、氮化物、碳化物。按支撑体的状态也可分为有序和无序介孔复合体。 二、高性能纳米结构材料的合成 对纳米结构的金属和合金重点放在大幅度提高材料的强度和硬度,利用纳米颗粒小尺寸效应所造成的无位错或低位错密度区域使其达到高硬度、高强度。纳米结构铜或银的块体材料的硬度比常规材料高50倍,屈服强度高12倍;对纳米陶瓷材料,着重提高断裂韧性,降低脆性,纳米结构碳化硅的断裂韧性比常规材料提高100 倍,n-ZrO2+Al2O3、n-SiO2+Al2O3 的复合材料,断裂韧性比常规材料提高4-5倍,原因是这类纳米陶瓷庞大体积百分数的界面提供了高扩散的通道,扩散蠕变大大改善了界面的脆性。 三、纳米添加使传统材料改性 在这一方面出现了很有应用前景的新苗头,高居里点、低电阻的 PTC 陶瓷材料,添加少量纳米二氧化铣可以降低烧结温度,致密速度快,减少 Pb 的挥发量,大大改善了 PTC 陶瓷的性能,尺度为 60nm 的氧化锌压敏电阻、非线性阀值电压为 100V/cm,而 4mm 的氧化锌,阀值电压为 4kV/cm,如果添加少量的纳米材料,可以将阀值电压进行调制,其范围在 100V~30kV 之间,可以根据需要设计具有不同阀值电压的新型纳米氧化锌压敏电阻,

BiOBr纳米材料的制备与应用研究进展

2018年第18期广东化工 第45卷总第380期https://www.360docs.net/doc/c2173098.html, ·235 ·BiOBr纳米材料的制备与应用研究进展 代弢1,汪露2 (1.西南民族大学化学与环境保护工程学院,四川成都610041;2.西南民族大学生命科学与技术学院,四川成都610041) Progress of Preparation and Application of BiOBr Nanomaterials Dai Tao1, Wang Lu2 (1. College of Chemistry & Environment Protection Engineering, Southwest Mizu University, Chengdu 610041; 2. College of Life Science & Technology, Southwest Mizu University, Chengdu 610041, China) Abstract: BiOBr nanomaterials have a unique electronic structure, a suitable band gap width and good catalytic performance. In this paper, the preparation and modification methods of BiOBr are summarized. And the application of BiOBr in energy and environment is expounded. We also described the prospect of BiOBr in photocatalysis. Keywords:BiOBr;nanomaterials;preparation and anapplication 近年来,由于环境和能源的问题不断突出,BiOBr纳米材料作为一种新型的光催化纳米材料,对解决能源和环境这一世界性的难题具有重要的意义。BiOBr具有独特的电子结构和良好的催化活性。目前纳米BiOBr材料已采用多种方法成功制备,本文重点归纳了BiOBr纳米光催化材料的制备以及在能源和环境领域的应用研究进展,为今后的研究提供方向和指导。 1 BiOBr的结构特性 BiOBr属于典型的横跨五、六、七三主族三原子复合半导体材料,它一般的结构通式是Bi l O m Br n[1]。一般来说,它的晶型属于四方氟氯铅矿(PbFCl-型)结构。Bi3+周围的O2-和Br-成反四方柱配位。对于Bi l O m Br n来说,其价带主要是通过O 2p和Br 4p态形成以及其导带主要是通过Bi 6p态形成。Bi l O m Br n的稳定性主要依赖于其制备条件、结构尺寸和反应环境等[2-4]。 2 BiOBr纳米材料的设计与合成 随着合成技术的迅速发展,纳米材料得到进一步发展。发展了众多BiOBr纳米材料的方法。现对近年来BiOBr纳米材料的合成方法进行归纳: 2.1 水解法 水解法是利用Bi3+的水解特性[5],利用BiBr3在碱性条件下合成BiOBr沉淀。该方法操作简单,可以规模化生产。但获得的BiOBr纳米材料尺寸不均一,活性较差。 2.2 水热法 水热法是在密闭的容器内高压条件下合成的方法。将Bi源和Br源在反应釜内反应合成BiOBr晶体。反应时间和温度会对催化剂的活性产生一定的影响。水热法可以获得结晶相对较好的BiOBr晶体。 2.3 溶剂热法 溶剂热法是水热法的发展,它与水热法的区别是使用有机溶剂。Wu等人通过调控溶剂乙醇和水的体积比合成出了9 nm厚的BiOBr薄片[6],当溶剂热反应温度为333 K,溶剂为纯水溶液时,得到约32 nm厚,当反应溶剂变为乙醇:水=4:3时,BiOBr纳米片的厚度变为9 nm左右,并且形貌均匀分布,同时表现出良好的结晶性。乙二醇,甘油和甘露醇等也常用作溶剂制备BiOBr。 2.4 离子液法 离子液体是在室温下呈液态的物质,具有蒸汽压低,难挥发,热稳定性高,溶解性好等优点。与水和溶解相比,离子液体可以看成是一种优良的溶剂。因此利用离子液辅助溶剂合成BiOBr纳米材料,在可见光下可以有效降解污染物。 2.5 共沉淀法 采用共沉淀法可得到粒径约500 nm的BiOBr纳米催化剂,这种先调配前驱体溶液再高温处理的合成方法,易于通过调控温度处理条件来调控产物形貌。且共沉淀法制备得到的BiOBr纳米材料的催化活性是水热法制备的材料活性的5倍左右[7]。 2.6 微波超声法 通过微波辅助方法可以获得具有优异可见光降解能力的BiOBr纳米材料。Li等人通过自组装过程[8],采用一种简单的微波合成法制备了一种均匀分散的多级结构的BiOBr纳米材料,其形貌为花状结构的BiOBr材料。该材料对Cr6+在较广pH值范围内表现出优异的吸附去除能力。与其他方法相比,微波加热的反应体系由于受热更均匀体系分散更好制备得到的BiOBr粒径更为均匀因而广泛应用于无机纳米材料BiOBr的合成制备。 2.7 静电纺丝法 Veluru等人通过静电纺丝的方法合成的BiOBr纳米纤维[9],通过调控溶剂的粘性得到不同长度的BiOBr以及不同直径的BiOBr纳米材料。同时对茜素红表现出极高的光催化降解活性。 3 BiOBr纳米材料在光催化中的应用进展 3.1 在能源问题中的应用 3.1.1 光解水制氢 目前,氢气是一种公认的最重要的清洁的新能源。所谓的氢经济的成功在很大程度上依赖于找到一种有效的实际批量生产氢气的途径。自1967年发现使用光电化学电池组成的单晶二氧化钛阳极和铂阴极在紫外光照射下可以使水裂解为氢气以来,光催化水裂解反应已被广泛认为是大量获得氢气最具发展前景的一种手段。利用Cr掺杂的Bi系纳米材料有效的降低了禁带宽度,从而提升了在可见光下催化剂产氢的效率[10-12]。 3.1.2 光催化合成氨 目前氮气的固定主要是通过Haber-Bosch反应,但是严苛的反应条件(Fe基催化剂、15-25 MPa、573-823 K )使得消耗极大的其他能源并且释放出大量的温室气体。人们在催化合成氨领域没有停下奋斗的脚步。Zhang等人通过向BiOBr进行表面改性使得在BiOBr材料表面产生氧空位,而氧空位极大的有利于N2的吸附,进而进一步促使光固氮这一过程的发生,从而极大地提升了固氮效率[13,14]。 3.1.3 光催化二氧化碳还原 光催化二氧化碳还原是指模拟太阳光的光合作用将CO2转换为其他的含碳燃料,比如甲醇、甲醛以及一些其他的精细化学品[15-19]。Chai等人通过向多级结构的BiOBr纳米材料引入表面氧空缺以提高CO2向CH4的转化效率差,同时进一步的比较了不含氧空位的BiOBr纳米材料其转化产物主要为CO。 3.2 在环境问题中的应用 随着工业化进程的不断加快,工业废水所造成的水体污染问题越来越严重。其中,一些抗生素类的药物和有机染料造成的废水因为具有高毒性、强致癌性等危害,对日常生活带来极大的安全隐患。近年来,大量的研究发现铋系半导体光催化材料由于具有较好的可见光响应并且能够使有机污染深度矿化而被广泛的应 [收稿日期] 2018-08-30 [作者简介] 代弢(1992-),男,博士,四川省雅安市人,讲师,主要研究方向为类贵金属催化剂的可控合成及在催化中的应用。

相关文档
最新文档