土料填筑压实度或相对密度合格标准

土料填筑压实度或相对密度合格标准

土石坝施工技术规范

SDJ213-83 《碾压式土石坝施工技术规范》 SL260-98 《堤防工程施工规范》 SL38-92 《水利水电基本建设工程单元工程质量等级评定标准(七)》 SL239-1999 《堤防工程施工质量评定与验收规程》 3 、施工准备 3.1 对合同及设计文件进行深入具体条件编好施工组织设计。 3.2 做好各项技术准备,并做好“四通一平”临建工程,各种设备和器材的准备工作。导流及引排水工程已完成。 3.3 测量放样工作已验收合格,对主要测点已埋设牢固的标架、基石、坝(堤)身放样已按设计预留沉降量。 3.4对土料场进行现场核查,贮量应大于需用量的1.5-2.5 倍。土质及天然含水量符合设计要求。 3.5 施式机械、试验设备到位,已做防渗体土料碾压试验,基础清理已完成并经过验收。 4 、施工操作要求 4.1 土料开挖 4.1.1 料场开挖前应划定开挖范围,清除树根乱石及妨碍施工的一切障碍物,排除场内积水,开好排水沟。 4.1.2 土料的天然含水量接近施工控制下值时,采用立面开挖,含水量偏大时,采用平面开挖。 4.1.3 当层状土料有需剔除的不合格料层时,用平面开挖,当层状土料允许掺混时,用立面开挖。4.1.4 冬季施工宜用立面开挖。 4.1.5 取土坑壁应稳定,立面开挖时严禁掏底施工。 4.2 铺料 4.2.1 防渗体土料铺筑应平行堤轴线顺次进行,分段作业和长度不应小于100m ,人工作业时不小于50m。 4.2.2 作业面宜分成铺土、碾压、检验三段,以利流水作业,应分层统一铺土,统一碾压,专人取样检验,严禁出现界沟。 4.2.3 相邻施工段的作业面需均衡上升,若不可避免出现高差时,要以1:3-1:5 的斜坡连接。 4.2.4 土料宜用进占法卸料,用推土机或人工铺至规定部位,严禁将砂砾料或其他透水料与粘性土料混杂。 4.2.5 铺土厚度及块置直径限制尺寸如下表:铺土厚度和土块直径限制尽寸表 压实功能类型压实机具种类铺土厚度(cm)土块限制直径(cm) 轻型人工夯、机械夯15-20 20-25<5 <8 中型12T--15T 平碾斗容2.5m3 铲运机5T-8T 振动碾25-30 < 10 重型斗容大于7 m3 铲运机10T-16T 振动碾加载汽胎碾30-50 < 15 4.2.6 铺料至堤边时,应在设计边线外侧各超镇一定余量,人工铺料为10cm ,机械铺料 为 30cm。 4.2.7 通过保持填土面平整,算方上料,及时检测厚度等措施控制铺土厚度。土厚度允许误差为+0-5cm 。 4.3 碾压 4.3.1 碾压机械行走方向应平行于提轴线。分段分片碾压时相邻作业面的碾压搭接宽度,平 行提轴线方向不应小于0.5m,垂直堤线方向不应小于3cm。 432碾压机械进行碾压时,采用进退错距法作业。碾压搭接宽度大于10cm。铲运机兼作压

(完整版)沥青混合料理论最大相对密度试验真空法

沥青混合料理论最大相对密度试验真空法 1、目的与适用范围 1.1本方法适用于真空法测定沥青混合料理论最大相对密度,供沥青混合料配合比设计、路况调查或路面施工质量管理计算空隙率、压实度等使用。 1.2本方法不适用于吸水率大于3%的多孔性集料的沥青混合料。 2、仪具与材料 2.1天平:称量10kg以上,感量不大于0.5kg;称量5kg以上,感量不大于0.1g;称量2kg以下,感量不大于0.05g。 2.2负压容器:根据试样数量选用表1中的A、B、C任何一种类型。负压容器口带橡皮塞,上接橡胶管,管口下方有滤网,防止细料部分吸入胶管。 负压容器类型

2.3真空负压装置:由真空泵及水银压力计(或真空表)组成,真空泵能使负压容器内造成4kPa(30mmHg)负压。 2.4恒温水槽:水温控制25℃±0.5℃。 2.5温度计:分度为0.5℃。 2.6其它:玻璃板等。 3、方法与步骤 3.1准备工作 3.1.1按本规程T0701沥青混合料取样方法或从沥青路面上采取(或钻取)沥青混合料试样。试样数量不少于如下规定数量:沥青混合料中集料公称最大粒径(mm)最少试样数量(g) 37.5 4000 26.5 2500 19.0 2000 13.2、16.0 1500 9.5 1000 4.75 500 3.1.2将沥青混合料团块仔细分散,粗集料不破碎,细集料团块分散到小于6.4mm。若混合料坚硬时可用烘箱适当加热后打散,一般加热温度不超过60℃,分散试样应用手掰开,不得用锤打碎,防止集料破碎。当试样是从路上采取的非干燥混合料时,应用电风扇吹干至恒重后再操作。 3.1.3负压容器标定方法

土料碾压试验方案

土方回填碾压试验方案 一、编制依据 1、招标文件和施工组织设计; 2、施工图纸 3、《土工试验规程》(SL237-1999); 4、《土工试验方法标准》(GB/T 50123-1999)。 二、回填碾压指标和压实机具 1、根据招标文件及施工图纸要求,土方回填土方利用开挖土料,压实度不小于0.95。回填土料含水率与最大含水率允许偏差控制为±3%内。 2、整平机具为160的推土机。 3、压实机具为10t的压路机 4、洒水设备为5t洒水车,水枪配合补水 三、试验目的 1、核查土料压实后是否能够达到设计压实干密度。 2、检查压实机具的性能是否满足施工要求。 3、选择合理的施工压实参数:铺土厚度、土块限制粒径、含水量的适宜范围、压实方法和压实遍数,提供完善的施工工艺和措施。 四、现场试验准备 1、试验区的选取 根据现场实际情况,选取30m×20m的一块区域作为试验场地。分为三个试验场地。具体布置位置如下图所示: 2 本标段碾压工程中碾压料均采用取土场的壤土。

3、室内试验准备 在现场试验进行前,先完成室内试验。对碾压料进行含水率、干密度、颗粒分析、标准击实等试验,并测得其最大干密度为1.79g/cm3,对应的最优的含水率为15.5%。 五、碾压试验参数 根据本标段碾压部位及回填料源,初拟试验参数如下, 1、铺料厚度 回填料选取三种铺层厚度进行碾压试验,松铺厚度分别为30cm、35cm、40cm。 2、碾压遍数 采用振动碾压 2、4、6遍,记录这3 组数据并进行试验选择。 六、试验方法及步骤 1、试验方法 土场回填试验区,1、2、3设定铺料厚度分别为30cm、35cm、40cm,含水量均相同的情况下,用振动碾分别碾压2遍、4遍、6遍。 2、试验步骤 (1)挖装回填料 回填料采用挖掘机及推土机运输至回填工作面。土料中不得含有草皮、树根、垃圾等杂物。 (2)填料 根据测量放出的边线,控制好回填边界与松铺厚度。 回填时沿横断面全宽,纵向分层;从低处往高处回填。试验区两侧超填宽度为 30cm~50cm。 (3)摊铺与初平 用推土机将回填的土摊铺平整,厚度以试验参数松铺厚度为准。同时人工铺填边部,对凹凸处铲平,清除填料中的草皮、树根等杂物。 (4)洒水或晾晒

土的密实度

1 / 11 详细内容: 土石料的压实,是土石坝施工质量的关键。维持土石坝自身稳定的土料内部阻力(粘结力和摩擦力)、土料的防渗性能等,都是随土料密实度的增加而提高。例如,干表观密度为l.4t/m3的砂壤土,压实后若提高到 1.7t/m3,其抗压强度可提高4倍,渗透系数将降低至1/2000。由于土料压实结果,可使坝坡加陡,加快施工进度,降低工程投资。 一、土料压实特性 土料压实特性,与土料本身的性质、颗粒组成情况、级配特点、含水量大小以及压实功能等有关。 对于粘性土和非粘性土的压实有显著的差别。一般粘性土的粘结力较大,摩擦力较小,具有较大的压缩性,但由于它的透水性小,排水困难,压缩过程慢,所以很难达到固结压实。而非粘性土料则正好相反,它的粘结力小,摩擦力大,具有较小的压缩性,但由于它的透水性大,排水容易,压缩过程快,能很快达到密实。土料颗粒粗细组成也影响压实效果。颗粒愈细,空隙比就愈大,所含矿物分散度愈高,就愈不容易压实。所以粘性土的压实干表观密度低于非粘性土的压实干表观密度。颗粒不均匀的砂砾料,比颗粒均匀的细砂可能达到的干表观密度要大一些。 土料的含水量是影响压实效果的重要因素之一。用原南京水利实

验处击实仪(简称南实仪)对粘性土的击实试验,得到一组击实次数、干表观密度与含水量的关系曲线,如图4 2所示,图中”为击实次数,G为饱和度。 在某一击实次数下,干表观密度达到最大值时的含水量为最优含水量;对每一种土料,在一定的压实功能下,只有在最优含水量范围内,才能获得最大的干表观密度,且压实也较经济。 非粘性土料的透水性大,排水容易,压缩过程快,能够很快达到压实,不存在最优含水量,含水量不作专门控制。这是非粘性土料与粘性土料压实特性的根本区别。 2 / 11 压实功能的大小,也影响着土料干表观密度的大小,从图4—2可见,击实次数增加,干表观密度电随之增大而最优含水量则随之减小。说明同一种土料的最优含水量和最大干表观密度并不是一个恒定值,而是随压实功能的不同而异。 一般说来,增加压实功能可增加干表观密度,这种特性,对于含水量较低(小于最优含水量)的土料比对于含水量较高(大于最优含水量)的土料更为显著。 二、土石料的压实标准 土料压实得越好,物理力学性能指标就越高,坝体填筑质量就越有保证。但土料的过分压实,不仅提高了压实费用,而且会产生剪力破坏,反而达不到应有的技术经济效果。可见对坝料的压实应有一定的标准,由于坝料性质不同,因而压实的标准也各异。

压实度

压实度检测方法(灌砂法) 1 灌砂法基本原理 灌砂法(标准方法,但不适用于填石路堤等有大孔洞或大孔隙材料的压实度检测)基本原理是利用粒径0.30~0.60mm或0.2~0.50mm清洁干净的均匀砂,从一定高度自由下落到试洞内,按其单位重不变的原理来测量试洞的容积(即用标准砂来置换试洞中的集料),并根据集料的含水量来推算出试样的实测干密度。 2选点及检测频率 选点是否得当,直接影响到压实度的检测结果选点太少,位置不客观,没代表性,很难反映实际情况;选点太多,不但没必要,而且浪费时间,降低工作效率。因此,正确的选点在工程施工中具有很强的实际指导意义。一般在压实度检测中,试坑的位置应选择在每一设计车道内。如设计为双向四车道那么应在所检路基的一个横断面上、在每一设计车道内选择一点作为试验点,并为试验点编号。如Kl13+325,1号点,2号点……若在检测中发现有个别点压实度较低时,可根据该点编号查找出该点然后在该试坑(距原坑边5cm的位置)旁边再选点进行检测。若该两点压实度都合格,证明该点在初次检测时是由于试验人员的操作不当所为。若两点压实度都不合格则证明该点压实度不合格。所以进行压实度检测时选点应得当,检测频率也要满足规范要求。这样检测结果才能较客观的反映工程质量的实际情况。 3灌砂筒的选用及室内标定 3.1根据集料的最大粒径选用灌砂筒 (1)当试样的最大粒径小于15mm、测定层的厚度不超过150mm时,宜采用Φ100mm 的小型灌砂筒测试; (2)当试样的最大粒径等于或大于15mm,但不大于40mm,测定层的厚度不超过150mm,最大不超过200mm时,应用Φ150mm的大型灌砂筒测试; (3)如集料的最大粒径达到40~60mm或超过60mm时,灌砂筒和现场试洞的直径以200mm为宜。 工地上普遍应用Φ150mm的灌砂筒,它的测深为150mm,其所测压实度仅为这150mm 的压实度。但是现场压实层厚度往往在200mm左右,而且一般压实度在压实表层都比较高,往下就难以保证,因此在山区现场含碎石较多的集料应采用Φ20omm的大灌砂筒检测为宜。 3.2室内量砂标定的准确与否对压实度的影响 (1)未灌入前,贮砂筒中砂面高度、砂的总重对量砂密度的影响。《公路路基路面现场测试规程》(JTJ059-95)中对筒内砂的高度和质量都做了明确规定。筒内砂的高度与筒顶的距离不超过15mm,原因是不同砂面高度的砂,其下落速度不同,因而灌进标定罐内砂的密实程度也不同,这就直接影响了量砂的密度。因此,储砂筒中砂面高度必须严格控制。 现场测试时,贮砂筒中砂面高度应与标定量砂密度时贮砂筒中砂面高度保持一致。另外,筒内砂的质量准确至1g。每次标定及以后的试验都维持这个质量不变。因为标定时,只要砂总重相同,即砂的自重一样,显然其下落速度也能保持一致,从而提高量砂使用的准确性。实践证明,现场测试时,储砂筒中砂面高度和重量与室内标定时保持一致,大大提高了检测数据的准确性。 (2)标定罐深度对量砂密度的影响。通过试验结果发现:曾经作过试验,结果发现标定罐深度每减2.5cm,砂密度大约降低3%。标定罐深度每减1cm,砂密度大约降低1.2%。可见标定罐深度对量砂密度的影响较大。因此,现场试洞深度应尽量与室内标定罐深度一致。 (3)砂的颗粒级配组成对量砂密度的影响。不同颗粒粒径组成的砂,其级配不同,密

碾压式土石坝施工规范

碾压式土石坝施工规范

目录 前言 (7) 目次 (9) 1 范围 (11) 2 引用标准 (11) 3 总则 (12) 4 测量 (13) 5 导流与度汛 (16) 5.1 一般规定 (16) 5.2 施工导流 (16) 5.3 截流 (17) 5.4 度汛 (18) 6 坝基与岸坡处理 (19) 7 坝料复查与使用规划 (22) 7.1 坝料复查 (22) 7.2 坝料使用规划 (25) 8 施工试验与坝料加工 (27) 8.1 施工试验 (27) 8.2 坝料加工 (28) 9 坝料的开采与运输 (29) 9.1 坝料开采 (29) 9.2 坝料运输 (32) 10 填筑 (33) 10.1 一般规定 (33)

10.3 雨季填筑 (37) 10.4 负温下填筑 (38) 10.5 非土质材料防渗体的施工 (39) 11 结合部位处理 (41) 12 反滤排水设施与护坡 (43) 12.1 反滤层 (43) 12.2 排水设施 (44) 12.3 护坡 (46) 13 安全监测 (46) 14 施工质量控制 (48) 14.1 一般规定 (48) 14.2 坝基处理质量控制 (50) 14.3 料场质量控制 (50) 14.4 坝体填筑质量控制 (51) 坝料加工处理 (55) A1 低含水率土料的加水处理 (55) A2 高含水率土料降低含水率的措施 (56) A3 防渗掺合料制方法 (57) A4 宽级配砾质土级配调整(剔除粗粒)方法 (58) 碾压试验 (58) B1 试验目的 (58) B2 压实机械的选择 (59) B3 碾压试验 (59)

土的压实原理

土的压实原理 有时建筑物建筑在填土上,为了提高土的强度,减小压缩性和渗透性,增加土的密实度,经常要采用夯打、振动或碾压等方法使土得到压实,从而保证地基和土工建筑物的稳定。压实就是指土体在压实能量作用下,土颗粒克服粒间阻力,产生位移,土颗粒重新排列,使土中的孔隙减小,密实度增加。 实践经验表明,细粒土和粗粒土具有不同的压密性质。压实细粒土宜用夯击或碾压机具,同时必需控制土的含水量。压实粗粒土宜用振动机具,同时应充分洒水。 土的工程分类 自然界中的各种土,从直观上大致可分为两大类:无粘性土和粘性土。工程上是用某种最能反映土的工程特性的指标来进行系统的分类。按前述分析,影响土的工程性质的三个主要因素是土的三相组成、土的物理状态和土的结构。这三者中,三相组成起主要作用。在三相组成中,关键是土的固体颗粒。首先就是颗粒的粗粒。按实践经验,工程中以土中颗粒粒径大于0.074mm的质量占全部土粒质量的50%以上称为粗粒土(无粘性土),小于50%的称为细粒土(粘性土)。 粗粒土的工程性质,如透水性、压缩性和强度等,在很大程度上取决于土的颗粒级配。因此粗粒土按颗粒级配累积曲线进一步分类。 细粒土的工程性质不仅决定于颗粒级配,而且与土粒的矿物成分也有密切的关系。可以认为,比表面积和矿物成分在很大程度上决定了这种土性质,它们直接综合表现为土的吸附结合水的能力。反映土吸附结合水的能力的特性指标有ωL、ωp 和I p 。工程上多用塑性指标作为分类指标。 GBJ7-89《建筑地基基础设计规范》将地基土分成六大类:岩石、碎石土、砂土、粉土、粘性土和人工填土。 土的渗透性与渗流 土是具有连续孔隙的介质,水在重力作用下可以穿过土的孔隙而发生流动。在水头差的作用下,水透过土孔隙流动的现象称为渗透或渗流,相反,土可以被水透过的性能称为土的渗透性。如:土坝、水闸挡水后,上游的水就会通过坝体或地基渗到下游,从而发生渗透现象。渗透会引起两个方面的问题,一是由于水的渗流会产生渗透力,在渗透力的作用下使地基失去稳定,从而使工程失效;二是水的渗透使细土粒逐渐被带走,从而形成比较大的水流,致使上游水渗漏,影响工程效果。 地下水的运动可以分为层流和紊流两种形式,层流是指地下水在岩土的孔隙或微裂隙中渗透,流线互不相交;紊流是指地下水在岩土的裂隙或洞穴中流动,流线互相交错。地下水在土中的渗透属于层流现象,遵循达西渗透定律。 1856年,法国学者达西利用试验装置对砂土进行了渗透性试验研究,其结论是:水在砂土中的渗流速度与试样两端间的水头差成正比,而与渗流路径成反比。 地基土的应力与变形 土体在建筑物或构筑物等处荷载作用下将产生应力和变形,如果土体的变形过大,则会影响工程的正常使用,甚至会使土体发生整体破坏而丧失稳定性。因此,在工程实践中,必须弄清楚土体中各点应力的大小及分布规律,计算出地基土的沉降变形量,使地基土的实际沉降变形量控制在上部结构安全和正常使用的允许范围之内。 土体中的应力可以分为两部分,一部分为自重应力,另一部分为附加应力。所谓自重应力,是指建筑物或构筑物在建造之前,由土体自重引起的应力。一般来说,对于天然沉积

压实度计算公式

公式:压实度=试样干密度/标准干密度*100% 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示,压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 压实度是填土工程的质量控制指标,计算方法为: 1.先根据现场试验测得的湿密度和试验室测定的含水率求出的现场实际干密度,此为试样干密度,设为A密度。 2.然后由击实试验后所得的试样最大干密度,设为B密度。 3.实际压实度=A/B,用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。

简而言之,压实度=工地试件干密度/最大干密度(100%) 【压实度的概念】: 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 【压实度检测方法】: 1、挖坑灌砂法 挖坑灌砂法是检测压实度最常用的试验方法之一,本方法适用于在现场测定基层(或者底基层)、砂石路面以及路基土的各种材料压实层

试卷计算题

五、计算题: 1、某高速公路水泥稳定碎石基层,已知设计抗压强度Rd=3.1MPa,现测得某段的无侧限抗压强度数值如下,对该段强度结果进行评定并计算其得分值。(规定分为20分,保证率为95%,Za=1.645) 3.85 4.01 3.53 3.96 4.00 3.73 3.86 3.97 3.93 4.05 3.52 3.83 解:平均R=3.85 Cv=0.046 Rd/(1-ZaCv)=3.1/(1-1.645*0.046)=3.35 平均R>Rd/(1-ZaCv) 合格,得满分20分。 2、某段一级公路沥青路面总厚度检测值(cm)分别为: 15.1 14.3 14.5 14.4 14.7 15.0 15.3 14.2 14.8 14.9 14.5 14.3 14.8 14.4 15.2 14.7 按保证率95%,计算其厚度代表值。(已知 t0.95/√16=0.438)解:平均X=14.7 S=0.34 XL=平均X- t0.95*S /√16=14.7-0.34*0.438=14.6 其厚度代表值为:14.6cm 3、某段高速公路底基层水泥稳定土配合比设计,成型5组试件,水泥用量 试选定此水泥稳定土配合比。(设计强度Rd=1.5MPa) 解:计算各剂量平均强度及偏差系数分别如下: 3% 平均R=0.93 Cv=0.15/0.93=16.1% 4% 平均 R=1.50 Cv=0.089/1.5=5.9% 5% 平均 R=1.67 Cv=0.10/1.67=6.0% 6% 平均 R=1.72 Cv=0.16/1.72=9.3% 7% 平均 R=1.98 Cv=0.19/1.98=9.6% 3% Rd/(1-1.645Cv)=2.04 4% Rd/(1-1.645Cv)=1.66

土的压实特性

土的压实特性 一、土的击实试验 把土压实,土粒之间的孔隙减小,孔隙比减小,土的密度增大。其结果是,在荷载的作用下沉降量减少,土的强度得到提高,透水性降低,土的力学性质得到改善。所以,在道路、铁道、堤防、填海造田等的填土工程及土坝的筑造等工程中,土方的压实是一个重要的课题。 Proctor(1933)对同样的土进行了含水量不同、压实功不变的击实试验。很有趣的是,他发现,在压实功不变的情况下,在某一含水量时,可以得到最大的干密度。即,在同一压实能量的条件下,存在着最容易压实的含水量。把这个含水量叫做最优含水量ωopt (这就是说,有时,在含水量不合适时,不论怎样增加压实功,也不容易压实,很不经济)。可以这样考虑,含水量比最优含水量ωopt 小的时候,作为润滑剂的水过少,土不容易压实,含水量比最优含水量ωopt 大的时候,水过多,在压实的过程中,孔隙中的水在短时间排不出来,土也不容易压实。所以,应事先求出填土的最优含水量,当现场土的天然含水量比最优含水量小的时候,施工时可以边洒水边碾压,并尽量控制填土含水量在最优含水量的附近压实。但是,当现场的天然含水量比最优含水量大的时候,因为没有那样的大型干燥机,在现场要使填土干燥实际上是比较困难的。 图1 击实试验装置 (a) 击实筒(内径10cm);(b)夯实器(2.5kg) 最优含水量ωopt 是由土的击实试验求出的。这是在实验室内,用简单的试验装置模仿现场的压实机械的试验。其方法是,在图1所示的容器内装入数层土,每层都用重锤锤击规定的次数,使土压实。然后根据容器内土的质量求出土的天然密度ρt ,测出土的含水量ω,按下式计算土的干密度ρd : ω ρρ+=1t d 改变土的含水量,反复进行上述试验,根据试验结果,以含水量ω为横坐标,以干密度ρd 为纵坐标,可以绘出图2那样的向上凸的山形曲线。把这条曲线叫做击实曲线。击实曲线顶点处于密度达到最大值,叫做最大干密度ρdmax ,这时的含水量叫最优含水量ωopt 。

土石坝填筑标准

土石坝填筑标准 土石坝泛指由当地土料、石料或混合料,经过抛填、辗压等方法堆筑成的挡水坝。当坝体材料以土和砂砾为主时,称土坝、以石渣、卵石、爆破石料为主时,称堆石坝;当两类当地材料均占相当比例时,称土石混合坝。 1)土质防渗体分区坝和沥青混凝土心墙坝的堆石料,孔隙率宜为20%~28%; 2)沥青混凝土面板坝堆石料的孔隙率宜在混凝土面板堆石坝和土质防渗体分区坝的孔隙率之间选择; 3)采用软岩、风化岩石筑坝时,孔隙率宜根据坝体变形、应力及抗剪强度等要求确定; 4)设计地震烈度为8度、9度的地区,可取上述孔隙率的小值。 土石坝施工中土石料的压实标准 土料压实得越好,物理力学性能指标就越高,坝体填筑质量就越有保证。但土料的过分压实,不仅提高了压实费用,而且会产生剪力破坏,反而达不到应有的技术经济效果。可见对坝料的压实应有一定的标准,由于坝料性质不同,因而压实的标准也各异。 (一)粘性土料(防渗体) 粘性土的压实标准,主要以压实干表观密度和施工含水量这两指标来控制。1.用击实试验来确定压实标准;2.用最优饱和度于塑限的关系;计算最大干表观密度;3.施工含水量确定。

(二)砂土及砂砾石 砂土及砂砾石是填筑坝体或坝壳的主要材料之一,对其填筑密度也应有严格要求。它的压实程度与粒径级配和压实功能有密切的关系,一般用相对密度Dr来表示:Dr=(emax-e)/(emax-emin)式中emax——砂石料的最大空隙比;emin——砂石料的最小空隙比;e——设计空隙比。 在施工现场,对相对密度进行控制仍不方便,通常将相对密度换算成相应的干表观密度rp(t/m^3),作为控制的依据.rp=rmax*rmin/[rmax-Dr(rmax-rmin)]式中rmax——砂石料最大干表观密度,t/m^3;rmin——砂石料最小干表观密度,t/m^3,设计的相对密度,于地震等级、坝高等有关。一般土石坝,或地震烈度在5读以下的地区,Dr不宜低于0.67;对高坝,或地震烈度为8~9度时,Dr应不小于0.75。对砂性土,还要求颗粒不能大小和过于均匀,级配要适当,并有较高的密实度,防止产生液化。 (三)石渣及堆石体(坝壳料) 石渣或堆石体作为坝壳材料,可用空隙率作为压实指标。根据国内外的工程实践经验,碾压式堆石体空隙率应小于30%,控制空隙率在适当范围内,有利于防止过大的沉陷和湿陷裂缝。一般规定其压实空隙率为22%~28%左右(压实平均干表观密度为2.04~2.24t/m^3)以及相应的碾压参数。

土石坝的压实标准及应用中存在的问题

土石坝的压实标准及应用中存在的问题 郭庆国 (国家电力公司西北勘测设计研究院工程科研实验院,西安710043) 李鹏徐彦文 (陕西省水电工程局,西安710068) 关键词:土石坝;土石料;压实标准;压实度;相对压实度 摘要:土石坝施工的核心是土石料的填筑压实,压实质量的好坏,关键在于能否正确执行压实标准。本文基于某些工程在执行压实标准中存在一些问题,对此作了简略的分析,以引起注意外,着重对压实标准的定义、条件、相互关系作了较全面的阐述,其目的旨在正确的应用压实标准,确保工程质量。 1 压实标准及有关指标 碾压式土石坝的施工,关键工序是对坝体土石料的分层填筑压实,压实效果,用测得的干密度反映出来,所以干密度是设计和施工质控的主要指标。 一般当填筑的土石料较为均匀时,性质比较稳定,在同一压实条件下,干密度接近常数值,这时可用某一干密度作为设计和施工质控标准。但天然土石料往往是不均匀的,在同一压实条件下,干密度指标是不同的,若仍用某一干密度作为设计和施工质控标准,必然出现对易于压实的土石料,压实后的干密度值容易达到,而压实结果是偏松的,对不易压实的土石料,压实干密度不易达到,而压实结果是偏紧密的,这样形成不均匀土石料在同一压实条件下,紧密程度不同,容易发生不均匀变形,危及坝体安全。鉴于此种情况,在坝体设计中对不均匀土石料,不用某一固定干密度值作为设计和施工质控指标,而是对粘性土用压实度(见(1)式),对无粘性粗粒土用相对压实度(见(3)(4)式)作为设计标准和施工质控的依据。 式中:D为压实度;ρ d 为干密度;ρ dmax 为最大干密度。 由(1)式看出,D为压实度,是干密度与最大干密度比值,反映相对紧密 度的一个无量纲标准值,值的大小,是依据土石坝工程的规模(坝高、工程量、库容等)、重要性(地理位置、效益、作用等),工程等级由规范确定,对某一工程而言,它是一个固定值,代表该土石坝的设计标准;ρ d 是土料压实后测出 的干密度,反映了压实效果的指标值,ρ dmax 是对该土料用标准压实方法(如 ASTM D698 方法)[5]测得最优含水量的干密度值,亦称标准压实条件下的最大干密 度指标,反映土料的压实特性指标值,ρ d 和ρ dm ax 为同一种土料在两种压实条 件下的两个密度指标值。按(1)式关系,只要现场测得压实后的干密度满足(2)

压实度计算公式

压实度计算公式 压实度是路基路面施工质量检测的关键指标之一,也是路基路面施工质量检查主控项目之一。表征现场压实后的密实状况,压实度越高,密实度越大,材料整体性能越好。而到底压实度是怎么计算的,又有哪些试验方法呢,下面一起来看看吧。 1、压实度计算 压实度又称压实系数。对于路基与路面基层:压实度是指工地实际达到的干密度与室内标准击实试验所得的最大干密度的比值,用百分率来表示; 对于沥青路面:现场实际达到的密度与标准密度的比值,用百分率来表示。 表达式: 压实度=现场密度/(室内最大干密度或标准密度)×100 从表达式中可以看出,要求压实度,就是要分别测出分子与分母值,再计算出比值。因此,测定压实度过程实际上是测定现场密度和室内最大干密度或标准密度的过程。 2、压实度检测方法 国内外大量研究表明,压实不足和压实均匀性不佳是造成沥青路面发生损坏的主要原因之一。统计表明,压实度每增加1%,路面承载能力相应的提高10%-15%,而压实的费用仅占总投资的1%-4%,所以,有效的压实是提高路面质量有效且经济的方法。 压实度作为公路施工与验收中反映施工质量的一项重要性能指标,其检测方法也受到广泛的关注并不断的发展。传统检测压实质量的方法主要包括:灌砂法、水袋法、环刀法、蜡封法、核子仪、无核密度仪、振动检测等。这些方法都不能

用于在线检测,价格昂贵,劳动量大。特别是核子密实度仪易受外界环境的干扰,且放射性物质对人体有伤害。 3、结语 压实度检测系统通过实时检测被压材料的压实状况,协助判断压实与否,避免欠压和过压,及时发现压实过程中存在的问题并采取相应措施加以解决,大大提高了压实质量和效率。随着压实度实时检测系统的不断发展,由它带动的智能化压路机也会持续发展,压实作业将更加高效,工程质量将得到不断提高。

一级建造师水利水电练习题(4)2F313000土石坝及堤防工程

2F313000 土石坝及堤防工程 一、单项选择题(每题的备选项中,只有1个最符合题意) 1.土料实际开采总量与坝体填筑量之比一般为()A A2~2.5 B1.5~2 C1~2 D2.5~3 2.()挖掘机主要挖掘停机面以上的土方。D A反向铲 B索铲 C抓铲D正向铲 3.土石坝的土料压实标准,黏性土用()控制。B A湿密度 B干密度 C相对密实度 D最优含水量 4.土石坝的土料压实标准,非黏性土用()控制。C A湿密度 B干密度C相对密实度 D最优含水量 5.()是根据施工强度和坝体填筑部位变化选择料场使用时机和填料数量。D A施工工艺规划 B施工设备规划 C空间规划D时间规划 6.装运结合的机械是()。D A铲运机 B掘进机 C挖掘机 D装载机 7.羊足碾在碾压滚筒表面设有交错排列的截头圆锥体,状如羊脚,适用于()的压实。B A软土B粘性土 C非粘性土 D砂土 8.料场土石料开采、挖、装、运、卸以及坝面铺平、压实、质检等项作业称为()B A准备作业 B基本作业 C辅助作业 D附加作业 9.保证坝体长期安全运行的防护及修整工作称为()。D A准备作业 B基本作业 C辅助作业 D附加作业 10.对料场的质量检查和控制中,对()的检查和控制尤为重要。D A土质情况 B土块大小 C杂质含量D含水量 11.土石坝施工中当含水量偏低时,对非粘性土料可用()加水。B A分块筑畦埂B洒水车喷洒 C轮换取土 D灌水浸泽 12.对于反滤层、过渡层、坝壳等非粘性土的填筑,主要应控制()。C A含水量 B干密度 C压实参数 D铺土厚度 13、堤防工程中,选择的内帮土料的渗透系数须()原堤身土料的渗透系数。 A大于 B等于 C小于 D以上均可 14、当堤防土料的天然含水量接近施工控制下限值时或冬季为避免冻土,采用()方式。

压实度计算公式

1.压实度计算公式定义 压实密度,锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 2.压实密度计算方式 压实密度的计算公式:压实密度=面密度/材料的厚度 在锂离子电池设计过程中,压实密度=面密度/(极片碾压后的厚度—集流体厚度) ,单位:g/cm3 压实密度分为:负极压实密度Anode density(或称为阳极压实密度)和正极压实密度Cathode density(或称为阴极压实密度)。 3. 压实密度制作原理: 锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看

做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 实验得出以下结论:合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。在压实密度过大或过小时,不利于锂离子的嵌入嵌出。 现在常用的正极材料(钴酸锂、锰酸锂、磷酸铁锂、三元材料等)和负极材料(人造石墨、天然石墨、复合石墨等),由于材质不同,压实密度也有较大的差别。

土石坝习题及答案

一、填空题 1.土石坝施工需要对料场从________、________、_______与_________等方面进行全面规划。(空间时间质量数量) 2.土石坝施工,坝面铺料行之有效的方法是________、________、__________、________、________、________。(算方上料定点卸料随卸随平定机定人铺平把关插钎检查) 3.常用的碾压机械有________、__________与________。(羊足碾振动碾气胎碾) 4.压实粘性土的压实参数包括_________、______________及_________。(铺土厚度碾压遍数最优含水量) 5.压实非粘性土的压实参数包括_________、_________。(铺土厚度碾压遍数) 6.土石坝冬季施工,可采取_________、_________、__________三方面的措施。(防冻保温加热) 7.土石坝冬季施工,对粘性土应将含水量降低到塑限的________倍。土料中的冻土块含量不超过_______。冻土块直径不超过铺土层厚的__________。(覆盖隔热材料覆盖积雪冰层保温松土保温) 8.土石坝预计施工的防雨措施可以采用_________、_________、__________。(雨前将铺土压成光面坝面向外筑成缓坡以利排水来不及压实的松土用帆布或塑料布覆盖) 二、选择题 1.土石坝施工料场规划实际可开采总量与坝体填筑量之比,土斜—般为 ________ (A) A.2—2.5 B.1.5—2.0 C.1.0—1.5 2.料场内装料面的间距以________m为宜。 (C) A.200 B.150 C.100 3.挖掘机开挖、子卸汽车运输两者配套时,自卸汽车运距为2.0km,车厢和铲斗容量的合理比值为_______。(B) A.3-5 B.4-7 C.7-10 4.心墙坝或斜墙坝施工,坝面应向上倾斜_________的坡度。(A) A.1%-2% B.3%-4% C.4%-5%

压实度

压实度是一个干密度比较值。先在实验中测定标准干密度,再计算工地取样的干密度,进行 比较。压实度=工地试件干密度/标准干密度(100%) 一、路面工程质量评定与检测的特点 路面工程和路基工程—样,都是道路丁程的单位工程。 路面是在路基建成后铺筑的,路面质量的评定与检测通常是道路竣工验收工作的一部分。因此,路面的质量水平就是道路质量的最终体现,既表现道路的外观状态,义包含了它的内在质量。 由于交通呈大小的不同,可能取得的材料来源不同,路面所采用的材料多种多样,形成了不同类型的结构,如十低级道路的砂石路面,高等级道路的水泥混凝土路面和沥青路面,日前普遍应用的各种稳定土结构等。不同类型路面的质量评定与检测内容有较大的差异,宽严要求也不一样。 由上述对质量的基本要求叫·见,由于路面受行车和外界条件的影响,尤其对高等级道路,其质量评定与检测要求高,项日多。 现代化道路路面的修筑,一般是机械化施工,部分路面材料已实行工厂化生产,路面施工质量的管理及其评定与检测丁作趋向于更为严格、完善和规范化。 二、检验与评定的一般要求 路面工程的实测项目规定值或允许偏差按高速公路、‘级公路和其他公路(指二级及以下公路)两档设定。对寸:在设计和合同文什中提高了技术要求的二级公路,其工程质量检验评定按设计和合同文件的要求进行,但不应高于高速公路、一级公路的检验评定标准。 路面工程实测项目规定的检查频率为双车道公路每一检介段内的检查频率(按m2或m3或了作班设定的检查频率除外),多车道公路的路面各结构层均须按其车道数与双车道之比,相应增加检查数量。 各类基层和底基层压实度代表值(平均值的下置信界限)不得小于规定代表值,单点不得小于规定极值。小于规定代表值2个百分点的测点,应按具占总检查点数的百分率计算合格率。垫层的质量要求同相同材料的其他公路的底基层;联结层的质量要求同相应的基层或面层;中级路面的质量要求同相同材料的其他公路的基层。 第181页 路面表层平整度检查测定以自动或半自动的平整度仪为主,全线每车道连续测定按每100m输出结果汁算合格率。采用3m直尺测定路面各结构层平整度时,以最大间隙作为指标,按尺数计算合格率。路面表层渗水系数宜在路面成型后立即测定。 路面各结构层厚度按代表值和单点合格值设定允许偏差。当代表值偏差超过规定值时,该分项工程评为不合格;当代表值偏差满足要求时,按单个检查值的偏差不超过单点合格值的测点数计算合格率。材料要求和配比控制列人各节基本要求,可通过检查施工单位、工程监理单位的资料进行评定。 (一)路基、路面压实度评定

公路的常用评定公式0

公路常用评定公式 一、路面结构层厚度评定 H.0.1 评定路段内路面结构层厚度按代表值和单个合格值的允许偏差进行评定。 H.0.2 按规定频率,采用挖验或钻取芯样测定厚度。 H.0.3 厚度代表值为厚度的算术平均值的下置信界限值,即: X L=X-t a/√ ̄n*S 式中:X L —厚度代表值(算术平均值的下置信界限): X—厚度平均值; S—标准差; n—检查数量; t a —t分布表中随测点数和保证率(或置信度a)而变的系数,可查附表B。 采用的保证率: 高速、一级公路:基层、底基层为99%,面层为95%。 其他公路:基层、底基层为95%,面层为90%。 H.0.4 当厚度代表值大于等于设计厚度减去代表值允许偏差时,则按单个检查值的偏差不超过单点合格值来计算合格率;当厚度代表值小于设计厚度减去代表值允许偏差时,相应分项工程评为不合格。 代表值和单点合格值的允许偏差见第7章各节实测项目表。 H.0.5 沥青面层一般按沥青铺筑层总厚度进行评定,高速公路和一级公路分 2~3层铺筑时,还应进行上面层厚度检查和评定。 二、路基、柔性基层、沥青路面弯沉值评定 I.0.1 弯沉值用贝克曼梁或自动弯沉仪测量。每一双车道评定路段(不超过lkm)检查80~100个点,多车道公路必须按车道数与双车道之比,相应增加测点。 I.0.2 弯沉代表值为弯沉测量值的上波动界限,用下式计算: l r =l+Z a S 式中:l r —弯沉代表值(0.0lmm); —实测弯沉的平均值: S—标准差: Z a —与要求保证率有关的系数,见附表I。 附表I Za值 层位 Za 高速公路、一级公路二、三级公路 沥青面层 1.645 1.5 路基 2.0 1.645 I.0.3 当路基和柔性基层、底基层的弯沉代表值不符合要求时,可将超出l±(2~3)S的弯沉特异值舍弃,重新计算平均值和标准差。对舍弃的弯沉值大于 l+(2~3)S的点,应找出其周围界限,进行局部处理。

水利水电工程习题1F415000土石坝工程

1F415000 土石坝工程 1F415010 土石坝施工技术 一单项选择题 1.在确定土石坝土料压实参数的碾压试验中,以单位压实遍数的压实度()者为最经济合理。 A.最大B.最小 C.等于零D.无穷小 2.某土石坝面碾压施工设计碾压遍数为5遍,碾滚净宽为4m,则错距宽度为()m。 A.0.5 B.0.8 C.1.0 D.1.5 3.土石坝施工对土料场的()的检查和控制最为重要。 A.土块大小B.杂质含量 C.含水量D.土质情况 4.土石坝施工土石料场的反滤料的实际开采总量与坝体填筑量之比一般不宜()。 A.大于3 B.大于5 C.小于3 D.小于5 5.某土石坝填筑土料的击实最大干密度为1.87g/cm3,设计压实度为0.98,则设计最大干密度为() g/cm3。 A.1.91 B.1.83 C.1.87 D.1.98 6.碾压土石坝施工中,具有生产效率高等优点的碾压机械开行方式是()。 A.进退错距法B.圈转套压法 C.进退平距法D.圈转碾压法 7.在碾压土石坝坝体填筑中,各分段之间的接坡坡比一般应缓于()。 A.1:3 B.1:2 C.1:2.5 D.1:1

8.土石料场实际开采总量与坝体填筑量之比最大的土料是()。 A.石料B.砂砾料C.反滤料D.土料 9.土石坝施工中砂的填筑标准的设计控制指标是()。 A.相对密度B.天然密度C.干密度D.含水量 10.在土坝黏性土的压实实验中,ωp表示土料的()。 A.相对密实度B.干密度C.塑限D.天然含水量 11.土坝的堆石级配的质量检查应()。 A.随机取样B.分层分段取样 C.分层分段后再随机取样D.梅花形取样 12.土石坝施工中,当黏性土料含水量偏低时,应在()加水。 A.压实前B.运输过程中 C.料场D.压实后 13.土石坝中,1级、2级坝和高坝的压实度应为()。 A.93%~95% B.95%~98% C.98%~100% D.96%~98% 14.土石坝施工中,非黏性土的砂砾石填筑标准中的相对密度不应低于()。 A.0.7 B.0.5 C.0.75 D.0.8 15.在碾压土石坝坝面作业中,干密度的测定,黏性土一般可用体积为()的环刀测定。 A.200~500cm3B.300~500 cm3 C.200~400 cm3D.100~30O cm3 16在碾压土石坝坝面作业中,取代表性试样进行室内物理力学性能试验,其表试样的总数为( )。 A. 多于30个B.少于30个 C.多于20个D.少于20个

土石坝设计规范

土石坝设计规范 现阶段,我国建筑行业为了规范化管理碾压式土石坝设计,结合具体建筑市场情况,制定了碾压式土石坝设计规范,碾压式土石坝施工组织设计规范主要由中国电力出版社编制出版,适应中国建筑行业编制的规范。 土石坝设计规范中对土石坝建设施工做了明确要求,其中对土石坝设计规范内容包括:(1)施工质量控制要点(2)坝基处理质量控制要点(3)料场质量控制要点(4)坝体填筑质量控制要点等内容,其中坝体填筑质量控制要点内容如下: (1)坝体填筑质量应重点检查的项目。 (2)施工前应检查碾压机具的规格、重量。施工期间对碾重应每半年检查一次;气胎碾的气胎压力每周检查1~2次。 (3)施工单位对碾压、平土操作人员进行培训,统一施工操作方法,经考试合格后,方可操作。 (4)防渗体压实控制指标采用干容重、含水量;反滤层、过渡层、砂砾料、堆石等的压实控制指标应用干容重,必要时应进行相对密度校核。 (5)坝体压实检查项目及取样试验次数符合规范要求。 (6)防渗体压实质量控制除在每个压实段有代表性地点取样检查外,尚必须在所有压实可疑处及坝体所有结合处抽查取样,测定干容量、含水量。 (7)防渗体填筑时,一般每层经压实和取样测定干容重合格后(方可继续

铺土填筑,否则应补压至合格为止。 (8)反滤层、过渡层、坝壳等无粘性土的填筑,除按有关的规定取样检查外,主要应控制压实参数,如不符合要求,施工人员应及时纠正。每层压实后,即可继续铺土填筑,其测定的铺土厚度、碾压遍数应经常进行统计分析,研究改进措施。反滤料、过渡料级配应在筛分现场进行控制,填筑时应对接头、防护措施等加强检查。 (9)汽车经常进入心墙或斜墙填筑面上的道路处,应取样检查土层有无剪力破坏等,一经发现必须彻底返工处理。 (10)现场含水量对粘性土、砾质土以手试测定的同时,应取样用烘干法或其他方法测定,并以此来校正干容重。 (11)取样所测定的干容重,其合格率应不小于90%,且不合格样不得集中,不合格干容重不得低于设计干容重的98%。 (12)应根据坝址地形、地质及坝体填筑土料性质、施工条件,对防渗体选定若干个固定取样断面,沿坝高每5~10m取代表性试样进行室内物理力学性能试验,作为核对设计及工程管理之依据。 (13)雨季施工,应检查施工措施落实情况。雨前应检查坝面松土表层是否已适当压实和平整;雨后复工前应检查填筑面上土料是否合格。(14)负温下施工应增加检查项目,同时每班应对气温、土温、风速等进行观测并作记录。在春季,应对去冬所完成的全部填土层质量进行复查。

相关文档
最新文档