mos管功率放大器

mos管功率放大器
mos管功率放大器

宋艳丽,宋武

(黄冈职业技术学院机电工程系,湖北黄冈 438000)

1 系统设计

本系统采用小体积MSP430单片机为控制芯片,并用INA128构成的放大电路。末级采用IRF9540和IRF540两个MOS管实现功率放大。电路实现简单,功耗低,性价比很高。该电路由电路稳压电源模块、带阻滤波模块、电压放大模块、功率放大模块、AD转换模块以及液晶显示模块组成,图1所示是其组成框图。电路稳压电源模块为系统提供能量;带阻滤波电路要实现50Hz频率点输出功率衰减;电压放大模块采用两级放大来将小信号放大,以便为功率放大提供足够电压;功率放大模块主要提高负载能力;AD转换模块便于单片机信号采集;显示模块则实时显示功率和整机效率。

2 硬件电路设计

2.1 带阻滤波电路的设计

采用OP07组成的二阶带阻滤波器的阻带范围为40~60 Hz,其电路如图2所示。带阻滤波器的性能参数有中心频率ω0或f0,带宽BW和品质因数Q。Q值越高,阻带越窄,陷波效果越好。

2.2 放大电路的设计

电压放大电路可选用两个INA128芯片来对微弱信号进行放大。若采用一级放大,当放大倍数较大时,电路可能不稳定,故应采用两级放大,并在级间采用电容耦合电路,图3所示是其电路图。图中,INA128具有低失调电压漂移和低噪声等性能指标,且放大倍数设置简单,只用一个外部电阻就能改变放大倍数。图3中1、8脚跨接的电阻就是用来调整放大倍率,4、7脚需提供正负相等的工作电压,2、3脚输入要放大的电压,并从6脚输出放大的电压值。5脚则是参考基准,如果接地,则6脚的输出即为与地之间的相对电压。

2.3 功率放大电路的设计

功率放大电路往往要求其驱动负载的能力较强,从能量控制和转换的角度来看,功率放大电路与其它放大电路在本质上没有根本的区别,只是功放既不是单纯追求输出高电压,也不是单纯追求输出大电流,而是追求在电源电压确定的情况下,输出尽可能大的功率。

本电路采用两个MOS管构成的功率放大电路,其电路如图4所示。此电路分别采用一个N沟道和一个P沟道场效应管对接而成,其中RP2和RP3为偏置电阻,用来调节电路的静态工作点。特征频率f T放大电路上限频率f H的关系为:f T≈f hβh,系统阶跃相应的上升时间t r与放大电路上限频率的关系为:t r f h=0.35。

对于OCL放大器来说,一般有:P TM≈0.2P OM,其中P IM为单管的最大管耗,P OM为最大不失真输出管耗。根据计算,并考虑到项目要求,本设计选用IRF950和IRF50来实现功率放大。

2.4 AD转换电路的设计

此工作可由单片机内部的10位AD转换器完成,但实验发现,单片机的10位AD芯片的处理效果不是很好。因此本设计采用了两个AD转换芯片来对负载输出的信号进行转换,并使用单片机控制计算,然后送入液晶

显示其功率和效率。

AD1674是一片高速12位逐次比较型A/D转换器,该芯片内置双极性电路构成的混合集成转换器,具有外接元件少,功耗低,精度高等特点,并具有自动校零和自动极性转换功能,故只需外接少量的电阻和电容元件即可构成一个完整的A/D转换器。AD8326是TI公司推出的16位高速模数转换器,其转换速度快,线性度好,精度高。AD8326和A1674的电路连接图分别如图5和图6所示。

2.5 显示电路

本电路采用12864液晶来实时显示输出的功率、直流电源供给的功率和整机效率。该液晶具有屏幕反应速度快、对比度高、功耗低等优点。可以实现友好的人机交互。为了简化电路,本设计采用串口连接。并在单片机的控制下,按照要求的格式显示接收到的数据和字符信息。图7为液晶显示电路的连接图。其中D0~D7为数据口,R/W为液晶读写信号,E是使能端。

3 系统软件设计

由于本系统是低频正弦信号的功率放大,要求能测量并显示输出功率、整机效率等信息,所以要用到AD转换。AD芯片测量的交流信号,所以,测量的电压数据进行比较,以获得最大电压值,此值即为正弦信号的最大值。而要想得到正弦信号的有效值,就要对最大值进行处理,从而获得有效值。这样,就可以将电源的输出功率和供给功率,根据欧姆定律计算出其数值,并将测得的数据用液晶适时的显示出来。

因此,本系统软件实现的功能应当可以实现对正弦信号有效值的测量;同时能够通过液晶准确显示输出功率和系统供给功率和整机效率。

图8所示是本系统软件的设计流程图。

4 结束语

本设计的低频功率放大器,可实现项目的基本要求,经过测试,当输入正弦波信号电压有效值为5 mV时,而且其输出功率大于5 W,其功率放大器的整机效率也比较高。

电子管功放

认真看完这个帖子,相信你就可以做成电子管功放了. 1,图纸可同时用于6P3P(6L6GC)家族和6550家族,这两种管子现在各厂都在生产。其中6P3P,6N8P库存较多,不容易被炒作涨价。 2,采用6P3P输出功率为20W,采用6550输出功率为60W。 3,额定功率失真小于0.4%,功率管已配对。 4,R2参考中心值15K,调节R2使帘栅极供电电压为285V。如有条件,帘栅极请采用稳压供电。 5,采用6P3P时,R1参考中心值75K,调节R1使6P3P屏流为32mA;采用6550时,R1参考中心值51K,调节R1使6550屏流为41mA。

直到今日,我评测一个胆机的最重要指标仍然是失真,尽管在很多主观流派中认为失真并不重要,甚至失真低=没韵味。然而多年的实际测试和听音经验告诉我,越是低失真的胆机,给我带来的主观听感越好,韵味更丰富。 如果你一个无视指标的爱好者,看到这里也可以结束了,本帖并不适合你。 下面开始介绍推挽胆机的一些设计理念和tips,我希望对于自己设计的爱好者能起到帮助作用。 在传统的推挽电路结构中,常见结构为以下几种: 1,电压放大+长尾倒相+功率级。优点是增益高,用管少,开环频响较好;缺点是长尾倒相级对称性一般,需仔细调试。 2,差分放大+(驱动)+功率级。优点是倒相对称性优秀,开环频宽较好;缺点是需要多一组负电源,不增加驱动级开环增益较低。 3,自平衡倒相+(驱动)功率级。优点是用管少,增益适中;缺点是倒相级对称性一般,频响较窄。 4,电压放大+屏阴分割+(驱动)+功率级。优点是用管少,倒相级无需调试;缺点是不加设驱动级增益低,频宽较窄。 由于架构1在用管,增益和稳定性方面都适中,比较适合初学者制作,本帖讨论将以一个电压放大+长尾倒相的推挽胆机架构作为分析对象。 A,输入级:架构1的输入级主要作用是提高电路的开环增益,为长尾倒相级提供合适的直流偏置。 由于长尾倒相级自身有一定增益,并不需要太大的输入电压,输入级可由多种方式组成:共阴,SRPP,叠串,u跟随 为了比较这些放大方式,我做了一次实验来测试比较它们的失真度,见表1

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况

场效应管功放

场效应管功放 场效应管功放以其温暖、甜润、松软而被发烧友推崇备至,然而,由于其输出电阻大、承受电流小而低频疲软、推力不足的毛病却挥之不去,如很多对管并联虽然改善了低频,但一方面造价成倍增长,二方面场效应管的配对在业内也是个难题。如金嗓子A-100每声道采用10对场效应管并联输出,虽然声音堪称完美,但其价格之高,也仅仅成为了一台概念机、形象机。 90年代末,一种新型的mos管诞生了,这就是被称为超大电流场效应管的UHC-mos,这种mos管的单管输出电流达30A以上,输出电阻约50毫欧以下。首先在天龙PMA-S1功放上使用,一经推出就好评如潮,发烧友称赞其高音的透明度高得惊人,低频强劲有力。而当时这种器件即便在日本本国也很难购买得到,而在国内就更加无法目睹其芳容了。天龙功放亦将其功放管的型号磨去、煞有其事的打上自己编制的型号,就更让人觉得高深莫测了。 然而,十几年过去了,当年高深莫测的UHC-mos而今已成了大路货,如2sk851、2sk2967等新的10多元一个、而拆机的才2、3元一个,已经沦落到白菜价的水平了,真的是此一时、彼一时啊。 为圆笔者一直的梦想,笔者踏破铁鞋,参阅众多电路,发现的确这种器件的成品电路不仅少,而且多有错漏,只得自己设计电路制作。为方便起见,用何庆华音乐传真E-10功放板改装而来。这是原电路 这是改的电路

下面接着有 这是制作完成图。 调试,通电后先检查输出端直流电位在10mv以下。将可变电阻调到最大,再逐步调小,让发射极0.22欧电阻电压为5mV左右,这时每管电流约25ma即可。再检查中点电位在10mv以下即可开声。声音评价: 机器一开声就有一种让人振奋的感觉,高音透明度极高,音场开阔、堂音丰富。人声极为亲切感人,而低频结实有力,硬度十足。花费才20元不到,而声音却提高了几个档次,内心激动啊。 主观感觉,音乐味、细腻度比日立、东芝场效应管有过之而无不及,特别是透明度高,而低音的力度比东芝管结实的多,和三肯管比感觉霸气少了点,但量感大,硬度足,控制力好。一对管可比美3、4对并联的效果。 这种管子看上去其貌不扬,但声音的确有惊人的表现,我买的k851是拆机的,开启电压在3.2V左右,2.5元一个。4个才10元,加上几个电阻,总成本不到20元。却享受到高级机种才有的效果,比我自己制作的所有功放以及家里的5000千多元的nad、sony功放都要好。 拆机的管子没有做配对工作,由于静态电流只有20ma已经很好声,目前室温15度,散热器即便在很大音量基本感觉不到热量。只有简单的温度补偿,暂时没感觉到问题。夏天温度可能高些,准备把温补管和大管固定在一起,只要不把静态电流调的很大,应该没问题。 已经准备好了秘密武器,三肯专用温度补偿管,放大倍数1500倍。 天龙DENON PMA-2000的电路 G极电阻原则上是越小越好,但场管电路太小容易自激,我选120欧很稳定,100欧应该也可以此功放电压放大部分采用两级差分电路、末级则为准互补输出,最大限度保持了偶次谐波因此极具

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

常见的电子管功放是由 功率放大

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W 输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照

差动放大器的原理及四种连接方法_下_

电子报/2011年/5月/22日/第010版 电子职校 差动放大器的原理及四种连接方法(下) 江苏顾振远 (接上期) 3.晶体管恒流源电路 用差动放大器抑制零点漂移的方法就是“加入”Re,如上所述Re愈大,克服零点漂移的效果愈好,但Re愈大,需要的电源Ee愈高。我们一方面希望Re大,一方面又希望Ee低一些。在这种情况下,可使用晶体管来代替Re,这种电路称为晶体管恒流源差动放大电路,如图3所示。 图3中R1和R2是分压电阻,为T3提供正向偏置,以固定基极电位Ub3。当温度升高使Ic1、Ic2增加时,Re3两端的电压也要增加,但由于Ub3为固定值,Ube3就要下降,Ib3随之减小,因此抑制了Ic3的上升,保持了Ic3的不变。则Ic1、Ic2就不能增加,从而使管子的输出uol和u02几乎不变。 4.共模反馈型 如果一级差动放大倍数不够,就得采用多级进行放大,图4是一个高放大倍数放大器的前两级,为了提高共模抑制比和减小输出的漂移,引进了共模反馈。 当输入端有共模信号时(输入端的漂移或外界共模干扰),Ic1、Ic2将同时变化。如果Ic1、Ic2都减小了,则第二级T4、T5管的Ie将增大,Ub3随之升高。如果用Ub3控制T3的基极,则Ic3将增加一些,从而Ic1、Id2回升,使Ic1、Ic2的变化趋势被削弱,这样每个管子输出电压的漂移也就小了。 以上各种方法,在良好工艺措施保证下,差动电路的零点漂移可以作到10μV/℃以下。 5.差动电路四种连接方法的比较 先将差动电路几种接法的主要性能列成附表。从附表上可以看出一些规律: (1)凡是双端输出,放大倍数基本上和单管一样。单端输出时放大倍数为单管一半。 (2)输出电阻在双端输出时为2RC,单端输出时为RC。 (3)输入电阻无论在双端输入还是单端输入时,均为2(Rbl+rbe)。(完)

场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图3-1所示为N 沟道结 图3-1 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导

常数U △U △I g DS GS D m == 表3-1列出了3DJ6F 的典型参数值及测试条件。 表3-1 2、场效应管放大器性能分析 图3-2为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

电子管OTL功放电路及原理

电子管OTL功放电路及原理 OTL 是英文Output Transformer Less Amplifier 的简称,是一种无输出变压器的功率放大器。 一.OTL 电子管功放电路的特点普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均 比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输 出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的 阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因 此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非 线性失真与相位失真。为了消除这些不良影响,各种不同形式的电子管OTL 无输出变压器功率放大器应运而生,许多适用于OTL 功放的新型功率电子管 在国外也不断被设计制造出来。电子管OTL 功率放大器的音质清澄透明,保 真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达 10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明 显提高。 二电子管OTL 功放电路的形式图1(a)~图1(f)是OTL 无输出功放基本电路。图1(a)和图1(b)为OTL 功放两种供电结构的方式,即正负双电源式和单电源供电方式。在正负双电源式OTL 功放中,中心为地电位。这样可保证推挽 电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。单电源 式OTL 电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电 压等于电源电压的一半。同时,其输出电容C1 的容量必须足够大,不影响输 出阻抗与低频响应的要求。图1(c)和图1(d)为OTL 功放电子管栅极偏置的取

45W晶体管电子管混合式功率放大器

45W晶体管电子管混合式功率放大器 EL34(6CA7)是飞利浦公司于1956年率先推出的音频功率五极电子管,当年,它的出现给音频放大器的声音质量带来了一场改良,其设计阳极耗散功率为25W(工作数据如附表)。如今,由中国曙光电子管厂生产的该管,畅销海内外。EL34再生的声音之美,是晶体管放大器还望尘莫及的。在晶体管放大器一统天下的今天,它宝刀不老、雄风犹在也正是因为这个原因。 一,电子管特点 电子管是人类历史上的第一种电子放大器件。说到电子管工作原理,对于现在的爱好者来说,是一个既古老而又时新的话题。由于某些导向上的偏见和能源关系的原因,我国在70年代以后一刀切地停止了电子管的介绍和应用,这无疑给现在的胆管发烧带来困难。在此,有必要对电子管的一些常识加以表述。 电子管是种利用电场原理工作的真空器件,在分析它的工作时,我产可以按现在常见的N沟道结型场效应管工件方式去理解就很容 易入门。只是电子管的阴极电子发射需要加热罢了。两者的栅极控制特性和工作原理是极为相似的。 比较现在的晶体管放大器,电子管功放有其自身特点: 一是管子本身的温度稳定,不需要在晶体管机中必不可少的巨型散热器:

二是负载能力较强,而且,不象晶体管那么娇气。真要烧掉一只管子也要以数十分钟以上计,所以,实验时器件比较安全,三是电子管放大器由器件特性决定,需要通过变压器连接负载扬声器。在机器万一发生故障时,是不会象晶体管机那样祸及到昂贵的扬声器系统。 制作和使用电子管机时要注意: 机内高压,小心触电!元件的耐压可靠性要高,严禁带电焊接。再有,电子管饥严禁空载,在试机时一定要连接好扬声器。 电子管是一种高电压工作的、具有相当大内阻的真空电子放大器件。它的最大长处是具有近似理想的放大线性.这个优点是目前已出现的晶体管还无法达到的,这使它的运用电路非常简洁,不必象晶体管放大器要用很多的有源器件作“共基一共射”连接。这正好对应了发烧界“简洁为上”的信条,这是在90年代电子技术高度发展的今天,它能独领响坛的一个最重要的原因。 二,电子管输出变压器 电子管的输出阻抗较高,它的等效阻值比现在广泛运用的电动式扬声器的阻抗要高出几个数量级,从阻抗匹配的角度说,采用输出变压器作阻抗变换是必需的:而且,电子管放大器的功率是以高电压、小电流的形式,从驱动低阻扬声器需要的低压大电流能量来看,使用降压变压器也是非常必要的。

差动放大电路与集成运算放大器 习题

第三章差动放大电路与集成运算放大器 3.1 选择填空 1.使用差动放大电路的目的是为了提高()。 A输入电阻B电压放大倍数C抑制零点漂移能力D电流放大倍数 2.差动放大器抑制零点漂移的效果取决于()。 A两个晶体管的静态工作点B两个晶体管的对称程度 C各个晶体管的零点漂移D两个晶体管的放大倍数 3.差模输入信号是两个输入信号的(),共模输入信号是两个输入信号的()。 A 和 B 差 C 比值 D 平均值 4.电路的差模放大倍数越大表示(),共模抑制比越大表示()。 A有用信号的放大倍数越大B共模信号的放大倍数越大 C抑制共模信号和温漂的能力越强 5.差动放大电路的作用是()。 A放大差模B放大共模C抑制共模D抑制共模,又放大差模 6.差动放大电路由双端输入变为单端输入,差模电压增益是()。 A增加一倍B为双端输入的1/2 C不变D不定 7.差动放大电路中当U I1=300mV,U I2=-200mV,分解为共模输入信号U IC=()mV,差模输入信号U ID=()mV。 A500 B100 C250 D50 8.在相同条件下,阻容耦合放大电路的零点漂移()。 A比直接耦合电路大B比直接耦合电路小C与直接耦合电路相同 9.差动放大电路由双端输出改为单端输出,共模抑制比K CMRR减小的原因是()。 A A UD不变,A UC增大 B A UD减小,A UC不变 C A UD减小,A UC增大 D A UD增大,A UC减小 3.2简答题 1.直接耦合放大电路能放大交流信号吗?直接耦合放大电路和阻容耦合放大电路各有什么优缺点? 2.什么叫零点漂移?产生零点漂移的主要原因是什么?如何抑制零点漂移?在阻容耦合放大电路中是否存在零点漂移? 3.有甲已二个直接耦合放大电路,甲电路的Au=100,乙电路的Au=50。当外界温度变化了20℃时,甲电路的输出电压漂移了10V,乙电路的输出电压漂移了6V,向哪个电路的温度漂移参数小?其数值是多少? 4.解释下列术语的含义:差模信号,共模信号,差模电压放大倍数,共模电压放大倍数,共模抑制比。 5.差动式放大电路为什么能抑制零点漂移?单端输出和双端输出时,它们抑制零点漂移的原理是否一样?为什么? 6.共模抑制比是如何定义的?为什么说共模抑制比越大电路抗共模干扰能力就越强?7.长尾电路中的公共射极电阻Re,它对差模信号和共模信号各有什么影响?用恒流源取代Re有什么好处? 8.集成运算放大器的内部电路一般由哪几个主要部分组成?各部分的作用是什么? 3.3双端输出的差动式放大电路如图3.1所示,已知Rc1= Rc2=3KΩ,Re=5.1KΩ,每个三极管的U BE=0.7V,β=50,r be=2kΩ,Rs1=Rs2=02.KΩ

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

FU-7电子管功率放大器制作

FU-7电子管功放电路图FU-7电子管功放电路电路图

·[图文]电子管发威!CAV日本发布新款迷你音...·[图文]用6p1制作的电子管短波发射机 ·[图文]四灯电子管发射机电路 ·[图文]电子管组成的无线对讲机的制作与设...·[图文]直流放大器静电电子管 ·用电子管收音机修复断丝显像管 ·[图文]判断电子管衰老的简单办法 ·[图文]电子管管脚排列图 ·[图文]部分电子管的图形符号 ·[图文]电子管FU29+6N9P组成的30W并联单端...·[图文]是-否电子管电压表电路图 ·[图文]电子管和晶体管混合式放大器电路图...·[图文]电子管交流电子稳压器电路图 ·[图文]电子管式稳压电源电路图 ·[图文]低噪声电子管前级电源原理图 ·电子管热丝和灯丝电流和电压的测试...·FU—113F 型电子管 ·浅析电子管机输出变压器

·复件6159B.pdf 电子管资料数据手册... ·GEC功放设计范例.pdf 电子管资料数... ·G108-1K.pdf 电子管资料数据手册 ·G105-1D.pdf 电子管资料数据手册 ·G75-2D.pdf 电子管资料数据手册 ·ELC16J.pdf 电子管资料数据手册 ·ELC6J-A.pdf 电子管资料数据手册 ·ELC3J-A.pdf 电子管资料数据手册 ·ELC3J.pdf 电子管资料数据手册 ·ELC1K.pdf 电子管资料数据手册 ·ELC1B-A.pdf 电子管资料数据手册 ·EL6F.pdf 电子管资料数据手册 FU-7推动的胆机功放电路图+电源电路图 自制一款优质的胆功放,其电路原理如图1所示。供电电 路如图2所示。推挽输出变压器制作原理如图3所示。该机的谐波失真为0.3%时,输出功率为lOW。通频带从15H:一22kHz。另装有音质调节电路。 制作要点:(1)选择设计优良的电路图;(2)选择优质的元器件;(3)有一只失真小、效率高的输出变压器,以及功率较大的电源变压器;(4)选择高性能的电子管,军用品更佳。 这台自制的优质胆功放,造价便宜。变压器和电子管从旧货电子市场购买,多数是库存积压,也有拆机管。购买电子管时,鉴别方法为灯丝不断、管子不漏气。变压器购回后,按图2.图3重新绕制。 元器件选择:(1)功放级采用两只FU-7(}!外型号为807;(2)倒相级采用6N8P; (3)前置放大及音质调节级采用6J1、6N1,该部分单独供电,并经严格隔离,尤其是6,11,最好单独加隔离罩,周边再加金属隔离板。 注意事项:输出变压器在该功放中十分重要。若购买的成品得不到满意的匹配,就自己动手加一「。笔者采用国产D44硅钢片,E型铁芯尺寸为32 x 32mm,用2mm厚纸板制作成绕线骨架,再用青壳纸垫两层,便可按图3所示绕线,初级线圈用0.17mm的漆包线、次级线圈用0.8mm的漆包线。按如下次序制作:(1)绕初级线圈1000匝,为第1组;(2)再绕1000匝为第n组;l川绕次级线圈125匝,为第IIl组;(4)再烧初级线圈11100匝为第W组;(5)最后绕1000匝,力第

采用2个MOS场效应管构成的功率放大器

本电路采用2个MOS 场效应管构成功率放大器,为甲乙类(AB 类)功率放大器,上面采用N 沟道增强型MOS 场效应管IRF130,下面采用P 沟道增强型MOS 场效应管IRF9130,IRF130和IRF9130是IR 公司生产的配对N 沟道和P 沟道器件,性能几乎是对称的。 为了克服交越失真,必须使输入信号避开场效应管的截止区,可 以给场效应管加入很小的静态偏置电流,使输入信号叠加在很小的静态偏置电流上,这样可以避开场效应管的截止区,使输出信号不失真。 增强型MOS 场效应管有个开启电压V T ,V GS 必须要大于V T ,该 场效应管才能进入放大区。IRF130和IRF9130的V GS 最小值为2V ,设计时使2个场效应管栅极之间的电压在2V*2=4V ,或者为了减小直流电源的消耗,取比4V 稍小一点,也是可以的。 只要保持电压的分压比,电阻上的电流是不必考虑的,因为场效 应管的栅级输入阻抗是非常高的,栅级几乎不消耗电流,因此,分压 GND_0VOFF = 0v

电阻的阻值取常用的即可。 从单个场效应管看,这是源级跟随器,所以电压放大倍数为1。 功率放大器对输入电压范围是没有限制的,取决于场效应管的参数,IRF130和IRF9130的绝对最大V GS=±20V,就是说,输入电压范围±15V是没有问题的。 功率放大器根据输入电压,放大接近1倍,得到输出电压,由输出电压,根据负载,得到输出电流。 如果电源电压是±24V,减去2个场效应管的正常工作时的V DS,输出电压范围应该大于±22V,具体做一下实验,也是简单的事。 甲乙类放大器电路的主要特点如下所述: (a).这种放大器同乙类放大器电路一样,也是用两只场效应管分别放大输入信号的正、负半周,但给两只场效应管加入了很小的静态偏置电流,以使场效应管刚刚进入放大区。 (b).由于给场效应管所加的静态直流偏置电流很小,所以在没有输入信号时放大器对直流电源的消耗比较小(比起甲类放大器要小得多),这样具有乙类放大器的省电优点,同时因加入的偏置电流克服了场效应管的截止区,对信号不存在失真,又具有甲类放大器没有非线性失真的优点。所以,甲乙类放大器具有甲类和乙类放大器的优点,同时克服了这两种放大器的缺点。正是由于甲乙类放大器无交越失真,又具有输出功率大和省电的优点,所以被得到广泛的应用。 当这种放大电路中的场效应管静态直流偏置电流太小或没有时,就成了乙类放大器,将产生交越失真。

半导体器件(二极管三极管场效应管差动放大电路集成运放)解读

半导体基本知识和 半导体器件(二极管、三极管、场效应管、集成运放) 一、选择题: 1、PN结外加正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 2、PN结外反正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 3、当环境温度升高时,二极管的反向饱和电流I s将增大,是因为此时PN结内部的() A. 多数载流子浓度增大 B.少数载流子浓度增大 C.多数载流子浓度减小 D.少数载流子浓度减小 4、PN结反向向偏置时,其内电场被()。 A.削弱 B.增强 C.不变 D.不确定 5、在绝对零度(0K)和没有外界激发时,本征半导体中( ) 载流子。 A.有 B.没有 C.少数 D.多数 6、集成运放的输入级采用差分放大电路是因为可以()。 A.减小温漂B. 增大放大倍数 C. 提高输入电阻 D. 减小输出电阻 7、以下所列器件中,()器件不是工作在反偏状态的。 A、光电二极管 B、发光二极管 C、变容二极管 D、稳压管 8、当晶体管工作在放大区时,()。 A. 发射结和集电结均反偏 B.发射结正偏,集电结反偏 C.发射结和集电结均正偏 D.发射结反偏,集电结正偏 9、稳压二极管稳压时,其工作在( ), A.正向导通区B.反向截止区C.反向击穿区 D.不确定 10、抑制温漂(零漂)最常用的方法是采用()电路。 A.差放 B.正弦 C.数字 D.功率放大 11、在某放大电路中,测得三极管三个电极的静态电位分别为0 V,-10 V,-9.3 V,则这只三极管是()。 A.NPN 型硅管B.NPN 型锗管Array C.PNP 型硅管 D.PNP 型锗管 12、某场效应管的转移特性如右图所示,该管为()。 A.P沟道增强型MOS管 B.P沟道结型场效应管 C.N沟道增强型MOS管 D.N沟道耗尽型MOS管 13、通用型集成运放的输入级采用差动放大电路,这是因为它的()。 A.输入电阻高 B.输出电阻低 C.共模抑制比大 D.电压放大倍数大 14、如右图所示复合管,已知V1的β1 = 30,V2的β2 = 50,则复合后的β约为()。

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图 作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图 1.输入电压放大级 SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。 电路见图。VT1、VT2直流通路串联。VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。进入后级电路。vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。C1是VTl的阴极交流旁路电容。避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。

R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k. 2.功率输出级 功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。这种接法的特点是:放大效率高。能达到特性表中功放管所规定的输出功率。R6为输出级阴极电阻,将输出级栅负压确定在-20V。6P3P屏极电压为290V,栅负压为-20V,屏流为50mA,作A类放大,输出功率约为5 5W,基本满足一般家居环境放音的要求。

相关文档
最新文档