空调温度控制实验 2

空调温度控制实验 2
空调温度控制实验 2

空调温度控制实验报告

开课实验室:电子楼503 20011 年12月

学院物电学院年级、专

业、班

光信

092班

姓名成绩

课程名称

微机原理

与接口实

实验项目

名称空调温度控制

指导老师

签名

一、实验目的

1.了解闭环控制的基本原理。

2.进一步熟悉A/D变换原理和编程方法。

3.进一步了键盘扫描和LED显示原理和编程方法。

二、实验原理

这是一个综合硬件实验,其中各部分实验已单独做过.现联合起来形成一个控制系统。利用实验仪上显示电路,键盘电路,A/D变换电路,完成类似空调恒温控制实验,可以利用实验仪上的电位器模仿温度变化,加热和致冷电机可以用发光管代替。要求可以用键盘设定恒温温度,当外界温度超过设定温度+/-2℃时,就要启动加热或致冷电机。

实验电路:

三、使用仪器、材料

1.伟福实验系统实验箱

2.装有伟福软件的计算机

四、实验步骤、实验过程原始记录及结果步骤:

1. 在实验箱断电的情况下连好线。

2. 输入程序并检查,保存程序。

3. “编译”程序。

4. “全速执行”程序。

5. 记录实验结果及分析。

框图:

温控控制主程序框图

源程序:

;T8.ASM

; 空调恒温控制实验

mode equ 082h ;8255工作方式0, PA/PC输出,PB输入1000,0010 PORTA equ 08000h

CTL equ 08003h

OUTBIT equ 09002h ; 位控制地址

OUTSEG equ 09004h ; 段控制口

IN equ 09001h

LEDBuf equ 60h ;显示缓冲区

ORG 0000H

ljmp Start

LEDMAP:

db 3fh, 06h, 5bh, 4fh, 66h, 6dh, 7dh, 07h

db 7fh, 6fh, 77h, 7ch, 39h, 5eh, 79h, 71h

Delay: mov r7, #0 ;延时DelayLoop:

djnz r7, DelayLoop

djnz r6, DelayLoop

ret

DisplayLED: ;显示mov r0, #LEDBuf

mov r1, #6

mov r2, #00100000b

Loop: mov dptr, #OUTBIT

mov a, #0

movx @dptr, a

mov a, @r0

mov dptr, #OUTSEG

movx @dptr, a

mov dptr, #OUTBIT

mov a, r2

movx @dptr, a

mov r6, #1

call Delay

mov a, r2

rr a

mov r2, a

inc r0

djnz r1, Loop

mov dptr, #OUTBIT

mov a, #0

movx @dptr, a

ret

TestKey: ;检测按键mov dptr, #OUTBIT

mov a, #0

movx @dptr, a

mov dptr, #IN

movx a, @dptr

cpl a

anl a, #0fh

ret

KeyTable:

db 16h, 15h, 14h, 0ffh

db 13h, 12h, 11h, 10h

db 0dh, 0ch, 0bh, 0ah

db 0eh, 03h, 06h, 09h

db 0fh, 02h, 05h, 08h

db 00h, 01h, 04h, 07h

GetKey: mov dptr, #OUTBIT ;求键码

mov P2, dph

mov r0, #Low(IN)

mov r1, #00100000b

mov r2, #6

KLoop: mov a, r1

cpl a

movx @dptr, a

cpl a

rr a

mov r1, a

movx a, @r0

cpl a

anl a, #0fh

jnz Goon1

djnz r2, KLoop

mov r2, #0ffh

sjmp Exit

Goon1: mov r1, a

mov a, r2

dec a

rl a

rl a

mov r2, a ; r2 = (r2-1)*4

mov a, r1

mov r1, #4

LoopC: rrc a

jc Exit

inc r2

djnz r1, LoopC

Exit: mov a, r2

mov dptr, #KeyTable

movc a, @a+dptr

mov r2, a

WaitRelease:

mov dptr, #OUTBIT

clr a

movx @dptr, a

mov r6, #10

call Delay

call TestKey

jnz WaitRelease

mov a, r2

ret

; ================================ UP equ 16h ; Next键的键码值DOWN equ 15h ; Last键的键码值LowLimit equ 10 ;温度上限

HighLimit equ 30 ; 温度下限

LowTemp equ -40 ; A/D= 0

HighTemp equ 50 ; A/D= 255

ADPort equ 0a000h ; A/D片选信号接CS2

Heat equ 1 ;加热口线PA0=1

Cool equ 2 ;制冷口线PA1=1

SetTemp equ 50h ;设定温度

CurTemp equ 51h ;当前温度

DisplayResult: ;当前温度和设定温度送显示缓冲

mov a, CurTemp

jnb acc.7, GE0 ; 如果当前温度低于零度,符号位显示缓冲区置'-' mov LEDBuf, #40h ;g=1,其他笔画=0, '-'

dec a ;求负温的绝对值

cpl a

jmp Goon

GE0: mov LEDBuf, #0 ; 如果当前温度不低于零度,符号位显示缓冲区置' ' Goon: mov b, #10 ; 当前温度十位数送显示缓冲区

div ab

mov dptr, #LEDMAP

movc a, @a+dptr

mov LEDBuf+1, a

mov a, b ; 当前温度个位数送显示缓冲区

movc a, @a+dptr

mov LEDBuf+2, a

mov LEDBuf+3, #0 ; 当前温度与设定温度之间置' '

mov a, SetTemp ;设定温度送显示缓冲区

mov b, #10

div ab

movc a, @a+dptr

mov LEDBuf+4, a

mov a, b

movc a, @a+dptr

mov LEDBuf+5, a

ret

ReadAD: mov dptr, #ADPort ;读A/D结果送a

clr a

movx @dptr, a ; start A/D

mov a, #0

djnz acc, $ ; delay

movx a, @dptr

ret

ReadTemp: ;读当前温度CurTemp

;CurTemp = 16次ADC采样之平均数* (HighTemp-LowTemp) / 256 + LowTemp;

mov r1, #0

mov r2, #0

mov r0, #16 ;采样计数器

RLoop: call ReadAD ;16次ADC采样之和高位送r1,低位送r2 add a, r2

mov r2, a

jnc GN1

inc r1

GN1: djnz r0, RLoop

mov a, r2 ; a = r1r2/16

swap a

anl a, #0fh

xch a, r1

swap a

anl a, #0f0h

orl a, r1

mov b, #(HighTemp-LowTemp); 16次ADC采样之平均数* (HighTemp-LowTemp) mul ab

mov a, b ; 保留积的高8位,丢弃低8位,相当于/256

add a, #LowTemp

mov CurTemp, a

ret

Start: mov sp, #70h

mov a, #mode ; 设置8255工作方式,PA,PC输出,PB输入

mov dptr, #CTL

movx @dptr, a

mov SetTemp, #20 ;置设定温度初值

MLoop: call TestKey ;检测按键

jnz KeyPressed ;有按键转KeyPressed, 修改设定温度

call DisplayResult ; 当前温度和设定温度送显示缓冲

call DisplayLED ; 显示当前温度和设定温度

call ReadTemp ; 读入当前温度

mov a, CurTemp

jb acc.7, LE0 ; 当前温度<0时转LE0

clr c

mov b, SetTemp ; 如果当前温度<设定温度-2, 则开动加热电机dec b

dec b

subb a, b

jnc GN2

LE0: mov a, #Heat ; 开动加热电机

mov dptr, #PORTA

movx @dptr, a

sjmp GN4

GN2: mov a, CurTemp ; 如果当前温度>设定温度+2, 则开动致冷电机setb c

mov b, SetTemp

inc b

inc b

subb a, b

jc GN3

mov a, #Cool ; 开动致冷电机

mov dptr, #PORTA

movx @dptr, a

sjmp GN4

GN3: mov a, #0 ; 在设定温度+/- 2度内, 无需开动电机mov dptr, #PORTA

movx @dptr, a

GN4: sjmp MLoop

KeyPressed: ;修改设定温度

call GetKey ; 求键码

mov b, a

xrl a, #DOWN;按键为LAST键,且设定温度≠LowLimit时, 设定温度-1 jnz Key0

mov a, SetTemp

xrl a, #LowLimit

jz Key1

dec SetTemp

sjmp Key1

Key0: mov a, b;按键为next键,且设定温度≠HighLimit时, 设定温度+1 xrl a, #UP

jnz Key1

mov a, SetTemp

xrl a, #HighLimit

jz Key1

inc SetTemp

Key1: sjmp MLoop

end

五、结果分析:

用LAST和NEXT键设定恒定温度,用温度采样器可改变外界温度,空调进行加热或制冷可由LED 灯显示。

六、参考资料

1、《微机原理实验指导书》

2、《单片机技术及工程实践》

家用空调温度控制器的控制程序设计

《微机原理及接口技术》 课程设计说明书 课题:家用空调温度控制器的控制程序设计专业: 班级: 姓名: 学号: 指导老师:王亚林 2015年1月8 日

目录 第1章、设计任务与目标................................................................................ 错误!未定义书签。 设计课题:................................................................................................ 错误!未定义书签。 设计目的:................................................................................................ 错误!未定义书签。 设计任务:................................................................................................ 错误!未定义书签。 基本设计要求:............................................................................................................. 错误!未定义书签。 第2章、总体设计规划与方案论证 (6) 设计环节及进程安排 (6) 方案论证 (5) 第3章、总体软件设计说明及总流程图 (10) 总体软件设计说明 (10) 总流程图 (11) 第4章、系统资源分配说明 (13) 系统资源分配 (13) 系统内部单元分配表 (13) 硬件资源分配 (15) 数据定义说明 (16) 部分数据定义说明 (16) 第5章、局部程序设计说明 (17) 总初始化以及自检 主流程 按键音模块 (17) .2 单按键消抖模块 (17) PB按键功能模块 (18) 基本界面拆字模块 (19) 4*4矩阵键盘模块 (19) 模式显示模块 (20) 显示更新模块 (21) 室内温度AD转换模块 (21) 4*4矩阵键盘扫描子程序 (21) 整点报时模块 (23) 空调进程判断及显示模块 (23) 三分钟压缩机保护模块 (23) 风向摆动模块 (24) 驱动控制模块 (24) 定时开关机模块 (25) 第6章、系统功能与用户操作使用说明 (26)

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

温度源的温度控制实验

实验二(1)温度源的温度控制调节实验 一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程。 二、基本原理:当温度源的温度发生变化时,温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。温度控制原理框图如图1所示。 三、需用器件与单元:主机箱、温度源、Pt100温度传感器。 图1温度控制原理框图 四、实验步骤: 温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24vDC,它的电源引线与外壳正面实验插孔相连。 温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24vDC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。使用时将电源开关打开(O为关,-为开)。从安全性、经济性且不影响学生掌握原理的前提下温度源设计温度≤200℃。 1、调节仪的简介及调节仪的面板按键说明。 1.1面板说明。 面板上有PV测量显示窗、SV给定显示窗、4个指示灯窗和4个按键组成。如图2所示。

图2调节仪面板图 面板中1、PV——测量值显示窗 2、SV——给定值显示窗 3、AT——自整定灯 4、ALM1——AL1动作时点亮对应的灯 5、ALM2——手动指示灯(兼程序运行指示灯) 6、OUT——调节控制输出指示灯 7、SET——功能键 8、?——数据移位(兼手动/自动切换及参数设置进入) 9、▼——数据减少键(兼程序运行/暂停操作) 10、▲——数据增加键(兼程序复位操作) 仪表上电后,上显示窗口显示测量值(PV),下显示窗口显示给定值(SV)。在基本状态下,SV窗口能用交替显示的字符来表示系统某些状态,如下: 1、输入的测量信号超出量程(因传感器规格设置错误、输入断线或短路均可能引起)时,则闪动显示:“orAL”。此时仪表将自动停止控制,并将输出固定在参数oPL 定义的值上。 2、有报警发生时,可分别显示“HIAL”、“LoAL”、“dHAL”或“dLAL”,分别表示发生了上限报警、下限报警、正偏差报警和负偏差报警。报警闪动的功能是可以关闭的(参看bAud参数的设置),将报警作为控制时,可关闭报警字符闪动功能以避免过多的闪动。仪表面板上的4个LED指示灯,其含义分别如下: (1)OUT输出指示灯:输出指示灯在线性电流输出时通过亮/暗变化反映输出电流的大小,在时间比例方式输出(继电器、固态继电器及可控硅过零触发输出)时,通过闪动时间比例反映输出大小。 (2)ALM1指示灯:当AL1事件动作时点亮对应的灯。 (3)ALM2指示灯:当手动指示灯。 (4)AT灯:自整定开启时点亮对应的灯。

空调温度自动控制器最终版

空调温度控制器 课程设计报告

目录 引言 (1) 第一章设计目的 (1) 第二章设计任务与要求 (2) 第三章方案设计与论证 (2) 1 方案一 (2) 2 方案二 (2) 3 方案比较 (3) 4 方案详细介绍 (3) 第四章电路工作原理及说明 (4) 1 温度信号采集模块工作原理 (4) 2温度信号处理与控制模块工作原理 (4) 1 LM324运算放大器功能介绍 (4) 2 LM324功能测试及信号处理 (5) 4 CD4011 芯片功能介绍 (7) 3 电机控制模块工作原理 (8) 第五章电路性能指标的测试 (9) 1 温度信号采集模块性能测试 (9) 2 双限比较器输出信号性能测试 (9) 第六章结论与体会 (10) 结论 (10) 体会 (11) 展望 (11) 第八章参考文献 (12) 附录Ⅰ元器件清单 (12) 附录Ⅱ整体电路原理图 (1)

引言 十九世纪末、二十世纪初,电子技术开始逐渐发展起来,并成为一项新兴技术。它在二十世纪发展最为迅速,应用最为广泛,并且成为了近代科学技术发展的一个重要标志。第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 随着科学技术的迅猛发展,电子控制电路在日常生活中有了更为广泛的应用,各种报警专用集成电路、语音/音效集成电路、传感器的不断推出,一些新颖实用的报警器、警示器电路已广泛应用于家庭生活、工农业生产、交通、机动车、通信和防盗、防灾等领域。 目前空调机已经广泛地应用于生产、生活中。而此类家电越来越趋于轻巧型。微型单片机系统以其体积小、性能价格比高,指令丰富、提供多种外围接口部件、控制灵活等优点,广泛应用于各种家电产品和工业控制系统中,在温度控制领域的应用也十分广泛。 随着能源的日趋减少,大气污染愈加严重,节能已是一个不容忽视的问题。众所周知,空调正朝着节能、舒适、静噪于一体的方向发展。鉴于这些方面的综合考虑,设计一种可以实现温度自动控的空调机,将会在节能方面有有新的突破,也必将会取代传统的靠人工实现的温度控制的空调机。通过巧妙的设计和安装可实现美观典雅和舒适卫生的和谐统一,是国际和国内的发展潮流。可以预料,下个世纪的节能空调将会以更快的步伐向前发展。其应用的范围将极为广阔,极大地方便了人们的工作和生活。可以说节能空调将是未来一种新的发展趋势。 电子控制设备中的电路都是由基本功能电路构成的。该课题涉及到模拟电子线路、Multisim软件仿真,数字电子应用等。方案实行中应用电阻分压、运算放大器、三极管控制开关以及继电器电路等。该课题目的是要设计空调温度控制电路,能够控制负温度系数的热敏电阻所在环境内的温度,当空调运行时和空调停止工作时分别由LED1和LED2指示。所设计的电路结构简单、成本低、易于操作、使用寿命较长;采用LED作指示灯,并且控制空调在设定的温度范围之外工作,LED指示灯具有结构简单、寿命长、耗电省、美观鲜艳、易于识别等特点。 第一章设计目的 1 了解并掌握运算放大器的工作原理和使用方法及其注意事项 2 学会查阅元器件资料,辨别元器件,检查并测试元器件 3学会绘制电路图并组装电路,调试电路. 4 熟练掌握各种基本仪器的使用 5 学会并熟练掌握电路仿真软件的使用(Multisim等)

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

Verilog HDL 空调温度控制器设计

设计题目:家用空调温度控制器 一设计题目的要求: 家用空调温度控制器的功能为: 1、室内温度可由按键设置,温度的设置范围为20度至39度。 2、有加热和制冷两种工作模式。当空调工作在加热模式时,如果室温低于设定温度,空调加热,反之,不加热;当空调工作于制冷模式时,如果室温高于设定温度,空调制冷,反之空调不制冷。 3、对室内温度用两位数码管进行实时显示。 二设计方案及其工作原理: 总的设计框图如下: 本电路由控制核心cpu、按键、4位锁存器、数码管7位译码器电路组成。 cpu:负责数据接收;室温和设定温度的比较;工作模式选择;显示数据的输出;加热制冷信号的控制;报警信号的输出等。 按键:负责设定标准温度,设置温度的升高与降低。 锁存器:将cpu输出的显示信号锁存,防止干扰,将信号送给译码器。 译码器:将BCD码译成数码管显示用的高低电平。 工作原理 在reset信号作用下,设定温度寄存器赋初值,初值为26度,通过add (温度升)和down(温度减)来步进调整设定温度(步进为一)。按键(key)模块通过seta和setb输出端口将设定温度传给cpu。 cpu接收到设定温度后将其与由温度传感器传来的室温xy比较,将比较结果标志存在寄存器(flag)中。读取用户工作模式(mod=1时为加热,mod=0时为制冷)。在加热模式状态下,根据flag的值给出加热控制寄存器heat

赋值;在制冷模式状态下,根据flag的值给制冷状态寄存器cool赋值。 cpu还将设置温度与设置温度范围比较,将比较结果标志存在报警寄存器flag_high(超上界寄存器)和flag_low(超下界寄存器)。 cpu还将室温和设定温度分别存放在室温寄存器和设定温度寄存器中。 最后,cpu将寄存器的值通过各端口输出。 各锁存器将数据锁存后在时钟信号的作用下将锁存信号输出给译码器,译码器再把BCD码转换成数码管显示的高低电平,数码管显示出室温和设置温度。 Led灯接到有效信号后点亮,指示设定温度是否越界(led_settoohigh 表示设置温度过高;led_settoolow表示设置温度过低)。 三各单元电路设计: 1、cpu设计 cpu框图如下: disp_outx:室温十位输出显示 disp_outy:室温个位输出显示 disp_outa:设置十位输出显示 disp_outb:设置个位输出显示 cool:制冷输出信号 heat:加热输出信号 led_settoohigh:设定温度超越上限报警 led_settoolow:设定温度超越下限报警 x:室温十位输入 y:室温个位输入 a:设定温度十位输入 b:设定温度个位输入 mod:用户加热制冷模式选择 clk:时钟脉冲 flag:室温和设置温度比较标志位寄存器 flag_high:设置温度超越上界标志位寄存器 flag_low:设置温度超越下界标志位寄存器 2、按键(key)设计

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

温度控制

PT100温度控制实验 一、实验目的: 了解PID智能模糊+位式调节温度控制原理。 二、实验仪器: 智能调节仪、PT100、温度源。 三、实验原理: 位式调节 位式调节(ON/OFF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中间继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。 PID智能模糊调节 PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(AT)功能使得无需设置控制参数。在误差大时,运用模糊算法进行调节,以消除PID饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。 温度控制基本原理 由于温度具有滞后性,加热源为一滞后时间较长的系统。本实验仪采用PID智能模糊+位式双重调节控制温度。用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可节约实验时间。 当温度源的温度发生变化时,温度源中的热电阻Pt100的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻-电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。PID智能温度控制原理框图如图25-1所示。 图25-1 PID智能温度控制原理框图 三、实验内容与步骤 1.在控制台上的“智能调节仪”单元中“控制对象”选择“温度”,并按图25-2接线。 2.将2~24V输出调节调到最大位置,打开调节仪电源。 3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3

中央空调温控器操作说明

现在很多小伙伴家里在装修的时候,都安装了中央空调,随之配套的还有中央空调的温控器,很多小伙伴还不知道温控器怎么操作,下面就一起来看看温控器的操作说明吧。 中央空调温控器分爲电子式和机器式两种,按显示不同分爲液晶显示和调理式。中央空调温控器是经过顺序编辑,用顺序来控制并向执行器收回各种信号,从而到达控制空调风机盘管以及电动二通阀的目的。 机器式 机器盘管温控器使用于商业、工业及民用修建物。可对采暖、冷气的中央空调末端风机盘管、水阀停止控制。使所控场所环境温度恒定爲设定温度范围内。温度设定拔盘指针应设定爲所需恒定温度地位。拔动开关功用辨别爲:电源开关(开ON—关OFF);运转形式开关(暖气HEAT—冷气COOL),FAN风速开关(低速L—中速M—高速H)。可控制设备:三档风机盘管风速,三线电动阀,二线电动阀,也可接电磁阀、开关型风阀或三线型风阀。外型尺寸。

操作办法 1、开关机:把拨动开关拨动到ON地位,温控器开机;把开关拨动到OFF 地位,温控器关机。 2、打工形式设定:把拨动开关拨动到COOL地位,温控器设定爲制冷形式;把拨动开关拨动到HEAF地位,温控器设定爲制热形式。 3、温度设定:机器式温控器,采用旋钮式设定温度,把红点对着面板标明的温度数据即可。 4、风速设定:把开关拨动到LOW地位;温控器设定爲高档风速;把开关拨动到WED地位,温控器设定爲中档风速;把开关拨动到High地位,温控器设定爲高档风速。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

空调控制器

辽宁工业大学 单片机及接口技术课程设计(论文) 题目:空调控制器的设计 院(系): 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第1章设计方案论证 (1) 1.1设计的应用意义 (1) 1.2设计方案选择 (2) 1.3 总体设计方案框图及分析 (5) 第2章硬件电路设计 (7) 2.1 温度采集电路 (7) 2.2 信号处理与控制电路 (8) 2.3 温度显示电路 (10) 2.4 温度设置电路 (11) 2.5 控制指示电路 (11) 第3章程序设计 (12) 3.1 主程序流程图 (12) 3.2 系统调试 (14) 3.3 源程序清单 (15) 第4章设计总结 (22) 参考文献 (23) 附录1: (24) 附录2: (25)

第1章设计方案论证 1.1设计的应用意义 温度是生活及生产中最基本的物理量。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率相关。因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。 现代信息技术的三大基础是信息采集控制(即温度控制器技术)、信息传输(通信技术)和信息处理(计算机技术)。温度控制器属于信息技术的前沿尖端产品,尤其是温度控制器被广泛用于工农业生产、科学研究和生活等领域,数量日渐上升。近百年来,温控器的发展大致经历了以下两个阶段:(1)模拟,集成温度控制器;(2)智能数码温控器。目前,国际上新型温控器正从模拟式向数字式,由集成化向智能化,网络化的方向发展。 温度控制器是一种温度控制装置,它根据用户所需温度与设定温度之差值来控制中央空调末端之水阀(风阀)及风机,从而达到改变用户所需温度的目的。实现以上目的的方法理论上有很多,但目前业界主要有机械式温度控制器及智能电子式两大系列。 普通风机盘管空调温控器基本上是一个独立的闭环温度调节系统,主要由温度传感器、双位控制器、温度设定机构、手动三速开关和冷热切换装置组成。其控制原理是空调温控器根据温度传感器测得的室温与设定值的比较结果发生双位控制信号,控制冷热水循环管路电动水阀(两通阀或三通阀)的开关,即用切断和打开盘管内水流循环的方式,调节送风温度(供冷量)。 第一代空调温控器主要是电气式产品,空调温控器的温度传感器采用双金属片或气动温包,通过“给定温度盘”调整预紧力来设定温度,风机三速开关和季节转换开关为泼档式机械开关。这类空调温控器产品普遍存在“温度设定分度值过粗”、“时间常数太大”、“机械开关易损坏”等问题。 第二代空调温控器为电子式产品,温度传感器采用热敏电阻或热电阻,部分产品的温度设定和风速开关通过触摸键和液晶显示屏实现人机交互界面,冷热切换自动完成,运算放大电路和开关电路实现双位调节。这类智能空调温控器产品改善了人机交互界面,解决了“温度设定分度值过粗”等问题,但仍存在“控制精度不高”、“时间常数大”、“操作较复杂”等问题。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

实验室温湿度控制

实验室温湿度控制很重要 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。 精品文档,你值得期待 实验室要求适宜的温度和湿度。室内的小气候,包括气温、湿度和气流速度等,对在实验室工作的人员和仪器设备有影响。夏季的适宜温度应是18-28℃,冬季为16-20℃,湿度最好在30%(冬季)-70%(夏季)之间。除了特殊实验室外,温湿度对大多数理化实验影响不大,但是天平室和精密仪器室应根据需要对温湿度进行控制。 环境条件温湿度的控制方面考虑的要素就是保证实验操作的环境温湿度是能够满足实验程序各个过程的需要。我们主要从以下几个方面来制定实验室环境温湿度控制范围。 首先,识别各项工作对环境温湿度的要求。 主要识别仪器的需要、试剂的需要、实验程序的需要,以及实验室员工的人性化考虑(人体在温度18-25℃ 相对湿度在35-80%范围内总体感觉舒适,并且从医学角度来看环境干燥和喉咙的炎症存在一定的因果关系)四个方面要素综合考虑,列出对温湿度控制范围要求的清单。 第二,选择并制定有效的环境温湿度控制范围。从以上各要素所有要求清单中摘取最窄范围作为该实验室环境控制的允许范围,制定环境条件控制方面的管理程序,并依据该科室实际情况制定合理有效的SOP。 第三,保持和监控。通过各项措施保证环境的温湿度在控制的范围内,并对环境温湿度进行监控和做好监控的记录,超过允许范围及时采取措施,开空调调节温度,开除湿机控制湿度。 试剂室温度10-30℃,湿度35-80% 样品存放室温度10-30℃,湿度35-80% 天平室温度10-30℃,湿度35-80% 水分室温度10-30℃,湿度35-65% 红外室温度10-30℃,湿度35-60% 中心实验室温度10-30℃,湿度35-80% 留样室温度10-25℃,湿度35-70% 各个领域实验室的温湿度最佳范围 1

计算机温度控制实验报告1

目录 一、实验目的---------------------------------2 二、预习与参考------------------------------- 2 三、实验(设计)的要求与数据------------------- 2 四、实验(设计)仪器设备和材料清单-------------- 2 五、实验过程---------------------------------2 (一)硬件的连接- --------- ----------------------- 2 (二)软件的设计与测试结果--------------------------3 六、实验过程遇到问题与解决--------------------11 七、实验心得--------------------------------12 八、参考资料-------------------------------12

一、实验目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过时间过程掌握温度的几种控制方式,了解利用计算机进行自动控制的系统结构。 二、预习与参考 C语言、计算机控制技术、自动控制原理 三、实验(设计)的要求与数据 温度控制指标:60~80℃之间任选;偏差:1℃。 1.每组4~5同学,每个小组根据实验室提供的设备及设计要求,设计并制作出实际电路组成一个完整的计算机温度控制测控系统。 2.根据设备情况以及被控对象,选择1~2种合适的控制算法,编制程序框图和源程序,并进行实际操作和调试通过。 四、实验(设计)仪器设备和材料清单 工业控制机、烘箱、温度变送器、直流电源、万用表、温度计等 五、实验过程 (一).硬件的连接 图1 硬件接线图

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

中央空调温控器说明

中央空调温控器说明 与普通分体式空调相比较,家用中央空调有着无可比拟的优势。其中,360度舒适送风、每个房间独立控制更省电最受消费者关注,中央空调温控器就是为此而研制的一种末端控制产品,它可以根据人们的需要分时段的设置开关机或房间温度,实现最大范围的节能效果。与传统遥控器式温控器不同,中央空调温控器主要分为电子式和机械式两种。 中央空调温控器-液晶温控器 液晶温控器由电子逻辑电路对其测量温度与设定温度进行比较,控制中央空调末端的风机、水阀等,应用于宾馆、写字楼、商场、工业、医疗特别是别墅等民用建筑,使所控环境温度恒定为设定温度范围内,此款温控器配有遥控器,可实现远距离控制。 液晶温控器特点: 1、四种工作模式:制冷/风扇/制热/自动 2、室内风机可调整:高速/中速/低速/自动 3、通过跳线设定:单冷/冷暖二管/冷暖四管等模式 4、二线电动阀或者小型风阀皆可控制 5、LCD显示系统工作状态:一目了然 6、LED指示二通阀运行状态和上电状态 7、设置温度以1℃递增/减:精度更高 8、实时时钟显示,星期定时开关机 9、房间温度校正功能 中央空调温控器分类-机械式温控器 机械式温控器应用于商业、工业及民用建筑物,可对采暖、冷气的中央空调末端盘管风机、水阀进行控制。使所控场所环境温度恒定为设定温度范围内,温度设定拔盘指针应设定为所需恒定温度位置。拔动开关功能分别为:电源开关(开ON—关OFF);运行模式开关(暖气HEAT—冷气COOL),FAN风速开关(低速L

—中速M—高速H)。可控制设备:三档风机盘管风速,三线电动阀,二线电动阀,也可接电磁阀、开关型风阀或三线型风阀。 机械式温控器技术规范 1、额定电压:230V AC±10% 50/60Hz 2、负载电流:<3A 阻性负载 3、温度偏差:在25℃时≤1℃ 4、环境温度:-25℃~55℃相对湿度<85%(23℃) 5、外形尺寸:130X85X40(长X宽X厚 作为现代家庭调节室内温度的重要武器,中央空调温控器直接参与室内温度控制,与人体舒适度密切相关;从目前的市场情况来看,中央空调液晶温控器由于智能化控制、安装美观等特点更受消费者欢迎。除了合理的选择外,中央空调温控器体现在安装中的重要性也不言而言,服务商必须根据用户的使用习惯和温控器使用特点来进行系统设计,确保后期控温准确、舒适高效。 本文由舒适100网编辑部整理发布

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

相关文档
最新文档