遥感卫星影像预处理的方法步骤

遥感卫星影像预处理的方法步骤
遥感卫星影像预处理的方法步骤

1技术路线

DOM 技术流程图

数据查询 数据获取 数据预处理 质量检查 整理提交 原始数据 正射校正 平面控制 高程数据 辐射校正 辐射定标 大气校正 配准融合 整体镶嵌 范围裁切

高景一号MUX 影像大气校正植被指数多样性选择

NDVI/EVI/NDWI/...光谱特征影像集

随机森林分类

研究区作物分类结果

精度评价

训练样本验证样本影像预处理

辐射定标

影像融合纹理特征多样性选择Mean/Entropy/ASM/...

GLCM 计算

高景一号Pan 影像

灰度级量化...纹理特征影像集

影像集

验证样本集训练样本集实地调查高分解译

样本筛选样本数据影像数据

分类

土地利用分类技术流程

遥感图像

水体粗提取先

间ROI 区域图像分割阈值水陆二值图边界膨胀直方图统计图像分割

最小连通区去除水体掩膜图像

水体分布提取技术流程

模块开发数据处理数据获取 水面实测光谱数据光学遥感数据

实测水质参数数据水体固有光学量数据光谱特征分析固有光学特性分析基于水面实测光谱的

水质参数反演算法

基于光学遥感数据的水质参数反演策略

最优反演算法

精度评价水质参数反演软件模块开发

反演算法水体光学分类大气校正

水体提取

水质参数反演技术路线图

建筑物提取提取技术路线图

2影像正射校正方案

2.1正射校正原理

遥感影像获取的过程中会受到各种不定因素的影响,如:传感器的成像方式、地形起伏、地球曲率、大气折射等,导致图像本身的几何位置、形状、尺寸等与其对应的地物不一致,发生变形。通过一定的数学模型来改正和消除遥感影像产生的变形的过程称为几何校正。

通常情况下,对影像进行粗略几何校正时,需要利用卫星等提供的一些轨道、姿态参数以

及与地面系统相关的处理参数来进行校正。当精度要求较高时需对影像进行几何精校正,即利

用地面控制点及畸变模型对原始影像进行校正。

经过粗校正之后接收到的全色影像数据中的大部分地物已经实现了重叠,只有个别仍存在偏差。此时,需要利用DEM 数据对全色影像做正射校正,生成全色影像的正射影像图。

正射校正是将中心投影的影像进行纠正形成正射投影影像的过程,先把影像化分为许多小区域,之后根据相关参数按照对应的中心投影构像方程或者特定的数学模型用控制点进行解算,得到解算模型后利用数字高程模型对原始遥感影像进行校正,最终获得数字正射影像。

2.2正射校正方法

1、正射校正的计算方法

a.计算地面点坐标。若正射影像上任意一点P 的中心坐标为(X 1,Y 1),由其左下角图廓点的地面坐标(X 0,Y 0)与其比例尺分母M 计算得到P 点对应的坐标(X,Y )。

b.计算像点坐标。运用反解公式计算原始影像上对应像元点的坐标P (x,y ),反解公式为:

()()()()()()1110333s s s s s s a X X b Y Y c Z Z X X f a X X b Y Y c Z Z -+-+--=--+-+- ()()()()()()

2220333s s s s s s a X X b Y Y c Z Z Y Y f a X X b Y Y c Z Z -+-+--=--+-+- 其中:Z 是像元点P 的高程,是数字高程模型DEM 内插得到的,再将像元点坐标转换成数字化影像的坐标或扫描坐标(I,J )。

1234910111L X L Y L Z L I L X L Y L Z +++=+++ 5678910111

L X L Y L Z L J L X L Y L Z +++=+++ c.灰度内插。灰度内插可以采用双线性内插(因为所得的像元坐标不一定落在像素中心),求像元点P 的灰度值g (x,y )。

d.灰度赋值。将像元点P 的灰度值赋给校正后的像元点P ,即:

(,)(,)G X Y g x y = 公式(4)

公式(1)

公式(2)

公式(3)

对每个校正像素逐个进行计算,即能得到数字正射影像(DOM)。

2、校正步骤

a.校正控制点采集

1.采用基础底图和高程数据为纠正基础,纠正控制点要均匀分布,控制区域大于片区范围。每景控制点数量在9-15个之间,山地适当增加控制点。

控制点点位示意图

2.选取影像清晰、易于判别、明显的特征地物点进行校正,如道路交叉处、球场角、围墙角等位置。

3.相邻景重叠区选取不少于3个公共点,上下相邻的影像由于重叠较少,较难实现共用控制点时,在实际工作中,尽量采用独立控制点。

4.控制点选取时,应避免在调查底图镶嵌线附近,不同生产单位生产的相邻底图区域,以及更高分辨率遥感数据源生产底图的平原、丘陵区高速公路和桥梁等地物上选点。

5.在纠正单元内,如果纠正参考的基础底图同时包括1:1万和1:5万两种,可根据控制点分布区基础底图比例尺,对一景数据分块后,采用各自基础底图分别纠正。但其中一种比例尺基础底图只占小部分可整体纠正。

根据纠正过程中软件自动记录的控制点残差文件,检查正射纠正控制点点位精度。要求纠正控制点残差中误差应不大于下表中的规定,取中误差的两倍为其最大误差。若控制点残差超限,则查找原因并重新选点。

纠正控制点残差表

地形类别平地、丘陵地(像素)山地、高山地(像素)

残差中误差 1.0 2.0

b.校正方法

分别对全色和多光谱遥感影像做正射纠正,得到全色正射影像和多光谱正射影像。分为单景纠正和区域网平差法纠正。

(1)单景纠正

不同轨道、不同时相的遥感影像,通常对单景数据采用有理函数模型进行正射纠正。RPC (Rational Polynomial Coefficients)有理多项式模型在遥感影像几何处理中有广泛应用,是模拟构筑真实传感器模型的常用计算方法。建立地面点与对应影像像点几何关系,不同RPC模型参数个数不同,导致所需要最小控制点数目不同。一般而言,基于RPC模型的单景影像纠正需在影像上至少采集9个控制点。如图所示。

单景纠正图

(2)区域网平差法

当工作区涉及连片多景同源遥感数据且相邻影像间重叠度达到要求时,优先使用区域网平

差纠正方法对多景影像进行整体纠正。相邻景影像重叠区内至少选取3个公共点。采用有理函数模型,如图所示。

区域网纠正图

2.3校正精度检查

对正射纠正完的单景(区域网)影像进行纠正精度的初步检查。

以DOM影像作为参考标准,采用ERDAS中的“拉窗帘”工具对正射纠正后的成果与参考影像平面位置偏差进行比较。若影像发生了明显抖动或错位现象,则量测该处同名点误差。如果点位偏差超出最大误差限差,需要对影像重新进行正射校正;如果没有超出限差,继续下步工序,以确保接下来的影像处理工作顺利进行。

“拉窗帘”对正射纠正精度进行检查图

叠加配准后的全色影像和多光谱影像,以略大于原始分辨率的比例沿主要线状地物及特征

地物线进行“拉窗帘”检查,对比检查二者的配准精度。

“拉窗帘”检查全色多光谱影像配准精度图

DOM成果几何精度限差表

地形类别平地、丘陵地山地、高山地特殊困难地区

相对误差(m) 5 7.5 按地形类别放宽0.5倍注:1.相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区

除外,但该地区周边不超限。

通过DOM 成果与已有参考数据进行定量比对,统计解算DOM 成果的几何精度。具体方法是以参考数据作为标准,选取DOM 成果数据上同名像点(北京全市域影像均匀选取300-400个检查点位,如下图所示),计算每个检查点平面位置偏差,最后按公式统计中误差,作为DOM 纠正中误差。

几何精度质量检查图

(1)解算每个点位检查点和标准点之间的平面坐标差22y x ??+;

(2)用以下公式统计山区几何中误差、平原区几何中误差以及全市域几何中误差。

n M n i i

∑=?=12

通过以上公示计算几何中误差得到几何校正结果的精度,如果不符合要求,则需要重新进行校正。

3影像辐射校正方案

3.1辐射校正原理

辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。

利用传感器观测目标的反射或辐射能量时,

所得到的测量值与目标的光谱反射率或光谱辐

射亮度等物理量之间的差值叫做辐射误差。辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。

遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。

辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。

辐射校正分为辐射定标和大气校正两部分。

辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。

辐射校正流程图

3.2辐射校正方法

辐射定标主要分为两种类型:统计型和物理型。统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。

用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。

1、ACORN模型

一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正, 因此大气校正的结果称为拉伸的地表反射率, 又称表观反射率, 在地形信息已知的情况下,可以将表观反射率转为地表反射率。

Acorn所提供的最高级的大气校正形式是基于辐射传输理论的, 大气校正的方法是基于

chandrasekhar (1960,dover) 公式, 描述了太阳辐射源、大气、和地表对辐射的贡献关系。Caorn提供了一系列大气校正策略,包括经验法和基于辐射传输理论的方法, 既可以对高光谱数据进行大气校正, 也可以对多光谱图像数据进行大气校正, 校正模式如下:

1) 模式1:对定标后的高光谱数据进行辐射传输大气校正,输出项为地表

表观反射率。

2)模式1.5:对定标后的高光谱数据利用水气和液体水光谱你和技术进行

辐射传输大气校正。

3) 模式2: 对高光谱大气校正结果进行独立的光谱增强。

4) 模式3:利用经验线性法对高光谱数据进行大气校正

5) 模式4: 对高光谱数据进行卷积处理得到多光谱数据

6) 模式5:对定标的多光谱数据进行辐射传输大气校正

7) 模式6: 对多光谱的大气校正结果进行独立的光谱增强

2、LOWTRAN模型

LOWTRAN是一种低分辦率(分辦率大于等于20cm-1)大气辐射传输模式。它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线, 其他 13 种微量气体的垂直廓线, 城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线, 辐射参量 ( 如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。

lowtran7 可以根据用户的需要 ,设置水平、倾斜及垂直路径, 地对空、空对地等各种探测几何形式, 适用对象广泛。lowtran7的基本算法包括透过率计算方法, 多次散射处理和几何路径计算。

1) 多次散射处理

lowtran 采用改进的累加法,自海平面开始向上直至大气的上界, 全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通里。再用得到的通里计算散射源函数,用二流近似解求辐射传输方程。

2) 透过率计算

该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率, 在计算多次散射时, 采用k-分布法。

3) 光线几何路径计算

考虑了地球曲率和大气折射效应,将大气看做球面分层,逐层考虑大气折射效应。

3、MODTRAN模型

MODTARN (ModerateResolutionTransmission) 这是由美国空军地球物理实验 (AFGL)开发的计算大气透过率及辐射的软件包。 MODTRAN从LOWTRAN 发展而来, 它提高 LOWTRAN的光谱分辨率。MODTRAN 的基本算法包括透过率计算, 多次散射处理和几何路径计算等。需要输入的参数有四类:计算模式,大气参数,气溶胶参数和云模式。MODTRAN 有四种计算模式:透过率,热辐射,包括太阳或月亮的单次散射的辐射率, 直射太阳辐照度计算。

用MODTRAN 进行大气纠正的一般步骤是:首先输入反射率,运行MODTRAN得到大气层顶(TOA)光谱辐射,解得相关参数;然后利用这些参数带入公式进行大气纠正。

MODTRAN可以计算 0 到 50000cm- 1 的大气透过率和辐射亮度, 它在 440nm 到无限大的波长范围精度是 2cm- 1, 在 22680 到 50000cm- 1 紫外波 (200-440nm) 范围的精度是20cm-1, 在给定辐射传输驱动、气溶胶和云参数、光源与遥感器的几何立体对和地面光谱信息的基础上, 根据辐射传输方程来计算大气的透过率以及辐射亮度。

MODTRAN输入输出参数

(1)控制运行参数: 如何采用何种辐射传输程序, 是否进行多次散射计算等;

(2)遥感器参数: 如遥感器的波段参数,观测的波束(波长范围);

(3)大气参数: 其中大气模型通过 card1 中的选项确定,其他具体参数包括气溶胶;

(4) 观测几何条件: 在 card1 中有关于几何条件的选项, 另外在card3 中主要为几何参数的输入选项,它通过多种方式组合来实现几何参数的输入,可根据计算的方便进行选择;

(5)地表参量: 在card1 中提洪了地表参数设定的初步选项,所以只能在 card4根据card1中设定的参数对地表的参数进行具体设定。

所有的输入都通过 card1 进行控制, 然后在由后续的 card 进行具体社这设定所有参数之后,就可以用 modtran来模拟大气辐射传输过程

4、5S模型

1986年, 法国里尔科技大学大气光学实验室 TanreD.,DeuzeJ.L, 等人为了简化大气辐射传输方程, 开发了太阳光谱波段卫星信号模拟程序 5S(SIMULATION OF THE SATELLITESIGNAL IN THE SOLAR SPECTRUM 用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。

5、6S模型

1997年, 美国马里兰大学地理系Eric Vemote对5s进行了改进, 发展到6S

(SECONDSIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比 5S有所提高。

6S (Second Simulation of the Satellite Signal in the SolarSpectrum ) 大气校正模型是 Eric F.Vermote etal.(1997)在 5S 模型的基础上发展起来的。 6S 模型可以很好地模拟太阳光在太阳-地面目标-传感器的传输过程中所受到的大气影响。相对于 5S模型,6S模型考虑了地面目标的海拔高度、非朗伯平面的情况和新的吸收气体种类(CH4,N20,CO) 通过采用theartapproximation 近似算法和 S0s 运算法则, 提高了瑞利和气溶胶散射作用的计算精度。光谱步长提高到了 2.5nm。 6S 模型建立在辐射传输理论基础之上, 模型应用范围广,不受研究区特点及目标类型等的影响。

6S描述了大气如何影响辐射在太阳-地表-遥感器之间的传输。需要输入的参数有:几何参数(遥感器类型、成像年月日和经纬度);大气中的水和臭氧浓度;气溶胶浓度;附设条件、观测波段和海拔高度;地表覆盖类型和反射率。6S预先设置了50多种波段模型,包括MODIS,AVHRR,TM等常见传感器的可见光近红外波段。

它其中主要包括以下几个部分:

太阳、地物与传感器之间的几何关系:;大气模式; 气溶胶模式; 传感器的光谱特性:地表反射率。这5个部分便构成了辐射传输模型,考虑了大气顶的大阳辐射能里通过大气传递到地表,以及地表的辰射辐射通过大气到达传感器的整个辐射传输过程。

65的输入参数主要有9个部分组成:(1)几何参数(2)大气模式(3)气溶旋模式(4)气溶胶浓度(5)地面高度(6)探测器高度(7)探测器的光谱条件(8)地表特性(9)表观反射率

6、FLAASH模型

它是ENVI下的一个模块,FLAASH 参数如下:

(1)图像中心点坐标

可以从相应的 HDF 文件中找到, 也可以从屏幕上直接读取影橡的中心坐标, 对反演结果影响不大。当影像位于西半球时, 经度为负值;

(2)传感器类型

当选择传感器类型时,模块会选择相应的类型的传感器波段响应函数,同时系统一般会自动设置传感器的高度和图像的空间分辨率;

(3) 海拔高度

海拔高度为研究区的平均海揣;

(4) 数据获取日期和卫星过境时间

卫星过境时间为格林尼治时间,可以从相应的HDF文件中找到;

(5) 大气模型

模块提供热带, 中纬度夏季,中纬度冬季、极地夏季、极地冬季和美国标准大气模型, 研究者根据数据获取时间选择相应的大气模型;

(6)水气反演

大多数多光谱数据不推荐反演水汽含量;

(7)气溶胶模型

可供选择的气溶胶模型有无气溶胶、城市气溶胶、乡村气溶胶、海洋气溶和对流层气溶胶模型。当能见度大于40Km时,气溶胶垫型选择对反演设有太多影响,一般情兄下利用ASTER 数据不做气溶胶反演。

7、ATCOR模型

ATCOR大气校正模型由德国Wessling光电研究所 Richter 博士于1990年研究提出并且经过大量验证和评估的一种快速大气校正算法。ATCOR模型有两种模式,一种是适用于卫星图像的模式,包括1996年提出的用于平坦地面的ATCOR2模型和1998年提出的可以推广到山区崎岖地面的ATCOR3模型; 另一种是适用于机载和航拍的ATCOR4模型。ATCOR模型算法的核心部分是一个以MODTRAN4代码计算辐射传输方程的数据库, 通过输入传感器几何条件, 光谱特征及成像时的气溶胶等参数,通过插值法计算查找表, 从而进行精确快速的大气校正。

进行大气校正前,先利用模块的 ATCOR3 DeriveTerrain Files功能对 DEM文件进行计算获得坡度、坡向、天空可视因子和阴影。DEM文件必须为投影坐标系,如果进行了投影转换必预保证像素的X和Y边长相等。输入 DEM正确的获取时间和经纬度后就可进行计算,其中Skyview 和 Shadow 文件计算所需时间比较长。获得上述4个文件后,就可以开始进行大气校正处理了。

ATCOR大气校正流程

3.3校正准确度检查

辐射校正结果为地表反射率产品,与原始数据的DN值所表现的光谱曲线明显差异,矫正后结果跟接近于地物的真是光谱曲线,通过对比校正前后数据的光谱曲线,检查校正成果的准确度。

大气校正前后对比图

大气校正前后某地物光谱曲线对比图

4影像融合方案

多源数据的融合依据监测区情况不同、数据源的不同类型,其融合方法也不同。但总体上分为以下几个步骤:融合前影像处理、融合单元的选择、最佳融合算法的选取及实现以及融合后的处理和效果检查。其技术路线下图所示。

数据融合技术路线图

4.1影像融合技术要求

a)光学遥感数据之间的配准中误差应不超过1个像元素;

b)融合后的图像影像中,各种地类特征应明显,边界应清晰,通过目视解译可以区分各

种地类信息。

c)影像融合一般以景为单位,不同数据源也可采用完整辖区为单元。

d)相同季节融合后影像要色调基本一致,不同季节影像色彩应反映当时地类光谱特征。

e)根据影像波段的光谱范围、地物和地形特征等因素,选择能清晰表现土地利用类型特

征和边界、色彩接近自然的融合算法。

f)融合影像应无重影、模糊等现象。

4.2影像融合前影像处理

对纠正、配准后满足精度要求的全色与多光谱数据,融合前还需要对其进行预处理。一方面,提高全色数据的亮度,增强局部反差突出纹理细节,尽可能降低噪声;另一方面,对多光谱数据进行色彩增强,拉大不同地类之间的色彩反差,突出其多光谱彩色信息。

1、全色数据处理

在融合中要突出全色数据的高分辨率特征,因此融合前处理的目的是为了增强局部灰度的反差从而突出纹理细节和加强纹理能量,通过细化来尽可能减少噪音。特别强调在增强局部灰度反差时只是增加灰度的值,原灰度关系保持不变。考虑到土地利用遥感监测需要从遥感影像上直接判读地类信息,从而发现新增建设用地图斑。因此,在拉伸方法选择上不应采用非线性拉伸。否则原灰度值的大小关系会发生变化,从而使影像产生灰度扭曲,增加含义不明确的伪信息,影响解译精度。

2、多光谱数据处理

多光谱数据具有多个光谱波段和丰富的光谱信息,不同波段影像对不同地物有特殊的贡献。因此在影像融合前需要进行最佳波段的选择组合和彩色合成,以最大程度地利用各波段的信息量,辅助影像的判读与分析。在融合影像中,多光谱数据的贡献主要是光谱信息。融合前以色彩增强为主,调整亮度、色度、饱和度,拉开不同地类之间的色彩反差,对局部的纹理要求不高。有时为了保证光谱色彩,还允许削弱纹理信息来确保融合影像图的效果。

4.3影像融合方法

选取融合方法的原则:

1.能清晰地表现纹理信息,能突出主要地类(如水体、建筑群、耕地、道路等)。

2.影像光谱特征还原真实、准确、无光谱异常;

3.各种地类特征明显,边界清晰,通过目视解译可以区分各种地类信息。

4.融合影像色调均匀、反差适中、色彩接近自然真彩色。

在遥感影像处理过程中,通常采用的融合方法有IHS变换、主成分变换、加权乘积、比值

变换、小波变换、高通滤波、BROVERY、结合GRB与IHS变换的PANSHARP融合等多种方法,其中IHS变换和PANSHARP融合方法对图像融合有较好的效果。BROVERY通常用于低植被、高度发暗的影像。

(1)高通滤波变换法

高通滤波和低通滤波常用于影像纹理和细节处理方面。影像的细节提取往往是通过对影像进行高通滤波来实现,影像细节与多光谱影像的色彩信息相加是融合的最基本原理。

高通滤波变换目的是提高影像高频细节,突出影像结构信息。各种高层板状建筑表现非常明显,交通和水体的边缘规则、无模糊。由于在突出高频信息同时,部分低频信息会受到压制,往往整体影像的结构比较细碎。色彩表现上,高通滤波变换效果一般,色调的层次感不强。

(2)主成分变换(PCA)

主成分变换在数学上是将矩阵展开分解为其协方差矩阵的特征向量的加权,对于图像而言主分量变换是图像按照特征向量在其特征空间上分解为多元空间。经过变换可将噪音向量剔除掉,保证融合图像信息度的良好。遥感影像进行分解时,第一、二主分量往往占总信息量(即方差)的90%以上,而其余各分量总和最多也不过10%。利用PC变换可很方便地将影像的结构信息通过第一主分量表达出来。主分量变换显著优点是将庞杂的多波段数据用尽可能少的波段表达出来,而且数据信息量几乎没有损失,从而达到数据压缩的目的。

主分量变换在进行融合中有两种变换方法,一种将参与变换的各波段包括高光谱在内统一进行主分量变换,然后反变换。另一种是指将多光谱的多个波段先做主分量变换,用高光谱影像全色波段替换第一主分量。再进行反主分量变换。得到融合影像。

主分量变换中参与变换的多光谱数据不受波段数限制,可以接受三个以上波段的多光谱数据和高光谱数据进行变换。主分量变换合成的影像色彩突出,各种地类的色彩能够较少的丢失和偏移。影像纹理信息结构明显、突出。

(3)IHS变换法

IHS变换是一类基于IHS色彩模型的基础、应用广泛的融合变换方法。IHS色彩是不同于RGB的另一种色彩模型系统,它将RGB图像转换色相H、亮I和饱和度S三个分量,图像的描述依据色相、亮度和饱和度三个要素来实现。I表示图像亮度,H代表色度,S表示饱和度。IHS变换能有效地将RGB系统中影像代表纹理的亮度I与其光谱信息H、S相分开。

运用IHS变换技术融合的原理为:用另一影像替代IHS三个分量中的某一分量,其中亮度分量被替代最为常用。当高分辨率全色影像与多光谱影像融合时,首先将多光谱的影像根据输

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感影像预处理

遥感影像预处理 预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。 本小节包括以下内容: ? ? ●数据预处理一般流程介绍 ? ? ●预处理常见名词解释 ? ? ●ENVI中的数据预处理 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 图1数据预处理一般流程 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍

(一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准 影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。

图像处理的流行的几种方法

一般来说,图像识别就是按照图像地外貌特征,把图像进行分类.图像识别地研究首先要考虑地当然是图像地预处理,随着小波变换地发展,其已经成为图像识别中非常重要地图像预处理方案,小波变换在信号分析识别领域得到了广泛应用. 现流行地算法主要还有有神经网络算法和霍夫变换.神经网络地方法,利用神经网络进行图像地分类,而且可以跟其他地技术相互融合.个人收集整理勿做商业用途 一神经网络算法 人工神经网络(,简写为)也简称为神经网络()或称作连接模型(),它是一种模范动物神经网络行为特征,进行分布式并行信息处理地算法数学模型.这种网络依靠系统地复杂程度,通过调整内部大量节点之间相互连接地关系,从而达到处理信息地目地.个人收集整理勿做商业用途 在神经网络理论地基础上形成了神经网络算法,其基本地原理就是利用神经网络地学习和记忆功能,让神经网络学习各个模式识别中大量地训练样本,用以记住各个模式类别中地样本特征,然后在识别待识样本时,神经网络回忆起之前记住地各个模式类别地特征并将他们逐个于样本特征比较,从而确定样本所属地模式类别.他不需要给出有关模式地经验知识和判别函数,通过自身地学习机制形成决策区域,网络地特性由拓扑结构神经元特性决定,利用状态信息对不同状态地信息逐一训练获得某种映射,但该方法过分依赖特征向量地选取.许多神经网络都可用于数字识别,如多层神经网络用于数字识别:为尽可能全面描述数字图像地特征,从很多不同地角度抽取相应地特征,如结构特征、统计特征,对单一识别网络,其输入向量地维数往往又不能过高.但如果所选取地特征去抽取向量地各分量不具备足够地代表性,将很难取得较好地识别效果.因此神经网络地设计是识别地关键.个人收集整理勿做商业用途 神经网络在图像识别地应用跟图像分割一样,可以分为两大类: 第一类是基于像素数据地神经网络算法,基于像素地神经网络算法是用高维地原始图像数据作为神经网络训练样本.目前有很多神经网络算法是基于像素进行图像分割地,神经网络,前向反馈自适应神经网络,其他还有模糊神经网络、神经网络、神经网络、细胞神经网络等.个人收集整理勿做商业用途 第二类是基于特征数据地神经网络算法.此类算法中,神经网络是作为特征聚类器,有很多神经网络被研究人员运用,如神经网络、模糊神经网络、神经网络、自适应神经网络、细胞神经网络和神经网络.个人收集整理勿做商业用途 例如神经网络地方法在人脸识别上比其他类别地方法有独到地优势,它具有自学习、自适应能力,特别是它地自学能力在模式识别方面表现尤为突出.神经网络方法可以通过学习地过程来获得其他方法难以实现地关于人脸识别规律和规则地隐性表达.但该方法可能存在训练时间长、收敛速度慢地缺点.个人收集整理勿做商业用途 二小波变换 小波理论兴起于上世纪年代中期,并迅速发展成为数学、物理、天文、生物多个学科地重要分析工具之一;其具有良好地时、频局域分析能力,对一维有界变差函数类地“最优”逼近性能,多分辨分析概念地引入以及快速算法地存在,是小波理论迅猛发展地重要原因.小波分析地巨大成功尤其表现在信号处理、图像压缩等应用领域.小波变换是一种非常优秀地、具有较强时、频局部分析功能地非平稳信号分析方法,近年来已在应用数序和信号处理有很大地发展,并取得了较好地应用效果.在频域里提取信号里地相关信息,通过伸缩和平移算法,对信号进行多尺度分类和分析,达到高频处时间细分、低频处频率细分、适应时频信号分解地要求.小波变换在图像识别地应用,包括图形去噪、图像增强、图像融合、图像压缩、图像分解和图像边缘检测等.小波变换在生物特征识别方面(例如掌纹特征提取和识别)同样得到了成功应用,部分研究结果表明在生物特征识别方面效果优于、、傅里叶变换等方

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像 imread Syntax: A = imread(filename, fmt) filename:指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到filename所制定的文件,会尝试查找一个名为filename.fmt的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含 RGB真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(filename, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow(filename) himage = imshow(...) ●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图 像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像

遥感图像处理实验

哈尔滨工业大学 遥感图像处理及遥感系统仿真 实验报告 项目名称:《遥感图像处理及遥感系统仿真创新》 姓名:蒋国韬 学号:24 院系:电子与信息工程学院 专业:遥感科学与技术 指导教师:胡悦 时间:2017年7月

实验一:遥感数字图像的增强 一、实验目的: 利用一幅城市多光谱遥感图像,分析其直方图,并利用对比度增强和去相关拉伸方法对遥感图像进行增强。 二、实验过程: 1.用multibandread语句读取一幅多光谱遥感图像(7波段,512x512图像)的可 见1,2,3波段(分别对应R,G,B层); 2.显示真彩色图像; 3.通过研究直方图(imhist),分析直接显示的真彩色图像效果差的原因;

4.利用对比度增强方法对真彩色图像进行增强(imadjust,stretchlim); 5.画出对比度增强后的图像红色波段的直方图;

6.利用Decorrelation去相关拉伸方法(decorrstretch)对图像进行增强;

7.显示两种图像增强方法的结果图像。

三、实验分析: (1)高光谱影像由于含有近百个波段,用matlab自带的图像读写函数imread和imwrite往往不能直接操作,利用matlab函数库中的multibandred函数,可以读取多波段二进制图像。512×512为像素点,7位波段数,bil为图像数组的保存格式,uint8=>uint8为转换到matlab 的格式,[3 2 1]的波段分别对应RGB三种颜色。 (2)直接观察真彩复合图像发现,图像的对比度非常低,色彩不均匀。通过观察红绿蓝三色的波段直方图,可以观察到数据集中到很小的一段可用动态范围内,这是真彩色复合图像显得阴暗的原因之一。另外,根据三种颜色的三维散点图,如下

图像处理基本方法

图像处理的基本步骤 针对不同的目的,图像处理的方法不经相同。大体包括图像预处理和图像识别两大模块。 一、图像预处理: 结合识别复杂环境下的成熟黄瓜进行阐述,具体步骤如下: · 图像预处理阶段的流程图 对以上的图像流程进行详细的补充说明: 图像预处理的概念: 将每一个文字图像分检出来交给识别模块识别,这一过程称为图像预处理。 图像装换和图像分割以及区域形态学处理都是属于图像处理的基本内容之一。 图像转换:方法:对原图像进行灰度化处理生成灰度矩阵——降低运算速度(有具体的公式和方程),中值滤波去噪声——去除色彩和光照的影响等等。 图像分割:传统方法:基于阈值分割、基于梯度分割、基于边缘检测分割和基于区域图像割等方法。脉冲耦合神经网络 (PCNN)是针对复杂环境下 图像采集 图像采集中注意采集的方法、工具进行介绍。目的是怎样获取有代表性的样本。(包括天气、相机的位置等) 对采集的图像进行特征分析 目标的颜色和周围环境的颜色是否存在干涉的问题、平整度影响相机的拍摄效果、形状 图像转换 图像分割 区域形态学处理

的有效分割方法,分割的时候如果将一个数字图像输入PCNN,则能基于空间邻近性和亮度相似性将图像像素分组,在基于窗口的图像处理应用中具有很好的性能。 区域形态学处理:对PCNN分割结果后还存在噪声的情况下,对剩余的噪声进行分析,归类属于哪一种噪声。是孤立噪声还是黏连噪声。采用区域面积统计法可以消除孤立噪声。对于黏连噪声,可以采用先腐蚀切断黏连部分,再膨胀复原目标对象,在进行面积阙值去噪,通过前景空洞填充目标,最后通过形态学运算,二值图像形成众多独立的区域,进行各连通区域标识,利于区域几何特征的提取。 二、图像识别: 针对预处理图像提取 目标特征 建立LS SVM分类器 得到结果 图像识别流程图 提取目标特征:目标特征就是的研究对象的典型特点,可以包括几何特征和纹理特征。 对于几何特征采用的方法:采用LS-SVM支持向量机对几何特征参数进行处理,通过分析各个参数的分布区间来将目标和周围背景区分开,找出其中具有能区分功能的决定性的几何特征参数。 纹理特征方法:纹理特征中的几个参数可以作为最小二乘支持向量机的辅助特征参数,提高模型的精准度。 最小二乘支持向量机介绍:首先选择非线性映射将样本从原空间映射到特征空间,以解决原空间中线性不可分问题,在此高维空间中把最优决策问题转化为等式约束条件,构造最优决策函数,并引入拉格朗日乘子求解最优化问题,对各个变量求偏微分。 LS SVM分类器:对于p种特征选择q个图像连通区域,作为训练样本。依

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感图像实验报告

遥感图像实验报告 一.实验目的 1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。 2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法, 土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。 3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。 二.实验内容 1、遥感图像的分类 2、土地利用变化分析,植被变化分析 3、遥感空间建模技术 三.实验部分 1.遥感图像的分类 (1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统; (2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理; (3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器; (5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:

图1.1 1992年土地利用图 图1.2 2001年土地利用图

(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。 图1.3 1992年精度图 图1.4 2002年精度图 2.土地利用变化 2.1 两年土地利用相重合区域 (1)在两年的遥感影像中选择相同的区域。 Subset(x:568121~684371,y:3427359~3288369),过程如下:

图2.1 截图过程图 图2.2.2 截图过程图

(2)土地利用专题地图如下: 图2.2.3 1992年专题地图 图2.2.4 2001年土地利用图

遥感卫星影像预处理做哪些

北京揽宇方圆信息技术有限公司热线:4006019091 遥感影像数据预处理 影像融合不同传感器的数据具有不同的时间、空间和光谱分辨率以及不同的极 化方式。单一传感器获取的影像信息量有限,往往难以满足应用需要, 通过影像融合可以从不同的遥感影像中获得更多的有用信息,补充单一 传感器的不足。全色图影像一般具有较高空间分辨率,多光谱影像光谱 信息较丰富。为提高多光谱影像的空间分辨率,可以将全色影像融合进 多光谱图像,通过融合既提高多光谱影像空间分辨率,又保留其多光谱 特性。对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段, 从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融 合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息, 从而达到影像地图信息丰富、视觉效果好、质量高的目的。 影像匀色相邻的遥感图像,由于成像日期、季节、天气、环境等因素可能有差异, 不仅存在几何畸变问题,而且还存在辐射水平差异导致同名地物在相 邻图像上的色彩亮度值不一致。如不进行色调调整就把这种图像镶嵌起 来,即使几何配准的精度很高,重叠区复合得很好,但镶嵌后两边的影 像色调差异明显,接缝线十分突出,既不美观,也影响对地物影像与专 业信息的分析与识别,降低应用效果。要求镶嵌完的数据色调基本无差 异,美观。遥感影像匀色后保证影像整体色彩一致性。 影像镶嵌将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,通 过镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不 同时间同一传感器获取的,也可以是不同时间不同传感器获取的图像, 但同时要求镶嵌的图像之间要有一定的重叠度。 影像去云雾影像数据常常有云雾覆盖,针对有云雾覆盖的影像,可以通过后期技术 处理去除薄云雾,达到影像最佳效果。 影像纠正依据控制点,利用相应软件模块对数据进行几何精校正,这一步骤包括 利用地面控制点(GCPs)找出实际地形,计算配准中控制点的误差,利 用DEM消除地形起伏引起的位移,然后对图像进行重采样等。形成符合 某种地图投影或图形表达要求的新影像。 即插即用无使用门槛,可与各类GIS软件系统无缝衔接 第 1 页

遥感图像预处理实验报告

实验前准备:遥感图像处理软件认识 1、实验目的与任务: ①熟悉ENVI软件,主要是对主菜单包含内容的熟悉; ②练习影像的打开、显示、保存;数据的显示,矢量的叠加等。 2、实验设备与数据 设备:遥感图像处理系统ENVI4.4软件; 数据:软件自带数据和河南焦作市影响数据。 3、实验内容与步骤: ⑴ENVA软件的认识 如上图所示,该软件共有12个菜单,每个菜单都附有下拉功能,里面分别包含了一些操作功能。 ⑵打开一幅遥感数据 选择File菜单下的第一个命令,通过该软件自带的数据打开遥感图像,可知,打开一幅遥感影像有两种显示方式。一种是灰度显示,另一种是RGB显示。 Gray(灰度显示)RGB显示 ⑶保存数据 ①选择图像显示上的File菜单进行保存; ②通过主菜单上的Save file as进行保存

⑷光谱库数据显示 选择Spectral > Spectral Libraries > Spectral Library Viewer。将出现Spectral Library Input File 对话框,允许选择一个波谱库进行浏览。点 击“Open Spectral Library”,选择某一所需的 波谱库。该波谱库将被导入到Spectral Library Input File 对话框中。点击一个波谱库的名称, 然后点击“OK”。将出现Spectral Library Viewer 对话框,供选择并绘制波谱库中的波谱曲线。 ⑸矢量化数据 点选显示菜单下的Tools工具栏,接着选择下面的第四个命令,之后选择第一个命令,对遥感图像进行矢量化。点击鼠标左键进行区域选择,选好之后双击鼠标右键,选中矢量化区域。 ⑹矢量数据与遥感影像的叠加与切割 选择显示菜单下的Tools工具,之后点选第一个 Link命令,再选择其下面的第一个命令,之后 OK,结束程序。 选择主菜单下的Basic Tools 菜单,之后选择 其中的第二个命令,在文件选择对话框中,选择 输入的文件(可以根据需要构建任意子集),将 出现Spatial Subset via ROI Parameters 对 话框通过点击矢量数据名,选择输入的矢量数 据。使用箭头切换按钮来选择是否遮蔽不包含在 矢量数据中的像元。 遥感图像的辐射定标 1、实验目的与任务: ①了解辐射定标的原理; ②使用ENVI软件自带的定标工具定标; ③学习使用波段运算进行辐射定标。 2、实验内容与步骤: ⑴辐射定标的原理 辐射定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等

GIS遥感图像的基本处理教程

实验一遥感图像的基本处理 一、实验要求 1.学会使用Erdas软件打开不同格式的图像

2.认识遥感图 以沈阳农业大学2011年高分辨率Quickbird遥感影像为底图, 识别操场位置形状大小颜色阴影 所住宿舍、位置形状大小颜色阴影 教学楼位置形状大小颜色阴影

雷达站位置大小颜色 水塔、位置形状大小颜色阴影 煤堆位置形状大小颜色 植物园广场间接

农田形状大小颜色 东陵陵园,位置形状大小颜色阴影在Erdas中调整遥感图像波段。 在工具栏上点击raster选择band combinations,在弹出来的对话框中对波段进行编辑,然后点击OK 3.学会使用Erdas软件的import/export文件导入功能 导出 在总的工具栏上点击第二个按钮import,在对话框中选择Export,选择

好输出文件类型,找到要输入的文件,并且新建要输出的文件名和确定存储位置,即可点击OK键输出文件 导入 勾选INport,选择输入文件类型,找到输入文件,新建输出文件名称及储存位置,即可点击OK 实验材料:2002年Landsat ETM+ 30m辽宁省沈阳市图像。 4.为图像添加aoi图层,并对遥感影像进行裁切 分别对Quickbird和Landsat ETM+影像进行处理,高分辨率影像要求裁切出沈阳农业大学校区,低分辨率影像要求裁切出沈阳市及周边郊区,aoi比要求实验区稍大,以方便进行后期处理。高分辨率影像适于纵向输出,低分辨率影像适于横向输出。 添加AOI图层

在工具栏点击AOI选项下的tools,选择一个工具对图片中想要创建图层的位置进行框选。 对框选的区域进行保存,存为AOI文件 裁剪

数字图像处理第三版第五章答案

第五章 一个带通滤波通过从相应的带阻滤波而获得: 然后: (a)理想带通滤波: (b)巴特带通滤波: (c)高斯带通滤波:

带阻滤波器公式可以通过带通滤波器的公式得到。两者的和为1. ),(1),(v u H v u H np nr -= 然后: (a) 理想带阻滤波: { 01),(= v u H 2.巴特带阻滤波: 我不想输这个公式了,这个就是下面的巴特带通滤波的公式中1减的后面那个式子 (b) 巴特带通滤波: 3.高斯带阻滤波: 我不想输这个公式了,这个就是下面的高斯带通滤波的公式中1减的后面中括号那个式子 (c)高斯带通滤波:

二维连续余弦函数的傅里叶变换 dxdy e y v x u A dxdy e v u f v u F vy ux j vy ux j )(200)(2)cos(),(),(+-+-????+==ππ 余弦的变换 )(2 1cos θθ θj i e e -+= 带入得到 ] [2][2][2 ),()(2)2/2/(2)(2)2/2/(2) (2)()(00000000??????+-+-+-++-+-+--=+- =dxdy e e A dxdy e e A dxdy e e e A v u F vy ux j y v x u j vy ux j y v x u j vy ux j y v x u j y v x u j πππππππππ 这些都是傅里叶变换的功能 并且 结果变换成 )]2,2()2,2([2),(0000π πδππδv v u u v v u u A v u F ++---- =即可

遥感数据预处理

遥感讲座——遥感影像预处理 据预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。下面是预处理中比较常见的流程。 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍 (一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准

影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。 (2)建立几何校正模型 地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。 (3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成输出图像中某些地物的不连贯。 2、双线性内插法是使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值。 3、三次卷积内插法较为复杂,它使用内插点周围的16个像元值,用三次卷积函数进行内插。这种方法对边缘有所增强,并具有均衡化和清晰化的效果,当它仍然破坏了原来的像元值,且计算量大。 一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路网、水系、地物边界等。

图像处理基础知识

网络域名及其管理 【教材分析】 本节课是浙江教育出版社出版的普通高中课程标准实验教科书《信息技术基础》第三章第三节的内容。教材内容分图像的几个基本概念和图像的编辑加工两部分。基本概念有:像素、分辨率、位图和矢量图、颜色、图形与图像、文件格式。其中“像素和分辨率”旨在让学生了解描述数字图像的基本概念;“位图和矢量图,图形和图像”重在要求学生分清这两组概念;“颜色”阐述了用计算机三原色描述和存储数字图像颜色的原理,学生应该学会计算一幅图像的存储空间。“文件格式和图像的编辑加工”旨在让学生了解常见的图像文件格式及简单的图像编辑加工。因此不作为教学的重点。由此可见,本节课内容重在概念原理和技术深层思想的探析,为学生今后进一步学习图像的编辑加工奠定了基础。同时,这部分知识也是对第一章“信息的编码”学习的一个承接,在内容上强化了多媒体信息的编码与二进制编码的对应关系。当然,在这些概念的学习中都体现了“由简单到复杂”这一人类认识事物的基本规律和“逐步细化”这一信息技术解决问题的基本思路,都体现了问题解决与“技术更好地为人服务”的基本思想。 【学情分析】 本节课的学习对象为高一学生。通过第一章的学习,他们已经能够掌握信息的编码及二进制的相关知识。但调查发现,对于具体的图像在计算机市如何表示的,学生还只是有一个大概的了解,知道是用二进制表示的。作为必修课的学习,学生对于信息技术不仅要“知其然”,更重要的是“知其所以然”,也即要理解相关技术原理,技术思想以及研究问题的方法。而理解的目的则是为了更好联系日常生活,更好的的应用。基于上述分析,引领他们探究数字图像的基础知识、训练解决信息技术问题的方法。 【课时安排】一课时 【教学目标】 (一)知识与技能 1.了解像素掌握图像分辨率的概念。 2.掌握数字图像颜色的表示方法及存储空间的大小。 3. 了解位图和矢量图,图像和图形的不同。 4. 了解图像文件的文件格式。 5. 在操作体验的基础上理解像素及颜色的表示。 (二)过程与方法 通过教师讲解、自主探究、讨论交流和操作实践,掌握像素、分辨率、数字图像的颜色的表示方式,进而能够运用这些知识分析、解决现实生活中碰到的实际问题。 (三)情感态度与价值观 结合ps图像的讲解训练,培养灌输学生的法制观念提高学生的网络道德水平。 【教学重点】 分辨率的定义及现实生活中的分辨率的使用;。 【教学难点】 数字图像颜色的表示及存储方法 【教学策略】

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感实习2卫星数据的预处理流程

数据预处理的一般过程包括几何校正、图像镶嵌与裁剪、辐射定标与大气校正等环节。

图1 数据预处理一般流程 通常我们直接从数据提供商获取未定标的DN 图像,然后定标为辐射亮度图像,对辐射率亮度图像进行大气校正得到地表反射率图像。 一、辐射定标与大气校正 1、辐射定标Radiometric calibration :将记录的原始DN 值转换为大气外层表面反射率(或称为辐射亮度值)。 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值 方法:实验室定标、机上/星上定标、场地定标 不同的传感器,其辐射定标公式不同。L=gain*DN+Bias 在ENVI 中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块 2、大气校正Atmospheric correction :将辐射亮度或者表面反射率转换为地表实际反射率 目的:消除大气散射、吸收、反射引起的误差。 分类:统计型和物理型 目前遥感图像的大气校正方法按照校正后的结果可以分为2种: 1) 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。包括:基于辐射传输模型、基于简化辐射传输模型的黑暗像元法、基于统计学模型的反射率反演 2) 相对大气校正方法:校正后得到的图像,相同的DN 值表示相同的地物反射率,其结果不考虑地物的实际反射率。包括:基于统计的不变目标法、直方图匹配法等。 方法的选择问题,一般而言: 1) 如果是精细定量研究,那么选择基于辐射传输模型的大气校正方法。 2) 如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3) 如果参数缺少,没办法了只能选择较简单的方法了。 在ENVI 中,Basic tools>preprocessing>calibration utilities>FLAASH 二、数字图像镶嵌与裁剪 1、镶嵌 当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。 在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利 Digital Numbers Radiance TOA Reflectance Geometric correction Step 1 Step 2 Surface Reflectance Step 3 Step 4 Analysis

实验六 遥感影像增强处理

实验六遥感影像增强处理 实习目的:掌握常用的遥感影像增强处理的方法。 实习内容:遥感影像空间、辐射、光谱增强处理的主要方法 空间增强:包括卷积增强处理、纹理分析、自适应滤波等 辐射增强:LUT拉伸处理、直方图均衡化处理、直方图匹配、亮度反转处理等 光谱增强:主成份变换、缨帽变换、色彩变换、指数计算等 图像增强是改善图像质量、增加图像信息量、加强图像判读和识别效果的图像处理方法。图像增强的目的是针对给定图像的不同应用,强调图像的整体或局部特性,将原来不清晰的图像变得清晰或增强某些感兴趣区域的特征,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。图像增强的途径是通过一定的手段对原图像附加一些信息或变换数据,有选择的突出图像中感兴趣区域的特征或抑制图像中某些不需要的特征。图像增强的方法包括空间域增强和频率域增强两类。空间域增强包括空间增强、辐射增强和光谱增强。在实际运用中,不是所有的图象增强处理方法都要用到,具体采用哪种图象增强处理方法,视具体的研究区域,研究内容和对象而定。 1.图像解译功能简介(Introduction of Image Interpreter) 利用ERADS IMAGINE 进行图像增强主要采用ERADS IMAGINE的图像解译器(Image Interpreter)模块,该模块包含了50多个用于遥感图像处理的功能模块,这些功能模块在执行过程中都需要通过各种按键或对话框定义参数,多数功能都借助模型生成器(Model Maker)建立了图形模型算法,容易调用或编辑。 图像解译器(Image Interpreter或Interpreter),可以通过两种途径启动:ERDAS图标面板菜单条: Main/Image Interpreter--Image Interpreter 菜单 ERDAS图标面板工具条:点击Interpreter图标一Image Interpreter菜单

遥感图像处理 图像配准、图像裁剪 实验报告

Lab3 geometric correction and projection transformation of remotely sensed data Objective : The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments. 实验过程: 一、envi中图像配准 1、根据控制点的坐标对图像进行配准 1)加载中山陵地形图 2) 选择map 菜单下的registration菜单,选择select gcps:image to map 设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—84

3)开始配准 依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:

点击add point,完成对控制点的编辑 4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像

修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存 2、图像到图像的配准 1)加载全色波段影像作为待配准的影像

相关文档
最新文档