概率论与数理统计上机实验报告

概率论与数理统计上机实验报告
概率论与数理统计上机实验报告

概率论与数理统计上机实验报告

实验一

【实验目的】

熟练掌握 MATLAB 软件的关于概率分布作图的基本操作

会进行常用的概率密度函数和分布函数的作图

绘画出分布律图形

【实验要求】

掌握 MATLAB 的画图命令 plot

掌握常见分布的概率密度图像和分布函数图像的画法

【实验内容】

2 、设X : U (?1,1)

(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)

(3 )又已知分布函数F ( x) = 0.45 ,求x

(4 )画出X 的分布密度和分布函数图形。

【实验方案】

熟练运用基本的MATLAB指令

【设计程序和结果】

1.计算函数值

Fx=unifcdf(0, -1,1)

Fx=unifcdf(0.2, -1,1)

Fx=unifcdf(0.4, -1,1)

Fx=unifcdf(0.6, -1,1)

Fx=unifcdf(0.8, -1,1)

Fx=unifcdf(1.0, -1,1)

精品文档Fx=unifcdf(1.2, -1,1)

结果

Fx =0.5000

Fx =0.6000

Fx =0.7000

Fx =0.8000

Fx =0.9000

Fx =1

Fx =1

2.产生随机数

程序:X=unifrnd(-1,1,3,6)

结果:

X =

0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162

0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565

-0.7460 -0.8049 0.9150 0.9412 0.6006 0.8315

3.求x

程序:x=unifinv(0.45, -1,1)

结果:

x =-0.1000

4.画图

程序:x=-1:0.1:1;

px=unifpdf(x, -1,1);

fx=unifcdf(x, -1,1);

plot(x,px,'+b');

hold on;

plot(x,fx,'*r');

legend('均匀分布函数','均匀分布密度');

结果:

【小结】

运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。

实验二

【实验目的】

掌握正态分布的有关计算

掌握正态分布在实际问题处理中的应用

掌握数据分析的一些方法和 MATLAB 软件在概率计算中的应用

【实验要求】

掌握综合使用 MATLAB 的命令解决实际问题的方法

【实验内容】

2 、公共汽车车门的高度是按成年男子与车门碰头的机会在 0.01 以下的标准来设计的,根据统计资料成年男子的身高X 服从均值 168cm ,标准差 7cm 的正态分布,那么车门的高度应该至少设计为多少厘米?

【实验方案】

利用成年男子的身高X 服从均值 168cm ,标准差 7cm 的正态分布这一条件,用相关函数反解出自变量的值即为所求车门高度。

【设计程序和结果】

程序:x=norminv(0.99, 168,7)

结果:x =184.2844,所以车门高度应设计为184.3cm,可使得成年男子与车门碰头的机会在 0.01 以下。

【小结】

生活中的许多问题本身是概率论与数理统计问题或者可以抽象成概率论与数理统计问题,要善于利用学过的理论知识解决生活中的实际问题。

实验三

【实验目的】

掌握单个总体的矩估计法、极大似然估计法、区间估计法

会用 MATLAB 对单个总体参数进行估计

掌握两个正态总体均值差、方差比的区间估计方法

会用 MATLAB 求两个正态总体均值差、方差比的区间估计

【实验要求】

参数估计理论知识

两个正态总体的区间估计理论知识

MATLAB 软件

【实验内容】

2 、为比较甲乙两种型号子弹的枪口速度,随机抽取甲种型号子弹 10 发,得枪口速度平均值 500(m / s) ,标准差1.10(m / s) ,随机抽取乙种型号子弹 20 发,得枪口速度平均值496(m / s) ,标准差1.20(m / s) ,根据生产过程可假定两总体都近似服从正态分布,且方差相等。求两总体均值差的置信水平为 0.95 的置信区间。

【实验方案】

利用软件求出t分布的函数值在将其带入求解上下界的公式中即可得到置信水平为0.95 的置信区间。

【设计程序和结果】

程序:

x=500-496;

y=((9*1.1^2+19*1.2^2)/28)^0.5;

z=tinv(0.025, 28);

a=x+z*(1/10+1/20)^0.5*y

b=x-z*(1/10+1/20)^0.5*y

结果:

a =3.0727

b =4.9273

所以得到:总体均值差的置信水平为 0.95 的置信区间为(3.0727,4.9273)

【小结】

利用软件求解特殊函数,大大减少的运算量,方便得到所需要的结果。

P101-11

程序:

exp=[];

price=[-200 100];

exp(1)=expcdf(1,4)

exp(2)=1-exp(1)

Ey=exp*price'

结果:

exp =

0.2212

exp =

0.2212 0.7788

Ey =

33.6402

即平均获利为Ey=e^(-1/4)*300-200=33.6402

p101-13

程序:

Syms x y

fxy=(x+y)/3;

Ex=int(int(fxy*x,y,0,1),x,0,2)

Ey=int(int(fxy*y,y,0,1),x,0,2)

Exy=int(int(fxy*x*y,y,0,1),x,0,2)

E=int(int(fxy*(x^2+y^2),y,0,1),x,0,2) 结果:Ex =

11/9

Ey =

5/9

Exy =

2/3

E =

13/6

P102-22

程序:

Syms x y

fxy=1;

Ex=int(int(fxy*x,y,-x,x),x,0,1)

Ey=int(int(fxy*y,y,-x,x),x,0,1)

Ex2=int(int(fxy*x^2,y,-x,x),x,0,1)

Ey2=int(int(fxy*y^2,y,-x,x),x,0,1)

Dx=Ex2-Ex^2

Dy=Ey2-Ey^2

结果:

Ex =

2/3

Ey =

Ex2 =

1/2

Ey2 =

1/6

Dx =

1/18

Dy =

1/6

P103-26

程序:

Syms x y

fxy=2-x-y;

Ex=int(int(fxy*x,y,0,1),x,0,1);

Ey=int(int(fxy*y,y,0,1),x,0,1);

Ex2=int(int(fxy*x^2,y,0,1),x,0,1); Ey2=int(int(fxy*y^2,y,0,1),x,0,1); Dx=Ex2-Ex^2;

Dy=Ey2-Ey^2;

Exy=int(int(fxy*x*y,y,0,1),x,0,1);

Covxy=Exy-Ex*Ey

rxy=Covxy/(sqrt(Dx)*sqrt(Dy)) D=4*Dx+Dy

结果:

cov(x*y) =

-1/144

rxy =

-1/11

D =

55/144

实验四

【实验目的】

会用 MATLAB 软件进行单个总体均值、方差的假设检验

会用 MATLAB 软件进行两个总体均值差、方差比的假设检验

【实验要求】

掌握使用 MATLAB 进行假设检验的基本命令和操作

【实验内容】

2 、假设某炼铁厂铁水中含碳量 ( , 0.112 )X N μ: ,现对工艺进行了改进,从中抽取了 7炉铁水,测得含碳量数据:4.421,4.052 ,4.357,4.394,4.326 ,4.287 ,4.68

3 ,试问新工艺炼出的铁水含碳量的方差是否有明显的改变?(取α = 0.05 )

【实验方案】

利用软件求出f分布的函数值在将其带入求解上下界的公式中即可得到拒绝域,然后比较实验值与拒绝域的范围,即可判定新工艺炼出的铁水含碳量的方差是否有明显的改变。

【设计程序和结果】

程序:

n=7;

m=7;

f1=0.05;

f2=1-0.05;

x=[4.421,4.052,4.357,4.394,4.326,4.287,4.683];

D=var(x,1)

a=finv(f1,n-1,m-1)

b=finv(f2,n-1,m-1)

c=0.112^2/D

结果:

a =0.2334

b =4.2839

c =0.4170

所以可得:拒绝与的区间为(-∞,0.2334)或(4.2839,+∞),c =0.4170 不在拒绝域的范围内,可以认为新工艺炼出的铁水含碳量的方差有明显的改变。

【小结】

可以利用概率统计的知识辅助判断工业生产中的问题,得到有使用价值的结论。

P175-27

程序:

x1=[0.143 0.142 0.143 0.137]

x2=[0.140 0.142 0.136 0.138 0.140]

x=mean(x1)

y=mean(x2)

s1=var(x1)

s2=var(x2)

s=sqrt((3*s1+4*s2)/7)

t=tinv(0.975,7)

d1=(x-y)-t*s*sqrt(1/4+1/5)

d2=(x-y)+t*s*sqrt(1/4+1/5)

结果:

s =

0.0026

t =

2.3646

d1 =

-0.0020

d2 =

0.0061

即置信区间为(-0.0020,0.0061)

P175-28

程序:

u=norminv(0.975,0,1)

s=sqrt(0.035^2/100+0.038^2/100) d1=(1.71-1.67)-u*s

d2=(1.71-1.67)+u*s

结果:u =

1.9600

s =

0.0052

d1 =

0.0299

d2 =

0.0501

>>

即置信区间为(0.0299,0.0501)

P175-30

程序:

f1=finv(0.975,9,9)

f2=finv(0.025,9,9)

f3=finv(0.95,9,9)

f4=finv(0.05,9,9)

s12=0.5419

s22=0.6065

d1=s12/s22/f1

d2=s12/s22/f2

d3=s12/s22/f3

d4=s12/s22/f4

结果:

d1 =

0.2219

d2 =

3.5972

d3 =

0.2811

d4 =

2.8403

>>

即置信区间为(0.2219,3.5972),置信下界为0.2811

,置信上界为2.8403

五、实验五假设检验

【实验目的】

1 会用MATLAB进行单个正态总体均值及方差的假设检验

2 会用MATLAB进行两个正态总体均值差及方差比的假设检验

【实验要求】

熟悉MATLAB进行假设检验的基本命令与操作

【实验内容】

P198-2

原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu<>32.25

方差已知,用ztest

程序:

x=[32.56,29.66,31.64,30.00,31.87,31.03]

[h,sig,ci,zval]=ztest(x,32.25,1.1,0.05)

[h,sig,ci,zval]=ztest(x,32.25,1.1,0.01)

(注:h是返回的一个布尔值,h=0,接受原假设,h=1,拒绝原假设;sig 表示假设成立的概率;ci为均值的1-a的置信区间;zval为Z统计量的值)

结果:

h =

1

sig =

0.0124

30.2465 32.0068

zval =

-2.5014

h =

sig =

0.0124

ci =

29.9699 32.2834

zval =

-2.5014

即a=0.05时,拒绝原假设H0;

a=0.01时,接受原假设H0

p198-3

原假设H0:总体均值mu=4.55;H1:总体均值mu<>4.55 方差未知,用ttest

程序:

x=[4.42,4.38,4.28,4.40,4.42,4.35,4.37,4.52,4.47,4.56] [h,sig,ci,tval]=ttest(x,4.55,0.05)

结果:

h =

1

sig =

6.3801e-004

4.3581 4.4759

tval =

tstat: -5.1083

df: 9

sd: 0.0823

h=1,即拒绝原假设H0

p198-10

是否认为是同一分布需要分别检验总体均值和方差是否相等原假设H0:mu1-mu2=0;H1:mu1-mu2<>0

程序:

x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]

y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8]

[h,sig,ci]=ttest2(x,y,0.05)

结果:

h =

sig =

0.9172

ci =

-0.2396 0.2646

h=0,即接受原假设H0,mu1-mu2=0,两分布的均值相等;验证方差相等的matlab方法没有找到

可采用以下语句整体检验两个分布是否相同,检验两个样本是否具有相同的连续分布

[ h ,sig, ksstat]=kstest2(x,y,0.05)

原假设H0:两个样本具有相同连续分布

H1:两个样本分布不相同

程序:

x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]

y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8]

[ h ,sig, ksstat]=kstest2(x,y,0.05)

结果:

h =

sig =

0.9998

ksstat =

0.1528

>>

h=0,即接受原假设H0,两个样本有相同的连续分布

MATLAB给我的感受是,它的功能强大,含有丰富的内建函数,很多在我们眼中抽象的计算,它都能具体化的表现出来,绘图能力强大,也能激发我们的学习兴趣。当然我们学习的时间很短,了解甚少,但是感觉到它的很多功能很能解决一些实际问题,对我们以后学习工作都会有帮助。但即使时间足够,老师也不能把所有的都教授给我们,因为一个软件的功能需要我们切身体会,自己不断的摸索,任何人都不可能知道所有。老师只是指路明灯。最终学习还是要靠自己。而且在摸索的过程中,我们能够发现和体会学习的快乐!希望以后老师在授课的时候,课堂与实验相结合的更紧

密些,实验前,引导大家准备准备,先大概了解了解,这样做实验才不会觉得无从下手,希望老师教出更多好的学生,在此祝老师新年快乐。

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

计算机上机实验内容及实验报告要求(完整版)

报告编号:YT-FS-1915-76 计算机上机实验内容及实验报告要求(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

计算机上机实验内容及实验报告要 求(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、《软件技术基础》上机实验内容 1.顺序表的建立、插入、删除。 2.带头结点的单链表的建立(用尾插法)、插入、删除。 二、提交到个人10m硬盘空间的内容及截止时间 1.分别建立二个文件夹,取名为顺序表和单链表。 2.在这二个文件夹中,分别存放上述二个实验的相关文件。每个文件夹中应有三个文件(.c文件、.obj 文件和.exe文件)。 3.截止时间:12月28日(18周周日)晚上关机时为止,届时服务器将关闭。 三、实验报告要求及上交时间(用a4纸打印)

1.格式: 《计算机软件技术基础》上机实验报告 用户名se××××学号姓名学院 ①实验名称: ②实验目的: ③算法描述(可用文字描述,也可用流程图): ④源代码:(.c的文件) ⑤用户屏幕(即程序运行时出现在机器上的画面): 2.对c文件的要求: 程序应具有以下特点:a 可读性:有注释。 b 交互性:有输入提示。 c 结构化程序设计风格:分层缩进、隔行书写。 3.上交时间:12月26日下午1点-6点,工程设计中心三楼教学组。请注意:过时不候哟! 四、实验报告内容 0.顺序表的插入。 1.顺序表的删除。

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

随机过程上机实验报告讲解.pdf

2015-2016第一学期随机过程第二次上机实验报告 实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方 法,加深对随机过程的理解。 上机内容: (1)模拟随机游走。 (2)模拟Brown运动的样本轨道。 (3)模拟Markov过程。 实验步骤: (1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 ①一维情形 %一维简单随机游走 %“从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p” n=50; p=0.5; y=[0 cumsum(2.*(rand(1,n-1)<=p)-1)]; % n步。 plot([0:n-1],y); %画出折线图如下。

%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。n=50; x=rand(1,n)-1/2; y=[0 (cumsum(x)-1)]; plot([0:n],y);

②二维情形 %在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。例 %子程序是用四种不同颜色画了同一随机游动的四条轨 道。 n=100000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(2,n)<0.5)-1; x=[zeros(1,2); cumsum(z')]; col=colorstr(k); plot(x(:,1),x(:,2),col);

hold on end grid ③%三维随机游走ranwalk3d p=0.5; n=10000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(3,n)<=p)-1; x=[zeros(1,3); cumsum(z')]; col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3),col);

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

C程序设计上机实验报告((完整版))

C语言程序设计上机实验报告 学院:机械工程学院 班级:机自161213 姓名:刘昊 学号:20162181310 实验时间:2017 年3 月6 号 任课老师:张锐

C语言程序设计上机实验报告 实验一 一、实验名称: C 程序的运行环境和运行C程序的方法 二、实验目的:了解在 程序 C 编译系统上如何编辑、编译、连接和运行一个 C 三、实验内容: (1). (2). (3). 输入并运行一个简单的C程序。 设计程序,对给定的两个数求和。 设计程序,对给定的两个数进行比较,然后输出其中较大的数。 四、源程序代码: 代码1: 运行结果1:

程序分析1: 该程序用来判断所输入的整数是否为一个素数,如果一个数能被除了 1 和它本身整除,还能被其它数整除,那么它就不是一个素数,因此,用for 循环来进行整除过程的简写。 代码2: 运行结果2:

程序分析2: 简单的使用printf() 和scanf() 函数进行简单的数据运算。代码3: 运行结果3:

程序分析3: 使用if 语句进行判断。 五.实验总结 C语言程序设计上机实验报告 实验二 一、实验名称:顺序结构程序设计 二、实验目的:正确使用常用运算符(算术运算符、赋值运算符)的用法, 熟练掌握算术运算符及其表达式,逻辑运算符和逻辑表达式。 三、实验内容: (1). 编写程序,实现小写字母转大写。

(2). 编写程序,实现输入两个不同类型数据后,经过适当的运算(加、减、乘、除)后输出。 (3). 编写程序,计算三角形面积、立方体的体积和表面积、圆的面积和周长。 (4). 编写程序,实现单字符getchar 和putchar 输入输出。 (5). 编写程序,实现十进制、八进制、十六进制不同数制的输出。 四、源程序代码 代码1: 运行结果1: 程序分析1:

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

相关文档
最新文档