大学物理(上)课后习题答案1

大学物理(上)课后习题答案1
大学物理(上)课后习题答案1

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).

(2) 由于|Δr |≠Δs ,故

t

s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故

t

s

t d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解

t

r

d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t

d d r

表示速度矢量;在自

然坐标系中速度大小可用公式t

s

d d =v 计算,在直角坐标系中则可由公式

2

2d d d d ??

?

??+??? ??=t y t x v 求解.故选(D).

1-3 分析与解 t

d d v

表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t

r

d d 在极坐标系中表示径向速率v r (如题1 -2

所述);

t s d d 在自然坐标系中表示质点的速率v ;而t

d d v 表示加速度的大小而不是切向加速度a t.因此只有(3)

式表达是正确的.故选(D).

1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).

1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为

22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l

l

t

x

-==

v ,式中t l

d d 表示绳长l

随时间的变化率,其大小即为v 0,代入整理后为θ

l

h l cos /0

220v v v =

-=

,方向沿x 轴负向.由

速度表达式,可判断小船作变加速运动.故选(C).

1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据

0d d =t

x

来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ?+?=,如图所示,至于t =

4.0 s 时质点速度和加速度可用t

x d d 和22d d t x

两式计算.

解 (1) 质点在4.0 s 内位移的大小 m 32Δ04-=-=x x x

(2) 由 0d d =t

x

得知质点的换向时刻为 s 2=p t (t =0不合题意) 则 m 0.8Δ021=-=x x x ,m 40Δ242-=-=x x x

所以,质点在4.0 s 时间间隔内的路程为 m 48ΔΔ21=+=x x s (3) t =4.0 s 时 ,1s

0.4s m 48d d -=?-==t t x

v

,2s

0.422m.s 36d d -=-==

t t x

a

1-7 分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出

a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运

动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.

解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为

2s m 20-?=--=

A

B A

B AB t t a v v (匀加速直线运动),0=B

C a (匀速直线运动)

2s m 10-?-=--=

C

D C

D CD t t a v v (匀减速直线运动)

根据上述结果即可作出质点的a -t 图[图(B)]. 在匀变速直线运动中,有

202

1

t t x x ++=v

由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为

用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时

间内, 质点是作1s m 20-?=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].

1-8 分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=

,最后用?=s s d 积分求s.

解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为,2

4

12x y -=

这是一个抛物线方程,轨迹如图(a)所示.

(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为

j r 20= , j i r 242-=

图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.

(3) 由位移表达式,得 j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=

y x r

而径向增量m 47.2ΔΔ2020222202=+-+=

-==y x y x r r r r

*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则

22)d ()d (d y x s +=,由轨道方程可得x x y d 2

1

d -=,代入d s ,则2s内路程为

m 91.5d 4d 4

2=+==?

?x x s s Q P

1-9 分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.

解 (1) 速度的分量式为 t t x x 6010d d +-==

v , t t

y y 4015d d -==v 当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为

12

0200s m 0.18-?=+=y x v v v

设v o 与x 轴的夹角为α,则 2

3

tan 00-==

x

y αv v α=123°41′

(2) 加速度的分量式为

2

s m 60d d -?==t a x x v , 2s m 40d d -?-==t

a y y v

则加速度的大小为 22

2s m 1.72-?=+=y x a a a

设a 与x 轴的夹角为β,则

3

2

tan -==

x y

a a β ,β=-33°41′(或326°19′) 1-10 分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.

解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为 20121at t y +

=v 2022

1

gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即

20202

121gt t h at t -+=+v v

s 705.02=+=

a

g h

t (2) 螺丝相对升降机外固定柱子下降的距离为

m 716.02

12

02=+

-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有

2)(21

0t a g h +-

= s 705.02=+=a

g h

t (2) 由于升降机在t 时间内上升的高度为

202

1

at t h +='v 则 m 716.0='-=h h d

1-11 分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t )和y ′=y ′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.

解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因

t T

θπ

2=

,则质点P 的参数方程为

t T

R x π2sin

=',

t T

R y π2cos

-=' 坐标变换后,在O x y 坐标系中有

t T R x x π2sin

='=, R t T

R y y y +-=+'=π2cos 0 则质点P 的位矢方程为

j i r ??

? ??+-+=R t T R t T R π2cos π2sin

j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=

(2) 5s时的速度和加速度分别为

j

j i r )s m π3.0(π

2sin π2π2cos π2d d 1-?=+==t T T R t T T R t v i j i r a )s m π03.0(π2cos )π

2(π2sin )π2(d d 222222-?-=+-==t T

T R t T T R t

1-12 分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即

影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.

解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为

132s m 1094.1cos d d --??===

t

ωω

h t s v 当杆长等于影长时,即s =h ,则

s 606034πarctan 1??===

ω

h s ωt 即为下午3∶00 时.

1-13 分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =

和t

x

d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换

等数学操作后再做积分.

解 由分析知,应有

??

=t

t a 0

d d 0

v

v v

得 03

3

1

4v v +-=t t (1) 由

??=t

x x t x 0

d d 0

v

得 004

2

12

12x t t t x ++-

=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为

75.012

124

2

+-

=t t x 1-14 分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,

因此,需将式d v =a (v )d t 分离变量为

t a d )

(d =v v

后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点. (1) 由题意知 v v

B A t

a -==d d (1) 用分离变量法把式(1)改写为

t B A d d =-v

v

(2)

将式(2)两边积分并考虑初始条件,有

??=-t t B A 0

d d d 0v v v v

v 得石子速度 )1(Bt e B

A --=v 由此可知当,t →∞时,B

A

→v 为一常量,通常称为极限速度或收尾速度.

(2) 再由)1(d d Bt e B

A

t y --==

v 并考虑初始条件有 t e B A y t Bt y d )1(d 00??--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1-15 分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即2

002

1t a t x x x x +

+=v 和2002

1

t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.

解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得

???

+==t

t t t 0

)d 46(d d j i a v

v j i t t 46+=v

又由t

d d r

=

v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ???

+==t

t

r

r t t t t 0

)d 46(d d 0

j i r v j i r 222)310(t t ++=

由上述结果可得质点运动方程的分量式,即

x =10+3t 2 y =2t 2

消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率3

2

tan d d ===

αx y k ,α=33°41′.轨迹如图所示.

1-16 分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t

d d v =

a 和t ΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2

v =,t

a ΔΔv = ,式中|Δv |可由图

(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.

由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.

解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故

θΔcos 2Δ212221v v v v -+=v )Δcos 1(2θ-=v 而 v

v θ

R s t ΔΔΔ==

所以

θ

R θt a Δ)cos Δ1(2ΔΔ2

v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得,

R a 219003.0v ≈,R a 229886.0v ≈ R a 239987.0v ≈,R

a 2

4000.1v ≈

以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法

向加速度R

2

v .

1-17 分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t

ΔΔr

=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度t

d d r

=

v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即

t

t t

e a d d v =

,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρ

a n 2

v =求ρ.

解 (1) 由参数方程 x =2.0t , y =19.0-2.0t 2 消去t 得质点的轨迹方程:y =19.0 -0.50x 2 (2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度

j i r r 0.60.2ΔΔ1

21

2-=--==

t t t r v (3) 质点在任意时刻的速度和加速度分别为

j i j i j i t t y t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-?-=+=s m t

y

t x t

则t 1 =1.00s时的速度

v (t )|t =1s=2.0i -4.0j

切向和法向加速度分别为

t t y x t t t

t

t e e e a 2

22s

1s m 58.3)(d d d d -=?=+==

v v v n n t n a a e e a 222s m 79.1-?=-=

(4) t =1.0s质点的速度大小为

1

22s m 47.4-?=+=y

x

v v v 则m 17.112

==n

a ρv

1-18 分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.

此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.

解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为

x =vt , y =1/2 gt 2

飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离

m 4522==g

y

x v

(2) 视线和水平线的夹角为

o 5.12arctan

==x

y

θ (3) 在任意时刻物品的速度与水平轴的夹角为

v

v v gt

αx y arctan arctan ==

取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为

2s m 88.1arctan sin sin -?=??? ??

==v gt g αg a t

2s m 62.9arctan cos cos -?=??? ?

?

==v gt g αg a n

1-19 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即2

0g 2

1t t +

=v r ,做出炮弹落地

时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).

解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为

αgt βt x sin 21cos 20-

=v (1) αgt βt y cos 2

1

sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得

)cos(cos sin 2)sin sin cos (cos cos sin 2220220βαα

g β

βαβααg βx OP +=-==v v

解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有

βgt

αt

βαsin 2

12πsin 2πsin 2

0=??

? ??+=??

?

??--v r 从中消去t 后也可得到同样结果. (2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则

0sin cos 0=-=αgt βx v v (3)

由(2)(3)两式消去t 后得

α

βsin 21tan =

由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关. 讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.

1-20 分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度

v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中

所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布

解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为

t ωR t x ==v (1) h gt y ==

2

2

1 (2) 由式(1)(2)可得 g

h

ωR x 222

2=

由图(a)所示几何关系得雨滴落地处圆周的半径为

2

2221ωg

h R R x r +

=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为

g

R 2

sin 0v =

为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.

1-21 分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.

解 取图示坐标系Oxy ,由运动方程

θt x cos v =, 22

1

sin gt θt y -=v

消去t 得轨迹方程

222)tan 1(2tan x θg

θx y +-

=v

以x =25.0 m,v =20.0 m ·s-1 及3.44 m ≥y ≥0 代入后,可解得 71.11°≥θ1 ≥69.92° 27.92°≥θ2 ≥18.89°

如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应

有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.

1-22 分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程

s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加

速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.

解 (1) 质点作圆周运动的速率为

bt t

s

-==

0d d v v 其加速度的切向分量和法向分量分别为

b t s a t -==22d d , R

bt R a n 2

02)(-==v v

故加速度的大小为

R

)(4

02222bt b a a a a t t

n

-+=

+=v 其方向与切线之间的夹角为

?????

?--==Rb bt a a θt n

20)(arctan arctan v (2) 要使|a |=b ,由

b bt b R R

=-+4022)(1

v 可得 b

t 0

v =

(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为

b

s s s t 220

0v =-=

因此质点运行的圈数为

bR

R s n π4π22

v ==

1-23 分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.

解 因ωR =v ,由题意ω∝t 2 得比例系数

322s rad 2-?===

Rt

t ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为

12s rad 5.02-?='=t ω 2s rad 0.24d d -?='==

t t

ω

α 2s m 0.1-?==R αa t 总加速度 n t t n R ωR αe e a a a 2+=+=()()

2

222s m 01.1-?=+=R ωR αa

在2.0s内该点所转过的角度

rad 33.53

2d 2d 2

032

220

0==

==-??t t t t ωθθ 1-24 分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.

解 (1) 由于3

42t θ+=,则角速度212d d t t

θ

ω==.在t =2 s 时,法向加速度和切向加速度的数值分别为

22s

2s m 30.2-=?==ωr a t n

2s

2s m 80.4d d -=?==t

ω

r

a t t

(2) 当222

12/t n t a a a a +=

=时,有2

23n t a a =,即 ()()

4

222

12243t r rt = 得 3

213=

t

此时刻的角位置为 rad 15.3423=+=t θ

(3) 要使t n a a =,则有 ()()

4

222

12243t r rt = t =0.55s

1-25 分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'

22v v v += (如图所示),于是可得

1

o

12s m 36.575

tan -?==

v v

1-26 分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对

于汽车的运动速度v 2′的方向)应满足h

l

αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.

解 由122v v v -='[图(b)],有 θ

θ

αcos sin arctan

221v v v -=

而要使h l αarctan

≥,则 h l θθ≥-cos sin 221v v v ??

? ??+≥θh θl sin cos 21v v 1-27 分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使

v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.

解 (1) 由v =u +v ′可知v =u

αarcsin

,则船到达正对岸所需时间为 s 1005.1cos 3?='==

α

d d t v v

(2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有

m 100.52?='

='=v d

u

t u l 1-28 分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O ′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O ′中的点(x ′,y ′).由于观察者O ′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.

解 取Oxy 和O ′x ′y ′分别为观察者O 和观察者O ′所在的坐标系,且使Ox 和O ′x ′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得

x ′=x - v t =v t - v t =0 y ′=y =1/2 gt 2

加速度 g t y a a y ='

='

=2

2d d 由此可见,动点相对于系O ′是在y 方向作匀变速直线运动.动点在两坐标系中加速度相同,这也正是伽利略变换的必然结果.

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

大学物理课后习题答案(上)

《大学物理》练习题 No .1 电场强度 班级 ___________ 学号 ___________ ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比; (B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0. 2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q , P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强 的大小为: [ D ](A) x q 04πε. (B) 2 04x q πε. (C) 3 02x qa πε (D) 30x qa πε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和 ( x > 0),则xOy 平面上(0, a )点处的场强为: [ A ] (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强 分布图线应是(设场强方向向右为正、向左为负) ? [ D ] 5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是 [ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (B) f 12的大小改变了,但方向没变, q 1受的总电场力不变; (C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; -q -a +q a P (x,0) x x y O 图1.1 +λ -λ ? (0, a ) x y O 图1.2 σ -x O E x 02εσ O 02εσ-E x O 0 2εσ-E x 02εσO 02εσ -O E x 02εσ(D)图1.3

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

《大学物理习题集》上)习题解答

) 2(选择题(5) 选择题单 元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

相关文档
最新文档