材料结构与力学性能知识点总结

材料结构与力学性能知识点总结
材料结构与力学性能知识点总结

仅供参考, 自我感觉价值不大

一、解释下列名词

滞弹性:在外加载荷作用下,应变落后于应力现象。静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?

答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?

答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。

实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。

一、解释下列名词:

(1)应力状态软性系数材料最大且盈利与最大正赢利的比值,记为a。

(2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。

(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸

光滑试样的抗拉强度的比值表示。

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而

得的硬度。

度。

( 6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬

受的试验力计算而得的硬度。

( 7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面

积得到的硬度。

(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。

(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

、说明下列力学性能指标的意义

(1 ) (T be 材料的抗压强度

(2)T bb 材料的抗弯强度

(3)T s ――材料的扭转屈服点

(4)T b——材料的抗扭强度

(5)T bn 材料的抗拉强度

(6)NS 材料的缺口敏感度

(7)HBS压头为淬火钢球的材料的布氏硬度

(8)HBV——压头为硬质合金球的材料的布氏硬度

(9)HRA材料的洛氏硬度

(10)HRB材料的洛氏硬度

(11)HRC材料的洛氏硬度

(12)HV材料的维氏硬度

(13)HK材料的努氏硬度

(14)HS――材料的肖氏硬度

(15)HL――材料的里氏硬度

三、缺口冲击韧性试验能评定那些材料的低温脆性?那些材料不能用此方法检验和评定?

答案:缺口冲击韧性试验能评定的材料是低、中强度的体心立方金属以及Bb, Zn,这些材料的冲击韧性对温度是很敏感的。对高强度钢、铝合金和钛合金以及面心立方金属、陶瓷材料等不能用此方法检验和评定。

四、在评定材料的缺口敏感应时,什么情况下宜选用缺口静拉伸试验?什么情况下宜选用缺口偏

斜拉伸?什么情况下则选用缺口静弯试验?

答案:缺口静拉伸试验主要用于比较淬火低中温回火的各种高强度钢,各种高强度钢在屈服强度小于1200MPa 时,其缺口强度均随着材料屈服强度的提高而升高;但在屈服强度超过1200MPa以上时,则表现岀不同的特性,有的开始降低,有的还呈上升趋势。

缺口偏斜拉伸试验就是在更苛刻的应力状态和试验条件下,来检验与对比不同材料或不同工艺所表现岀的性能差异。

缺口试样的静弯试验则用来评定或比较结构钢的缺口敏感度和裂纹敏感度。

一、解释下列名词

(1)冲击韧度——材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

(2)冲击吸收功——冲击弯曲试验中试样变形和断裂所消耗的功

(3)低温脆性——体心立方晶体金属及其合金或某些密派六方晶体金属及其合金在试验温度低于某一温度时,材料由韧性状态转变为脆性状态的现象。

(4)韧脆转变温度——材料呈现低温脆性的临界转变温度。

( 5)韧性温度储备——材料使用温度和韧脆转变温度的差值,保证材料的低温服役行为。

二、说明下列力学性能指标的意义

(1)A――材料的冲击吸收功

AKV (CVN)和AK ―― V型缺口和U型缺口试样测得的冲击吸收功

(2)FATT50――结晶区占整个端口面积50%是的温度定

义的韧脆转变温度

(3)NDT以低阶能开始上升的温度定义的韧脆转变温度

(4)FTE――以低阶能和高阶能平均值对应的温度定义的韧脆转变温度

(5)FTP――高阶能对应的温度

三、J 积分的主要优点是什么?为什么用这种方法测定低中强度材料的断裂韧性要比一般的KIC 测定方法其试样尺寸要小很多?

答案:J 积分有一个突出的优点就是可以用来测定低中强度材料的KIC。

对平面应变的断裂韧性KIC,测定时要求裂纹一开始起裂,立即达到全而失稳扩展,并

要求沿裂纹全长,除试样两侗表面极小地带外,全部达到平面应变状态。而JIC 的测定,不一定

要求试样完全满足平面应变条件,试验时,只在裂纹前沿中间地段首先起裂,然后有较长的亚临界稳定扩展的过程,这样只需很小的试验厚度,即只在中心起裂的部分满足平面应变要求,而韧带尺寸范围可以大而积的屈服,甚至全面屈服。因此.作为试样的起裂点.仍然是平面应变的断裂韧度,这时JIC 的是材料的性质。当试样裂纹继续扩展时,进入平面应力的稳定扩展阶段,此时的J 不再单独是材料的性质,还与试样尺寸有关。

四、如何提高陶瓷材料的热冲击抗力?

答案:在工程应用中,陶瓷构件的失效分析是十分重要的,如果材料的失效,主要是热震断裂,例如对高强、微密的精细陶宠,则裂纹的萌生起主导作用,为了防止热震失效提高热震断裂抗力,应当致力于提高材料的强度,并降低它的弹性模量和膨胀系数。若导致热震失效的主要因素是热震损坏,这时裂纹的扩展起主要作用,这时应当设法提高它的断裂韧性,降低它的强度。

一、解释下列名词

( 1 )低应力脆断:在屈服应力以下发生的断裂。

( 2)张开型裂纹:拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展。

( 3)应力强度因子:表示应力场的强弱程度。

( 4)小范围屈服:塑性尺寸较裂纹尺寸及净截面尺寸为小,小一个数量级以上的屈服。

( 5)有效屈服应力:发生屈服时的应力

(6)有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相合并得到的裂纹长度

(7)裂纹扩展能量释放率:裂纹扩展单位面积时系统释放势能的数值。

(8)J 积分:裂纹尖端区的应变能,即应力应变集中程度

(9)COD裂纹尖端沿应力方向张开所得到的位移。

二、疲劳断口有什么特点?

答案:有疲劳源。在形成疲劳裂纹之后,裂纹慢速扩展,形成贝壳状或海滩状条纹。这种条纹开始时比较密集,以后间距逐渐增大。由于载荷的间断或载荷大小的改变,裂纹经过多次张开闭合并由于裂纹表面的相互摩擦,形成一条条光亮的弧线,叫做疲劳裂纹前沿线,这个区域通常称为疲劳裂纹扩展区,而最后断裂区则和静载下带尖锐缺口试样的断口相似。对于塑性材料,断口为纤维状,对于脆性材料,则为结晶状断口。总之,一个典型的疲劳断口总是由疲劳源,疲劳裂纹扩展区和最终断裂区三部份构成。

三、什么是疲劳裂纹门槛值,哪些因素影响其值的大小?

答案:把裂纹扩展的每一微小过程看成是裂纹体小区域的断裂过程,则设想应力强度因

子幅度△K=Kmax-Kmin是疲劳裂纹扩展的控制因子,当小于某临界值△Kth时,疲劳裂纹不扩展,所以△Kth叫疲劳裂纹扩展的门槛值。

应力比、显微组织、环境及试样的尺寸等因素对厶Kth 的影响很大。

一、解释下列名词腐蚀疲劳:材料或零件在交变应力和腐蚀介质的共同作用下造成的失效。应力腐蚀:材料

或零件在应力和腐蚀环境的共同作用下引起的破坏。氢脆:就是材料在使用前内部已含有足够的氢并导致了脆性破坏。

二、如何判断某一零件的破坏是由应力腐蚀引起的?

答案:应力腐蚀引起的破坏,常有以下特点:

1、造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一舶是拉伸应力。

2、应力腐蚀造成的破坏,是腕性断裂,没有明显的塑性变形。

3、只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。

4、应力腐蚀的裂纹扩展速率一般在10-9 一10-6m/s ,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。

5、应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的传播途径常垂直于拉力轴。

6、应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物,而疲劳断口的表面,如果是新鲜断口常常较光滑,有光泽。

7、应力腐蚀的主裂纹扩展时常有分枝。但不要形成绝对化的概念,应力腐蚀裂纹并不总是分技的。

8、应力腐蚀引起的断裂可以是穿晶断裂,也可以是晶间断裂。如果是穿晶断裂,其断口

是解理或准解理的,其裂纹有似人字形或羽毛状的标记。

三、如何识别氢脆与应力腐蚀?

答案:氢脆和应力腐蚀相比,其特点表现在:

1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。

2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。

3、断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。

4、氦脆断口上一般没有腐蚀产物或者其量极微。

5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。

一、和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点? 答案:

1、首先,材料在高温将发生蠕变现象。材料在高温下不仅强度降低,而且塑性也降低。应变速率越低,载荷作用时间越长,塑性降低得越显著。

2、高温应力松弛。

3、产生疲劳损伤,使高温疲劳强度下降。二、提高材料的蠕变抗力有哪些途径?

答案:加入的合金元素阻止刃位错的攀移,以及阻止空位的形成与运动从而阻止其扩散。

第一章

1塑性 -- 材料在外力作用下发生不可逆的永久变形的能力

2穿晶断裂和沿晶断裂 --- 穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。

3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

4E---应变为一个单位时,E即等于弹性应力,即 E是产生100%弹性变形所需的应力

5 c s----屈服强度,一般将 b 0.2定为屈服强度

6n—应变硬化指数 Hollo mon关系式:

S=ken (真应力S与真应变e之间的关系)

n—应变硬化指数;k—硬化系数

应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0

材料无硬化能力。大多数金属材料的n值在0.1?0.5之间。

7 3 10---长比例试样断后延伸率 L0=5d0或L0=10d0 L0标注长度d0名义截面直径)

J/m3 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。

9脆性断裂( 1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Y <5%为脆性断裂;大于 5%时为韧

性断裂。

11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。12低碳钢在室温条件下单向拉伸应力—应变曲线的特点 p1-2

13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。解理面一般是指低指数晶面或表面能量低的晶面。

14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。

15弹性比功a e(弹性比能、应变比能)物理意义:吸收弹性变形功的能力。

几何意义:应力-应变曲线上弹性阶段下的面积。 a e = (1/2) d e* £ e

16G裂纹扩展能量释放率 GI为裂纹扩展单位长度时系统势能的变化率。

17d b ——实际材料在静拉伸下的最大承载能力。

18eB -最大真实应变量

19““3”伸长率,“ 断面收缩率

20影响金属材料屈服强度的因素 --- 内因(1)金属本性及晶格类型(位错运动的阻力交互产生的阻力)( 2)溶质原子和点缺陷( 3)晶粒大小和亚结构( 4)第二相(二)外因

温度提高,位错运动容易, d s J。应变速率提高, d sTo应力状态切应力T f, d s

J。

21滞弹性——在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

22弹性模量的特点表征金属材料对弹性变形的抗力,其值越大,则在相同应力下产生的弹性变形就越小。

23解理断裂的特点

解理断裂包括三个阶段:塑性变形形成裂纹;裂纹在同一晶粒内初期长大;裂纹越过晶界向相邻晶粒扩展。

24 塑性变形的特点1)各晶粒变形的不同时性和不均匀性(2)变形的相互协调性

25低碳钢在室温条件下单向拉伸应力—应变曲线的特点

26金属材料拉伸曲线四阶段 --- 弹性变形屈服塑性变形断裂(弹性变形、不均匀屈服变形、均匀屈服变形、断裂)

27金属材料常见的塑性变形方式 -- 滑移孪生形变带

28韧性断裂宏观断口特点 --- 断口呈纤维状,灰暗色。杯锥状。

断口特征三要素:纤维区F、放射区R、剪切唇S

F纤维区:裂纹快速扩展。撕裂时塑性变形量大,

R放射线粗。S剪切唇:切断。

29 3 5 S 10的区别-----材料断裂前发生塑性变形的能力。(3、屮)

比例试样: L0=5d0 或 L0=10d0 ( L0 标注长度、 d0 名义截面直径)

由于大多数材料的集中塑性变形量大于均匀变形量,??? 3 5>3 10(断后伸长率)

30怎样区分韧性断裂和脆性断裂---一般规定Y<5%为脆性断裂;大于 5%时为韧性断裂。

第二章

1a ---应力状态系数a表示材料塑性变形的难易程度。

a越大表示在该应力状态下切应力分量越大,材料就越易塑性变形。

2HBW---布氏硬度

(1 )原理用一定直径 D的钢球或硬质合金球为压头,施以一定的试验力,将其压入试样表面,经规定保持时间后,卸除试验力。试样表面留下压痕。力除以压痕球形表面积的商就是布氏硬度。

(2)种类布氏硬度试验用压头直径 D(10, 5, 2.5, 2, 1mm。)

淬火钢球压头, HBS(适用450HB以下);硬质合金压头,HBV(适用450HA 650HE)。(3)布氏硬度的优缺点

优点:能在较大范围内反映材料的平均性能。试验数据稳定,重复性好,应用广泛。缺点:属有损检测;不能连续检测。

3缺口效应 --- 由于缺口的存在,再静载荷作用下,缺口截面上的应力状态将发生变化,残生所谓的“缺口效应”

4如何根据材料来选择何种硬度试验方法渗碳层的硬度分布(努氏硬度)淬火钢(洛氏硬度 HRC)

灰铸铁(布氏硬度)

鉴别钢中的隐晶马氏体与残留奥氏体(显微维氏硬度试验)仪表小黄铜齿轮(洛氏硬度)

龙门刨床导轨(肖氏硬度)

渗氮层(努氏硬度)

高速钢刀具(洛氏硬度)

退火态低碳钢(洛氏硬度 HRB)硬质合金(洛氏硬度 HRA)

5压入法硬度值表征 --- 压入法硬度——表征材料的塑性变形抗力及应变硬化能力。其应力

状态软性系数最大(a >2),几乎所有的材料都能产生塑变。

6HRC--- 钢 k=0.26

锥头又分成 a =120o 的金刚石圆锥

主要应用于淬火钢高硬度铸件珠光体可锻铸铁

7缺口强化——在存在缺口的条件下由于出现了三向应力状态,并产生应力集中,试样的屈服应力比单向拉伸时高,产生了所谓的缺口强化现象。

8缺口敏感度 --- 通常用缺口敏感度 NSR(Notch Sensitivity Ratio)衡量静拉伸下缺口敏感

度指标:NSR=cbn/ d b

度。

NSR越大,表示缺口敏感度越小 .

脆性材料(如铸铁、高碳钢),NSR<1 T这些材料对缺口很敏感。高强度材料的NSF一般也小于1。塑性材料的NSR般大于1。

9扭转试验的特点 --- ( 1)能检测在拉伸时呈脆性的材料的塑性性能。(2)长度方向,宏

观上的塑性变形始终是均匀的。(3)能敏感地反映材料表面的性能( 4)断口的特征最明显

10弯曲试验 ----- 弯曲试验的特点弯曲试验常用于测定脆性材料的力学性能。

分析:( 1 )正应力试样上表面为压应力,下表面为拉应力;(2)表面应力最大,中心

线区域为零;( 3)加力点处的作用力最大;( 4)对试样的要求比拉伸时的宽松。如铸铁、工具钢、表面渗碳钢等,常采用作弯曲试验。

11 缺口试样静拉伸试验分类 --- 缺口试样,有轴向拉伸和偏斜拉伸两种。

12布氏硬度、洛氏硬度与维氏硬度的试验原理

布氏硬度原理用一定直径 D的钢球或硬质合金球为压头,施以一定的试验力,将其压入试样表面,经规定保持时间后,卸除试验力。试样表面留下压痕。力除以压痕球形表面积的商就是布氏硬度。

洛氏硬度原理以压头留下的压痕深度来表示材料的硬度值。压痕深度 h 越大,硬度值越低。规定:不同的压头, k 值不同;金刚石 k=0.2 ;钢 k=0.26

锥头又分成a =1200的金刚石圆锥(HRC HRA或一定直径的淬火钢球(HRB)。

维氏硬度原理a =1360的金刚石正四棱锥体与布氏硬度相同

13应力状态软性系数 a a >2为应力状态软

14硬度表征材料软硬程度的一种性能

15脆性金属材料压缩试验特点?除能产生一定的塑性变形外,常沿与轴线呈 45°方向产生断裂,具有切断特征。

第三章

1.50%FATT--- 断口结晶区占整个断口面积 50%时的温度。

2AKV (CVN)--- V 形缺口摆锤冲击试验冲击吸收功

3韧脆转变温度 ----- 当试验温度低于某一温度从时,材料由韧性状态变为脆性状态,冲击吸

收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。转变温度从称为韧脆转变温度,也称为冷脆转变温度。

4冲击吸收功——试样变形和断裂所吸收的功。

5低温脆性

6AKU---U 形缺口摆锤冲击试验冲击吸收功

7冲击弯曲试验的工程用途及影响韧脆转变温度的冶金因素

作用(1)揭示冶金缺陷的影响;(2)对d s大致相同的材料,评定缺口敏感性。

( 3 )评定低温脆性倾向。

影响韧脆转变温度的冶金因素间隙溶质元素溶人铁素体基体中,偏聚于位错线附近,阻碍位

错运动,致升高,钢的韧脆转变温度提高(图3-10)。

8冲击韧度---材料在冲击载荷作用下,吸收塑性变形功和断裂功的大小。单位,J ;或

kgf/cm2

9落锤试验的特点?

落锤实验的缺点是对脆性断裂不能给予定量评定。因为试验使用动载荷,其结果能否用于静载荷尚需研究。此外,板厚的影响也未考虑。

10按断口形貌定义韧脆转变温度 tk 的方法无塑性转变温度 NDT(Nil Ductility Temperature ):断口由100%结晶区(解理区)组成时对应的温度。50 % FATT( Fracture Appearance Temperature ):断口结晶区占整个断口面积50%时的温度。

11低温脆性现象与晶格的关系

f.c.c 不存在低温脆性(如 Cu、Al 、奥氏体不锈钢)。

b.c.c金属及其合金存在低温脆性(如 Fe、Mo W等)。

第四章

1低应力脆性断裂——金属材料在屈服应力以下,应力较低的情况下发生的断裂。

2断裂 K 判据应用实例 p84

33 C

断裂韧度 3 c越大,说明裂纹尖端区域的塑性储备越大。

4KI C和 KC

当KI达到临界值即在裂纹尖端足够大的范围内应力达到了材料的断裂强度,裂纹便失

稳扩展,材料断裂。这个临界或失稳状态的KI记为KIC或KC称为断裂韧度。KC —平

面应力断裂韧度 KIC —平面应变, I 类裂纹时断裂韧度意义: KIC 表示材料在平面应变条件下抵抗裂纹失稳扩展的能力。

5断裂K判据应用p92-17

6张开型( I 型)裂纹——拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展。

7KIc、GIc 与 KI、GI

KI 表示应力场的强弱程度,故称为应力场强度因子, KI 越大,则应力场各应力分量也越大。

GI 表示裂纹扩展单位面积时系统释放势能的数值称为裂纹扩展能量释放率,简称为能量释放率或能量率。

GI的临界值记为GIC,表示材料阻止裂纹失稳扩展时单位面积所消耗的能量。

8影响断裂韧度 KIc 的因素 1 、材料因素(内在因素)

①化学成分对KIC的影响和对AKv的影响相似

细晶,f 6和£(塑性),f KIC ;当合金元素% f ,f固溶强化时,因J £, KIC J;

形成金属间化合物并呈析出的合金元素,因J £ , KIC J

②基体相结构和晶粒大小面心立方(因为塑变抗力低、塑变能力强)比体心立方的 KIC

高;一般,晶粒越细,n和bs就越高,f KIC

③夹杂、第二相

若本身脆裂或在相界面开裂而形成微孔,KIC J;当夹杂物体积分数增多,使得分散的

脆性相数量越多,其平均间距越小,促进裂纹的扩展,KIC J .

第二相或夹杂物呈球状分布时,有利于减缓应力集中,f KIC;当碳化物沿晶界呈网状分

布(包括夹杂物沿晶界分布),裂纹易沿此扩展,KIC J。

④显微组织板条M体(位错型),因强度和塑性较高,对裂纹扩展的阻力大,常呈韧

性断裂,贝U KIC较高;针状 M硬而脆,KIC很低;回火S体的KIC较高,回火T体次之、回火M的KIC较低。

亚共析钢中,无碳B常因为热加工工艺问题而形成魏氏体组织(F从晶界沿针状向晶内分布),使KIC下降;上B因在F片层间分布有断续碳化物, KIC较低;下B因在过饱和F中分布着弥散细小的碳化物,对裂纹扩展的阻力大,与板条M相近,KIC较高。

残余A是一种韧性的第二相,对提高KIC有利,例如高锰钢;低碳M除了因为位错型结构

外,M板条间的AR薄膜也起了很大作用。

2、(外因)环境因素①温度结构钢的KIC都随toC J而J

②应变速率,增加应变速率相当于温度降低的作用。

9裂纹扩展基本形式及特点

张开型( I 型)裂纹扩展(拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展)

滑开型( II 型)裂纹扩展(切应力平行作用于裂纹面,而且与裂纹线垂直,裂纹沿裂纹面平行划开扩展)

撕开型( III 型)裂纹扩展(切应力平行作用于裂纹面,而且与裂纹线平行,裂纹沿裂纹面撕开扩展)

10应力松弛对裂纹尖端附近塑性区尺寸的影响

第五章

1 疲劳 --- 材料在交变应力的作用下,经过一段时间,而发生断裂的现象,叫疲劳。

2b - 1 ---- 疲劳极限

3疲劳断裂的特点 --- ( 1)疲劳是低应力循环延时断裂,即具有寿命的断裂

( 2)疲劳是脆性断裂( 3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感

4疲劳宏观断口的特征及表面状态表面强化对疲劳强度的影响。在断口上,疲劳源一般在机件表面,常与缺口、裂纹、刀痕、蚀坑等缺陷相连,由于应力不集中会引发疲劳裂纹。从断口形貌看,疲劳源区的光亮度最大疲劳区断口比较光滑并分布有贝纹线(或海滩花样)。

瞬断区断口比疲劳区粗糙,同静载的裂纹件的断口一样,随材料的性质而变

5热疲劳机件在由温度循环变化时产生的循环热应力及热应变作用下发生的疲劳,称为热疲劳。

6A Kth---疲劳裂纹扩展门槛值,疲劳裂纹不扩展的△ K临界值。

7低周疲劳----低周疲劳(Nf= (104-105 )周次,》(T S,往往有塑性应变 )。

8疲劳现象及疲劳现象的特点机件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。

特点( 1)疲劳是低应力循环延时断裂,即具有寿命的断裂

( 2)疲劳是脆性断裂( 3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感

9材料的过载损伤区

如果金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限和疲劳寿命减小,这就

造成了过载损伤。

金属材料抵抗疲劳过载损伤的能力,用过载损伤界或过载损伤区表示。

10按照断裂寿命和应力高低不同疲劳分类 ------------- 高周疲劳、低周疲劳

11驻留滑移带 ----- 用电解抛光方法很难将已产生的表面循环滑移带去除,即使能去除,当

对试样重新循环加载时,则循环滑移带又在原处出现,这种永留或再现的循环滑移带称为驻留滑移带。

12低周疲劳的特点

①低周疲劳时,因局部区域产生宏观塑性变形,故循环应力与应变之间不再呈直线关系,形成滞后回线。

②低周疲劳试验时,或者控制总应变范围,或者控制塑性应变范围,在给定的△£ t或△&

p 下测定疲劳寿命。

③低周疲劳破坏有几个裂纹源,这是由于应力比较大,裂纹容易形核,其形核期较短,只占

总寿命的 10%。

④低周疲劳寿命决定于塑性应变幅,而高周疲劳寿命则决定于应力幅或应力场强度因子范围,但两者都是循环塑性变形累计损伤的结果。

13对称交变应力------- (T m=0, r=-1

14 疲劳断口典型的微观特征?

①疲劳裂纹萌生阶段产生疲劳滑移带

②第二阶段的断口特征是具有略呈弯曲并相互平行的沟槽花样,成为疲劳条带。疲劳条带是疲劳断口最典型的微观特征。

1 应力腐蚀断裂------- 金属在拉应力和特定的介质共同作用下,经过一段时间后,所产生的低

应力脆断现象。

2应力腐蚀裂纹扩展速率 da/dt 与 KI 关系曲线特点

3氢脆断裂 ---- 由于氢和应力的共同作用,而导致金属材料产生脆性断裂的现象,称为氢脆

断裂

4氢致裂纹的扩展方式与应力腐蚀裂纹扩展方式孕育,亚稳扩展,失稳扩展。

5应力腐蚀现象金属在拉应力和特定的介质共同作用下,经过一段时间后,所产生的低应力脆断现象。第七章

1 磨损---- 机件表面相接触并作相对运动、表面逐渐有微小颗粒分离出来形成磨屑,使表面

材料逐渐损失,导致机件尺寸变化和质量损失,造成表面损伤的现象。

2相对耐磨性 ------ 相对耐磨性 £ =标准试样的磨损量/被测试样的磨损量

3 等强温度

4磨损三阶段

①跑合阶段(磨合阶段)

②稳定磨损阶段

③剧烈磨损阶段

5金属磨损形式

一、粘着磨损

二、磨粒磨损

三、腐蚀磨损

第八章 1 蠕变现象和应力松弛

材料在长时间、恒温、恒载作用下缓慢地产生塑性变形的现象。这种在温度及初始应力一定时,材料中的应力随时间增加而减小的现象称为应力松弛。

2蠕变极限(1)在规定温度(t )下,使试样在规定时间内产生的稳态蠕变速率不超过

规定值时的最大应力。如b 6001*10-5表示材料在600摄氏度下,稳态蠕变变形为1*10-5%/h 的蠕变极限为60MPa。(2)在规定温度与试验时间内,使试样产生的蠕变总伸长率不超过规

定值的最大应力。如 b 5001/100000表示材料在500摄氏度下,100000h后总伸长率为1%的蠕变极限为100MPa。

3金属蠕变曲线的特点

按蠕变速率的变化,曲线可以分为三个阶段:

第一阶段: ab 减速蠕变阶段,又称过渡蠕变阶段(开始时蠕变速率很大,以后逐渐减小)第二阶段: bc 恒速蠕变阶段,又称稳态蠕变阶段(蠕变速率几乎保持不变)第三阶段: cd 加速蠕变阶段(随时间延长,蠕变速率不断增大)

4晶粒大小对金属高温力学性能的影响使用温度低于等强温度时,细晶粒钢有较高的强度,

使用温度高于等强温度时,粗晶粒钢有较高的蠕变极限和持久强度极限,但晶粒太大会降低高温下的塑性与韧性。晶粒度不均匀,会显著降低其高温性能,这是由于在大小晶粒交

界处易产生应力集中形成裂纹。

5持久强度极限的表示方法 -------- 高温长时载荷作用下的断裂强度,金属材料的持久强度极

限,是在规定的持续时间内不发生断裂的最大应力。

6持久强度——材料在高温长时载荷作用下的断裂强度;即在规定温度下,达到规定的持续时间而不发生断裂的最大应力。

7约比温度----温度的“高”或“低”是相对该金属的熔点来讲的,一般采用“约比温度(T/Tm)(试验温度 / 金属熔点)”更为合理。 >0.5 时为“高”温;反之为“低”温。

8 蠕变变形的机理

金属的蠕变变形主要通过位错滑移、原子扩散等机理进行,与温度及应力的变化有关。

(一)位错滑移蠕变

(二)扩散蠕变

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

土力学复习资料总结讲解

第一章土的组成 1、土力学:是以力学和工程地质为基础研究与土木工程有关的土的应力、应变、强度稳定性等的应用力学的分支。 2、地基:承受建筑物、构筑物全部荷载的那一部分天然的或部分人工改造的地层。 3、地基设计时应满足的基本条件:①强度,②稳定性,③安全度,④变形。 4、土的定义:①岩石在风化作用下形成的大小悬殊颗粒,通过不同的搬运方式,在各种自然环境中形成的沉积物。②由土粒(固相)、土中水(液相)和土中气(气相)所组成的三相物质。 5、土的工程特性:①压缩性大, ②强度低,③透水性大。 6、土的形成过程:地壳表层的岩石在阳光、大气、水和生物等因素影响下,发生风化作用,使岩石崩解、破碎,经流水、风、冰川等动力搬运作用,在各种自然环境下沉积。 7、风化作用:外力对原岩发生的机械破碎和化学风化作用。 风化作用有两种:物理风化、化学风化。 物理风化:用于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解,碎裂的过程。 化学风化:岩体与空气,水和各种水溶液相互作用的过程。 化学风化的类型有三种:水解作用、水化作用、氧化作用。 水解作用:指原生矿物成分被分解,并与水进行化学成分的交换。 水化作用:批量水和某种矿物发生化学反映,形成新的矿物。 氧化作用:指某种矿物与氧气结合形成新的矿物。 8、土的特点:①散体性:颗粒之间无黏结或一定的黏结,存在大量孔隙,可以透水透气。 ②多相性:土是由固体颗粒、水和气体组成的三相体系。③自然变异性:土是在自然界漫长的地质历史时期深化形成的多矿物组合体,性质复杂,不均匀,且随时间还在不断变化的材料。 9、决定土的物理学性质的重要因素:①土粒的大小和形状,②矿物组成,③组成。 10、土粒的个体特征:土粒的大小、土粒的形状。 11、粒度:土粒的大小。 12、粒组:介于一定粒度范围内的土粒。 13、界限粒经:划分粒组的分界尺寸。 14、土的粒度成分(颗粒级配):土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示。 15、土的粒度成分(颗粒组配)常用测定方法:①筛分法:用于粒经大于0.07mm的粗粒组。 ②沉降分析法:用于粒经小于0.07mm的粗粒组。 筛分法试验:①将风干、分散的代表性土样通过一套自上而下孔经由大到小的标准,筛称干土重,即可求得各个粒组的相对含量。②通过计算可得到小于某一筛孔直径土粒的累积重量及累计百分比含量。 沉降分析法:土粒在水中的沉降原理。土粒的下沉速度:土粒形状、粒经、密度、黏滞度。 16、粒经累计曲线:横坐标表示土粒粒经,纵坐标表示小于或大于某粒经的土重含量。 判断:曲线较陡:表示粒经大小相差不多,土粒较均匀,→级配不良。

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

材料力学必备知识点

材料力学必备知识点 1、材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、低碳钢:含碳量在0.3%以下的碳素钢。 5、低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料:<5%的材料称为脆性材料 8、失效:断裂和出现塑性变形统称为失效 9、应变能:弹性固体在外力作用下,因变形而储存的能量

10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截

土力学知识点总结

土力学知识点总结集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1.土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。 2.任何建筑都建造在一定的地层上。通常把支撑基础的土体或岩体成为地基(天然地基、人工地基)。 3.基础是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基。 4.地基和基础设计必须满足的三个基本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②基础沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。 5.地基和基础是建筑物的根本,统称为基础工程。 6.土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。 7.土的三相组成:固相(固体颗粒)、液相(水)、气相(气体)。 8.土的矿物成分:原生矿物、次生矿物。 9.黏土矿物是一种复合的铝—硅酸盐晶体。可分为:蒙脱石、伊利石和高岭石。 10.土力的大小称为粒度。工程上常把大小、性质相近的土粒合并为一组,称为粒组。划分粒组的分界尺寸称为界限粒径。土粒粒组分为巨粒、粗粒和细粒。 11.土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标

则是用对数值表示土的粒径。 12.颗粒分析实验:筛分法和沉降分析法。 13.土中水按存在形态分为液态水、固态水和气态水。固态水又称矿物内部结晶水或内部结合水。液态水分为结合水和自由水。自由水分为重力水和毛细水。 14.重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。 15.毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以下的透水层中自由水。土的毛细现象是指土中水在表面张力作用下,沿着细的孔隙向上及向其他方向移动的现象。 16.影响冻胀的因素:土的因素、水的因素、温度的因素。 17.土的结构是指土颗粒或集合体的大小和形状、表面特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构。 18.结构的类型:单粒结构、蜂窝结构、絮凝结构。 19.土的物理性质直接反应土的松密、软硬等物理状态,也间接反映土的工程性质。而土的松密和软硬程度主要取决于土的三相各自在数量上所占的比例。 20.黏土就是指具有可塑性状态性质的土,他们在外力作用下,可塑成任何性状而不产生裂缝,当外力去掉后,仍可保持原性状不变。土的这种性质叫做可塑性。 21.黏土从一种状态转变成另一种状态的分界含水量称为界限含水量。土

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

最新土力学与地基基础知识点整理

地基基础部分 1.土由哪几部分组成? 土是由岩石风化生成的松散沉积物,一般而言,土是由固体颗粒、液态水和空隙中的气体等三部分组成。 2.什么是粒径级配?粒径级配的分析方法主要有哪些? 土中土粒组成,通常以土中各个粒组的相对含量(各粒组占土粒总质量的百分数)来表示,称为土的粒径级配。 对于粒径小于或等于60mm、大于0.075的土可用筛分法,而对于粒径小于0.075的土可用密度计法或移液管法分析。 3.什么是自由水、重力水和毛细水? 自由水是存在于土粒表面电场范围以外的水,它可以分为重力水和毛细水。 重力水存在于地下水位一下的土骨架空隙中,受重力作用而移动,传递水压力并产生浮力。毛细水则存在于地下水位以上的孔隙中,土粒之间形成环状弯液面,弯液面与土粒接触处的表面张力反作用于土粒,成为毛细压力,这种力使土粒挤紧,因而具有微弱的粘聚力或称为毛细粘聚力。 4.什么是土的结构?土的主要结构型式有哪些? 土的结构主要是指土体中土粒的排列和联结形式,它主要分为单粒结构、蜂窝结构和絮状结构三种基本类型。 5.土的物理性质指标有哪些?哪些是基本物理性质指标?哪些是换算指标? P6 6.熟练掌握土的各个物理性质指标的概念,并能够进行相互换算。 P7-8 7.无粘性土和粘性土的物理特征是什么? 无粘性土一般指具有单粒结构的碎石土和砂土。天然状态下无粘性土具有不同的密实度。密实状态时,压缩小,强度高。疏松状态时,透水性高,强度低。 粘性土粒之间存在粘聚力而使土具有粘性。随含水率的变化可分别划分为固态、半固态、可塑及流动状态。 8.什么是相对密度? P9 9.什么是界限含水量?什么是液限、塑限含水量? 界限含水率:粘性土由一种状态转换到另一种状态的分界含水率; 液限:由流动状态转为可塑状态的界限含水率; 塑限:有可塑状态转为半固态的界限含水率; 缩限:由半固态转为固态的界限含水率。 10.什么是塑性指数和液性指数?他们各反映粘性土的什么性质? P10 11.粗粒土和细粒土各采用什么指标进行定名? 粗粒土:粒径级配 细粒土:塑性指数

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

土力学与基础工程知识点考点整理汇总

一、绪论 1.1土力学、地基及基础的概念 1.土:土是连续、坚固的岩石经风化、剥蚀、搬运、沉积而形成的散粒堆 积物。 2.地基:地基是指支撑基础的土体或岩体。(地基由地层构成,但地层不一 定是地基,地基是受土木工程影响的地层) 3.基础:基础是指墙、柱地面下的延伸扩大部分,其作用是将结构承受的 各种作用传递到地基上的结构组成部分。(基础可以分为浅基础和深基 础) 4.持力层:持力层是指埋置基础,直接支撑基础的土层。 5.下卧层:下卧层是指卧在持力层下方的土层。(软弱下卧层的强度远远小 于持力层的强度)。 6.基础工程:地基与基础是建筑物的根本,统称为基础工程。 7.土的工程性质:土的散粒性、渗透性、压缩性、整体强度(连接强度) 弱。 8.地基与基础设计必须满足的条件:①强度条件(按承载力极限状态设计): 即结构传来的荷载不超过结构的承载能力p f ≤;②变形条件:按正常使 s≤ 用极限状态设计,即控制基础沉降的范围使之不超过地基变形的允许值[] 二、土的性质及工程分类 2.1 概述 土的三相组成:土体一般由固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成,简称为三相体系。 2.2 土的三相组成及土的结构 (一)土的固体颗粒物质分为无机矿物颗粒和有机质。矿物颗粒的成分有两大类:(1)原生矿物:即岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。(2)次生矿物:系原生矿物经化学风化作用后而形成的新的矿物(如

粘土矿物)。它们的颗粒细小,呈片状,是粘性土固相的主要成分。次生矿物中粘性矿物对土的工程性质影响最大 —— 亲水性。 粘土矿物主要包括:高岭石、蒙脱石、伊利石。蒙脱石,它的晶胞是由两层硅氧晶片之间的夹一层铝氢氧晶片所组成称为2:1型结构单位层或三层型晶胞。它的亲水性特强工程性质差。伊利石它的工程性质介于蒙脱石与高岭石之间。高岭石,它是由一层硅氧晶片和一层铝氢氧晶片组成的晶胞,属于1:1型结构单位层或者两层。它的亲水性、膨胀性和收缩性均小于伊利石,更小于蒙脱石,遇水稳定,工程性质好。 土粒的大小称为粒度。在工程性质中,粒度不同、矿物成分不同,土的工程性质也就不同。工程上常把大小、性质相近的土粒合并为一组,称为粒组。而划分粒组的分界尺寸称为界限粒径。土粒粒组先粗分为巨粒、粗粒和细粒三个统称,再细分为六个粒组:漂石(块石)、卵石(碎石)、砾粒、砂粒、粉粒和黏粒。 土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。土的级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。由曲线形态可评定土颗粒大小的均匀程度。若曲线平缓则粒径大小相差悬殊,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。 工程中常用不均匀系数u C 和曲率系数c C 来反映土颗粒的不均匀程度。 60 30u d C d = ()2301060c d C d d =? 10d —小于某粒径的土粒质量总土质量10%的粒径,称为有效粒径; 30d —小于某粒径的土粒质量总土质量30%的粒径,称为中值粒径; 60d —小于某粒径的土颗粒质量占总质量的60%的粒径,称限定粒径。 工程上对土的级配是否良好可按如下规定判断 ① 对于级配连续的土: Cu 5,级配良好;5Cu ,级配不良。 ② 对于级配不连续的土,级配曲线上呈台阶状,采用单一指标Cu 难以全面有效地判断土的级配好坏,需同时满足Cu 5和13Cu = 两个条件时,才为级配良好,反之级配不良。

土力学复习知识点整理

土力学复习知识点整理 第一章土的物理性质及其工程分类 1.土: 岩石经过风化作用后在不同条件下形成的自然历史的产物。 物理风化原生矿物(量变)无粘性土 风化作用化学风化次生矿物(质变)粘性土 生物风化有机质 2.土具有三大特点:碎散性、三相体系、自然变异性。 3.三相体系:固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成。 4.固相:土的固体颗粒,构成土的骨架,其大小形状、矿物成分及组成情况是决定土物理性质的重要因素。 (1)土的矿物成分:土的固体颗粒物质分为无机矿物颗粒和有机质。 颗粒矿物成分有两大类:原生矿物、次生矿物。 原生矿物:岩浆在冷凝过程中形成的矿物,如石英、长石、云母。 次生矿物:原生矿物经化学风化作用的新的矿物,如黏土矿物。 粘土矿物的主要类型:蒙脱石、伊利石、高岭石(吸水能力逐渐变小) (2)土的粒组: 粒度:土粒的大小。粒组:大小、性质相近的土粒合并为一组。

(3)土的颗粒级配:土中所含各颗粒的相对含量,以及土粒总重的百分数表示。 ①△颗粒级配表示方法:曲线纵坐标表示小于某土粒的累计百分比,横坐标则是用对数值表示的土的粒径。曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。 ②反映土颗粒级配的不均匀程度的指标:不均匀系数Cu和曲率系数Cc,用来定量说明天然土颗粒的组成情况。 公式: 不均匀系数Cu= d60/d10 曲率系数Cc=(d30)2/(d60×d10) d60 ——小于某粒径的土粒质量占土总质量60%的粒径,称限定粒径; d10 ——小于某粒径的土粒质量占土总质量10%的粒径,称有效粒径; d30 ——小于某粒径的土粒质量占土总质量30%的粒径,称中值粒径。 级配是否良好的判断: a.级配连续的土:Cu>5,级配良好;Cu<5级配不良。 b.级配不连续的土,级配曲线呈台阶状,同时满Cu>5和Cc=1~3两个条件时,才为级配良好;反之则级配不良。 ③颗粒分析实验:确定各个粒组相对含量的方法。 筛分法:(粒径大于0.075mm的粗粒土) 水分法:(沉降分析法、密度计法)(粒径小于0.075mm的细粒土) 5.液相:土中水按存在形态分为液态水、固态水、气态水。 土中液态水分为结合水和自由水两大类。 粘土粒表面吸附水(表面带负电荷) 结合水是指受电分子吸引力作用吸附于土粒表面 成薄膜状的水。 分类: 强结合水和弱结合水。 自由水是指存在于土粒表面电场影响范围以外的土中水。

土力学知识点总结

土力学知识点总结 1、土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。 2、任何建筑都建造在一定的地层上。通常把支撑基础的土体或岩体成为地基(天然地基、人工地基)。 3、基础是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基。 4、地基和基础设计必须满足的三个基本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②基础沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。 5、地基和基础是建筑物的根本,统称为基础工程。 6、土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。 7、土的三相组成:固相(固体颗粒)、液相(水)、气相(气体)。 8、土的矿物成分:原生矿物、次生矿物。 9、黏土矿物是一种复合的铝—硅酸盐晶体。可分为:蒙脱石、伊利石和高岭石。

10、土力的大小称为粒度。工程上常把大小、性质相近的土粒合并为一组,称为粒组。划分粒组的分界尺寸称为界限粒径。土粒粒组分为巨粒、粗粒和细粒。 11、土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。 12、颗粒分析实验:筛分法和沉降分析法。 13、土中水按存在形态分为液态水、固态水和气态水。固态水又称矿物内部结晶水或内部结合水。液态水分为结合水和自由水。自由水分为重力水和毛细水。 14、重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。 15、毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以下的透水层中自由水。土的毛细现象是指土中水在表面张力作用下,沿着细的孔隙向上及向其他方向移动的现象。 16、影响冻胀的因素:土的因素、水的因素、温度的因素。 17、土的结构是指土颗粒或集合体的大小和形状、表面特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构。 18、结构的类型:单粒结构、蜂窝结构、絮凝结构。

(完整版)材料力学必备知识点

材料力学必备知识点 1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 低碳钢:含碳量在0.3%以下的碳素钢。 5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料: <5%的材料称为脆性材料 8、 失效:断裂和出现塑性变形统称为失效 9、 应变能:弹性固体在外力作用下,因变形而储存的能量 10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。 12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。 20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。 21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。 22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。 23、应用公式z My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。 24、一点的应力状态是该点(所有截面上的应力情况)。 在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。 25、强度理论是(关于材料破坏原因)的假说。 在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。 26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。 27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。 28、使材料丧失正常工作能力的应力,称为极限应力

土力学知识点总结归纳

不均匀系数:反映土颗粒粒径分布均匀性的系数定义为限制粒径d60与有效粒径d10之比 塑限:可塑状态与半固体状态间的分界含水量称为塑限。 液限:指粘性土从流塑状态过度到可塑状态时的界限含水量。 基底压力:建筑物荷载由基础传递给地基,基础底面传递给地基表面的压力。 基底附加应力:由于建筑物产生的基底压力与基础底面处原来的自重应力之差 称为附加应力,也就是在原有的自重应力的基础上新增的应力。 渗透固结:饱和土在受到外荷载作用时,孔隙水从空隙中排除,同时土体中的 孔隙水压减小,有效应力增大,土体发生压缩变形,这一时间过程称为渗透固结。 固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。 固结度:指地基在外荷载作用下,经历时间t产生的沉降量St与基础的最终沉降 量S的比值。 库伦定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即 τf=c+tanυ式中c,υ分别为土的粘聚力和内摩擦角。 粒径级配:各粒组的质量占土粒总质量的百分数。 静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背 的侧限作用而处于弹性平衡状态时,墙背所受的土压力称为静止土压力。 主动土压力:若挡土墙受墙后填土作用离开土体方向偏移至土体达到极限平衡状态时 ,作用在墙背上的土压力称为主动土压力。 被动土压力:挡土墙在外力作用下向后移动或转动,达到一定位移时,墙后土体处于 极限平衡状态,此时作用在墙背上的土压力。 土的颗粒级配:土中各粒组相对含量百分数。 土体抗剪强度:土体抵抗剪切破坏的极限能力。 液性指数:是粘性土的天然含水量和塑限的差值与塑性指数之比,用符号IL表示。 基础埋深:指从室外设计地坪至基础底面的垂直距离。 角点法:角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意 点的附加应力的方法 压缩系数:表示土的压缩性大小的主要指标,压缩系数大,表明在某压力变化范围内 孔隙比减少得越多,压缩性就越高。 土的极限状态:土体中的剪应力等于土的抗剪强度时的临界状态称之为土的极限平衡状态。 软弱下卧层:地基受力层范围内存在有承载力低于持力层的土层。 持力层:直接承受基础荷载的一定厚度的地基土层。 1.土的三相实测指标是什么?其余指标的导出思路主要是什么? 答案:三相实测指标是土的密度、土粒密度和含水量。 换算指标包括土的干密度(干重度)、饱和密度(饱和重度)、有效重度、孔隙比、孔隙率和饱和度。换算指标可以从其基本定义出发通过三相组成的体积、重量关系导出。 2.地基中自重应力的分布有什么特点? 答案:自重应力沿深度方向为线性分布(三角形分布)在土层的分层界面和地下水位处有转折。 集中荷载作用下地基中附加应力的分布规律? 答案:1)在集中荷载作用线上(r=0),附加应力随深度的增加而减小;2)在r>0的竖直线上, 附加应力随深度的增加而先增加后减小;3)在同一水平面上(z=常数),竖直向集中力作用线 上的附加应力最大,向两边则逐渐减小。 简述均布矩形荷载下地基附加应力的分布规律? 答案:①附加应力σz自基底起算,随深度呈曲线衰减;②σz具有一定的扩散性。它不仅分布在 基底范围内,而且分布在基底荷载面积以外相当大的范围之下;③基底下任意深度水平面上的σz ,在基底中轴线上最大,随距中轴线距离越远而越小。 3. 朗肯土压力理论和库仑土压力理论的异同点是什么? 答案:相同点:两种土压力理论都是极限平衡状态下作用在挡土墙是的土压力,都属于极限平衡理论。不同点:朗肯是从一点的应力状态出发,先求出土压力强度,再求总土压力,属于极限应力法;库 仑考虑整个滑动楔体静力平衡,直接求出总土压力,需要时在求解土压力强度,属于滑动楔体法。 4. 土压力计算中,朗肯理论和库仑理论的假设及适用条件有何不同? 答:朗肯理论假定挡土墙的墙背竖直、光滑,墙后填土表面水平且延伸到无限远处,适用于粘性土 和无粘性土。库仑理论假定滑裂面为一通过墙踵的平面,滑动土楔体是由墙背和滑裂面两个平面 所夹的土体所组成,墙后填土为砂土。适用于各类工程形成的不同的挡土墙,应用面较广,但只适 用于填土为无粘性土的情况 5. 分层总和法计算地基最终沉降量时进行了哪些假设? ①计算土中应力时,地基土是均质、各向同性的半无限体;②地基土在压缩变形时不允许侧向膨胀 ,计算时采用完全侧限条件下的压缩性指标;③采用基底中心点下的附加应力计算地基的变形量。 6. 简述变形模量与压缩模量的关系。 答:试验条件不同:土的变形模量E0是土体在无侧限条件下的应力与应变的比值;而土的压缩模量Es是土体在完全侧限条件下的应力与应变的比值。二者同为土的压缩性指标,在理论上是完全可以 相互换算的。 7. 地基最终沉降量通常是由哪三部分组成? 答:瞬时沉降;次固结沉降;固结沉降。 8. 请问确定基础埋置深度应考虑哪些因素? 答:确定基础埋置深度应综合考虑以下因素:(1)上部结构情况:如建筑物的用途、结构类型及荷载的大小和性质;(2)工程地质和水文地质条件:如地基土的分布情况和物理力学性质;(3)当地冻结深度及河流的冲刷深度;(4)建筑场地的环境条件。 9. 固结沉降是指什么? 答:地基受荷后产生的附加应力,使土体的孔隙减小而产生的沉降称为固结沉降,通常这部分沉降是地基沉降的主要部分。 10. . 三轴压缩试验按排水条件的不同,可分为哪几种试验方法?工程应用时,如何根据地基土排水条件的不同,选择土的抗剪强度指标? 答:三轴压缩试验按排水条件的不同,可分为不固结不排水剪、固结不排水剪和固结排水剪三种试验方法。工程应用时,当地基土的透水性和排水条件不良而施工速度较快时,可选用不固结不排水剪 切试验指标;当地基土的透水性和排水条件较好而施工速度较慢时,可选用固结排水剪切试验指 标;当地基土的透水性和排水条件及施工速度界于两者之间时,可选用固结不排水剪切试验指标。11.地基破坏形式有那几种?各自发生在何种土类地基? 有整体剪切破坏,局部剪切破坏和冲剪破坏 第一章 1.三相比例指标:土的三相物质在体积和质量上的比例关系。 试验指标:通过试验测得的指标有土的密度,土粒密度和含水量。换算指标:包括土的干密度,饱和密度,有效重度,空隙比,空隙率,饱和度。 2.颗粒级配:土粒的大小组成通常以土中各个粒组的相对含量来表示称为土的颗粒级配。 不均匀系数C u反应了不同粒组的分布情况,Cu<5的土称为匀粒土,级配不良。Cu>10的土级配良 好且C s=1~3 3.土结构的三种类型:单粒结构,蜂窝结构,絮状结构。 4.界限含水量:从一种状态到另一种状态的分界点称为分界含水量,流动状态与可塑状态间的分界 含水量称为液限ωL可塑状态与半固体状态间的分界含水量称为塑限ωP 塑性指标I P=ωL-ωP 液性指标I L = 5.砂土密度判别方法:根据砂土的相对密实度可以将砂土划分为密实,中密,松散三种密实度。 但由于测定砂土的最大空隙率和最小空隙比试验方法的缺陷,实验结果有很大的出入,同时由于 很难在地下水位以下的砂层中取得原状砂样,砂土的天然空隙比很难准确的测定,相对密实度的 应用受到限制。因此在工程实践中通常用标准贯入击数来划分砂土的密实度。 6.地基分类原则: 第三章 1.自重应力:由土体重力引起的应力。附加应力:外荷载作用下,在土中产生的应力增量。 基底压力:建筑物荷载通过基础传递给地基的压力。基底附加应力:上部结构和基础传递到基底 的地基反力与基底处原先存在于土中的自重应力之差。 2.自重应力对地基变形的影响: 第四章 1.土压缩性:我们把这种在外力作用下土的体积缩小的特性称为土的压缩性。原因: 2.分层综合假定(p82) 3.固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。包括主固结或 次固结。 固结度:饱和土层或试样在固结过程中,某一时刻的孔隙水压力平均消散值(或压缩量)与初始 孔隙水压力(或最终压缩量)比值,以百分率表示。 第五章 1.土的抗剪强度:土体对于外荷载所产生的剪应力的极限抵抗能力。 2.土的抗剪强度指标试验方法 按排水条件:直剪p109,三轴剪切使用条件p111 压缩系数a:表示土体压缩性大小的指标,是压缩试验所得e-p曲线上某一压力段割线的斜率;一般 采用压力间隔P1=100kPa至P2=200kPa时对应的压缩系数a1-2来评价土的压缩性。 压缩模量Es: 土的压缩模量指在侧限条件下土的垂直向应力与应变之比,是通过室内压缩试验得到 的,是判断土的压缩性和计算地基压缩变形量的重要指标之一。 变形模量E0:通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应 变增量的比值。能较真实地反映天然土层的变形特性。 2、固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。包括主固结或次固结。 固结度:饱和土层或试样在固结过程中,某一时刻的孔隙水压力平均消散值(或压缩量)与初始孔 隙水压力(或最终压缩量)比值,以百分率表示。 3、分层法假定,Zn的确定;规范法假定,Zn的确定;固结度计算。 分层总和法是指将地基沉降计算深度内的土层按土质和应力变化情况划分为若干分层,分别计 算各分层的压缩量,然后求其总和得出地基最终沉降量。这是计算地基最终沉降量的基本且常用的方法。 第五章土的抗剪强度 1、土抗剪强度:是指土体抵抗剪切破坏的极限强度,包括内摩擦力和内聚力。抗剪强度可通过剪切试 验测定。 土抗剪强度构成:由土的抗剪强度表达式可以看出,砂土的抗剪强度是由内摩阻力构成,而粘性土 的抗剪强度则由内摩阻力和粘聚力两个部分所构成。 内摩阻力包括土粒之间的表面摩擦力和由于土粒之间的连锁作用而产生的咬合力。咬合力是指当土体相对滑动时,将嵌在其它颗粒之间的土粒拔出所需的力,土越密实。连锁作用则越强。 粘聚力包括原始粘聚力、固化粘聚力和毛细粘聚力。 2、土的极限平衡条件——由莫尔圆抗剪强度相切几何关系确定。当土体达到极限平衡状态,土的抗剪强 度指标C、&与土的应力1,3的关系。 第六章土压力计算 1、静止土压力:挡土结构在土压力作用下,其本身不发生变形和任何位移,土体处于弹性平衡状态,此 时作用在挡土结构上的土压力称为静止土压力。 主动土压力:挡土结构物向离开土体的方向移动,致使侧压力逐渐减小至极限平衡状态时的土压力,它 是侧压力的最小值。 被动土压力:挡土结构物向土体推移,致使侧压力逐渐增大至被动极限平衡状态时的土压力,它是侧压 力的最大值。 三者辨析:挡土墙上的土压力按照墙的位移情况可分为静止、主动和被动三种。静止土压力是指挡土墙 不发生任何方向的位移,墙后土体施于墙背上的土压力;主动土压力是指挡土墙在墙后土体作用下向前发 生移动,致使墙后填土的应力达到极限平衡状态时,墙后土体施于墙背上的土压力;被动土压力是指挡土 墙在某种外力作用下向后发生移动而推挤填土,致使墙后土体的应力达到极限平衡状态时,填土施于墙背 上的土压力。这里应该注意是三种土压力在量值上的关系为Pa

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

相关文档
最新文档