FLUENT算例 (9)模拟燃烧教学内容

FLUENT算例 (9)模拟燃烧教学内容
FLUENT算例 (9)模拟燃烧教学内容

计算流体力学作业FLUENT 模拟燃烧

问题描述:长为2m、直径为0.45m的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为0.0005 m,高0.05 m的薄板,以利于甲烷与空气的混合。燃烧火焰为湍流扩散火焰。在燃烧器中心有一个直径为0.01 m、长为0.01 m、壁厚为0.002 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。空气从喷嘴周围以0.5 m/s的速度进入燃烧器。总当量比大约是0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为5.7×103。

假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O

反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。

1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件

2、使用非耦合求解器求解燃烧问题

3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果

4、利用分布云图检查反应流的计算结果

5、预测热力型和快速型的NO X含量

6、使用场函数计算器进行NO含量计算

一、利用GAMBIT建立计算模型

第1步启动GAMBIT,建立基本结构

分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的二维结构就可以了,几何结构如图2所示。

(1)建立新文件夹

在F盘根目录下建立一个名为combustion的文件夹。

(2)启动GAMBIT

(3)创建对称轴

①创建两端点。A(0,0,0),B(2,0,0)

②将两端点连成线

(4)创建小喷嘴及空气进口边界

②连接AC、CD、DE、DF、FG。

(5)创建燃烧筒壁面、隔板和出口

②将H、I、J、K、L、M、N向Y轴负方向复制,距离为板高度0.05。

③连接GH、HO、OP、PI、IJ、JQ、QR、RK、KL、LS、ST、TM、

MN、NB。

(6)创建流域

将以上闭合线段创建为面。

第2步对空气进口边界进行网格划分

(1)划分甲烷进口边界为等距网格

①点击Edges右侧黄色区域

②按下Shift+鼠标左键,点击AC线段

③Type选Successive Ratio,Radio 选1

④在Spacing下面白色区域右侧下拉列表中选择Interval count

⑤在Spacing下面白色区域内填入网格的个数5

⑥保留其他默认设置,点击APPL Y

(2)划分空气入口边界为不等距网格

①选择FG线时,若线段方向由F指向G,则按住Shift键,用鼠标中

键点击FG线段,使线段方向由G指向F。

②在Type项选择Exponet

③在Ratio项输入0.38

④Spacing选择Interval size 并输入0.005

⑤点击APPL Y

(3)划分小喷嘴壁面为等距网格

①把CD、EF线段划分为网格数为4的等距网格

②把DE线段划分为网格数为3的等距网格

(4)划分燃烧器出口边界为等距网格

把燃烧器出口边界BN划分为35个等距离网格。

(5)划分燃烧器壁面为网格

燃烧器壁面由GH、IJ、KL、MN组成

①在Edges项选择GH、IJ、KL、MN

②在Type项选择Bi-exponent,在Ratio项输入0.55

③在Spacing项选择Interval count,并输入62

④Apply

(6)对壁筒上的三个隔板进行网格划分

①把六个竖直边HO、IP、JQ、KQ、LS、MT分别划分为10个等距网格

②把三个横边OPQRST分别化为2个等距网格

(7)对整个计算域进行面网格划分

①点击Face右侧黄色区域

②按下Shift+鼠标左键,点击面上的边线

③在Elements选择Quad

④在Type项选择Pave

⑤在Spacing项选择Interval size,并输入网格间距0.008

⑥Apply

第3步设置边界类型并输出文件

(1)设置甲烷速度入口边界

①在Action项为Add

②在Name 项填入边界名inlet-fuel

③在Type项选择WELOCITY_INLET

④点击Edges右侧黄色区域

⑤按住Shift键点击AC线段

⑥Apply

(2)设置空气速度入口边界

①在Name 项填入边界名inlet-air

②在Type项选择WELOCITY_INLET

③在Edges项选择FG线段

④Apply

(3)设置压力出流边界

①在Name 项填入边界名outlet

②在Type项选择PRESSURE_OUT

③在Edges项选择BN线段

④Apply

(4)设置对称轴边界

①在Name 项填入边界名axis

②在Type项选择axis

③在Edges项选择AB线段

④Apply

(5)设置小喷嘴的边界类型

①在Name项填入边界名zozzle

②在Type下选择WALL

③在Edges项选择CD、DE、EF

④点击apply

(6)输出网格文件

①在File Name项确认文件名

②选择Export 2-D(X-Y)Mesh

③Apply

二、利用FLENT-2d求解器进行模拟计算

第1步启动FLENT-2d求解器,读入网格文件。

(1)启动FLUENT-2d求解器

(2)读入网格文件combustion.msh

(3)检查网格

(4)网格信息

(5)网格长度单位设置

(6)显示网格

第2步设置求解模型

(1)设置求解器

①在Solver项选择Segregated

②在Formulation项选择Implicit

③在Space项选择Axisymmeric

④在Time项选择Steady

⑤OK

(2)选用k-ε湍流模型

①在Model项选择k-epsilon

②OK

(3)激活能量方程

①选择Energy Equation

②OK

(4)启动化学组分传输和反应

①在Model先选择Species Transport

②在Reaction下选择Volumetric

③在Options下选择Diffusion Energy Source

④在Mixture Material下拉列表中选择methane-air

⑤在Turbulence-Chemistry Interaction 下选择Eddy-Dissipation

⑥OK

第3步流体材料设置

①在Denity下拉列表中选择incomprehensible-ideal-gas

②在Cp项选择Constance,输入1000

③点击Mixture Species 右边的Edit。

④点击Cancel

FLUENT推荐书目(2020年7月整理).pdf

2004-06 FLUENT流体工程仿真计算实例与应用韩占忠王敬兰小平北京理工大学出版社 第一章流体力学基础与fluent简介 第二章二维流动与传热的数值计算 第一节冷、热水混合器内部二维流动 第二节喷管内二维非定常流动 第三节三角翼的可压缩外部绕流 第四节三角翼不可压缩的外部绕流(空化模型应用) 第五节vof模型的应用 第六节组分传输与气体燃烧 第三章三维流动与传热的数值计算 第一节冷、热水混合器内的三维流动与换热 第二节粘性流体通过圆管弯头段的三维流动 第三节三维稳态热传导问题 第四节动网格问题 第五节叶轮机械的mixing plane模型 2004-09 计算流体动力学分析CFD软件原理与应用王福军清华大学出版社(偏重理论) 第1章计算流动力学基础知识 第2章基于有限体积法的控制方程离散 第3章基于SIMPLE算法的流场数值计算

第4章三维流模型及其在CFD中的应用 第5章边界条件的应用 第6章网格的生成 第7章FLUENT软件的基本用法 第8章CFD综合应用实例 2007-02 FLUENT技术基础与应用实例王瑞金张凯王刚清华大学出版社 第1章Fluent概述 第2章流体力学基础知识 第3章流体力学数值模拟基础 第4章Fluent软件介绍 第5章速度场的计算 第6章温度场的计算 第7章多相流模型 第8章凝固和融化模型 第9章可动区域中流动问题的模拟 第10章动网格模型 第11章UDF和UDS 第12章Fluent并行计算 第13章Tecplot软件 2008-07 Fluent高级应用与实例分析江帆,黄鹏清华大学出版社第1章 CFD基础 第2章Fluent基本介绍

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

FLUENT帮助里自带的多孔介质算例-经典资料

Tutorial 7. Modeling Flow Through Porous Media Introduction Many industrial applications involve the modeling of ow through porous media, such as _lters, catalyst beds, and packing. This tutorial illustrates how to set up and solve a problem involving gas ow through porous media. The industrial problem solved here involves gas ow through a catalytic converter. Catalytic converters are commonly used to purify emissions from gasoline and diesel engines by converting environmentally hazardous exhaust emissions to acceptable substances. Examples of such emissions include carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbon fuels. These exhaust gas emissions are forced through a substrate, which is a ceramic structure coated with a metal catalyst such as platinum or palladium. The nature of the exhaust gas ow is a very important factor in determining the performance of the catalytic converter. Of particular importance is the pressure gradient and velocity distribution through the substrate. Hence CFD analysis is used to designe_cient catalytic converters: by modeling the exhaust gas ow, the pressure drop and the uniformity of ow through the substrate can be determined. In this tutorial, FLUENT is used to model the ow of nitrogen gas through a catalytic converter geometry, so that the ow _eld structure may be analyzed. This tutorial demonstrates how to do the following: _ Set up a porous zone for the substrate with appropriate resistances. _ Calculate a solution for gas ow through the catalytic converter using the pressurebased solver. _ Plot pressure and velocity distribution on speci_ed planes of the geometry. _ Determine the pressure drop through the substrate and the degree of non-uniformity of ow through cross sections of the geometry using X-Y plots and numerical reports. 许多工业应用都涉及通过多孔介质(如过滤器,催化剂床和填料)的流动模型。本教程说明如何建立和解决涉及气体通过多孔介质的问题。 这里解决的工业问题涉及通过催化转换器的气体流量。催化转化器通常用于通过将对环境有害的废气排放物转化为可接受的物质来净化汽油和柴油发动机的排放物。 这种排放的例子包括一氧化碳(CO),氮氧化物(NOx)和未燃烧的碳氢化合物燃料。这些废气排放物被迫通过衬底,该衬底是涂覆有诸如铂或钯的金属催化剂的瓷结构。 排气流量的性质是决定催化转化器性能的一个非常重要的因素。特别重要的是通过基底的压力梯度和速度分布。因此,使用CFD分析来设计催化转换器:通过对排气流量进行建模,可以确定通过基板的流量的压降和流量的均匀性。在本教程中,FLUENT 用于模拟通过催化转化器几何形状的氮气流量,从而可以分析流量结构。 本教程演示了如何执行以下操作: _设置具有适当阻力的基材的多孔区域。 _使用基于压力的解算器计算通过催化转化器的气体流量的解决方案。 _绘制几何体特定平面上的压力和速度分布。 _确定通过基材的压降和不均匀的程度 通过使用X-Y图和数字报告的几何横截面的流量。 Prerequisites This tutorial assumes that you are familiar with the menu structure in FLUENT and that you have completed Tutorial 1. Some steps in the setup and solution procedure will not be shown explicitly. 本教程假设您熟悉FLUENT中的菜单结构您已完成教程1.设置和解决方案过程中的某些步骤不会明确显示。

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版) 本手册介绍FLUENT的使用方法,并附带了相关的算例。下面是本教程各部分各章节的简略概括。 第一部分: ?开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中给出了一个简单的算例。 ?使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。?读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。 ?单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。 ?使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。还描述了非一致(nonconformal)网格的使用. ?边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等 ?物理特性:描述了如何定义流体的物理特性与方程。FLUENT采用这些信息来处理你的输入信息。 第二部分: ?基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。 ?湍流模型:描述了FLUENT的湍流模型以及使用条件。 ?辐射模型:描述了FLUENT的热辐射模型以及使用条件。 ?化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。 ?污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: ?相变模拟:描述了FLUENT的相变模型及其使用方法。 ?离散相变模型:描述了FLUENT的离散相变模型及其使用方法。 ?多相流模型:描述了FLUENT的多相流模型及其使用方法。 ?移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。 ?解法器(solver)的使用:描述了如何使用FLUENT的解法器。 ?网格适应:描述了如何优化网格以适应计算需求。 第四部分: ?显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data ?图形和可视化:本章描述了检验FLUENT解的图形工具 ?Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 ?流场函数的定义:本章描述了如何定义FLUENT面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 ?并行处理:本章描述了FLUENT的并行处理特点以及使用方法 ?自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT软件。 如何使用该手册 对于初学者,建议从阅读“开始”这一章起步。 对于有经验的使用者,有三种不同的方法供你使用该手册:按照特定程序的步骤从按程序顺序排列的目录列表和主题列表中查找相关资料;从命令索引查找特定的面板和文本命令的使用方法;从分类索引查找特定类别信息(在线帮助中没有此类索引,只能在印刷手册中找到它)。 什么时候使用Support Engineer:Support Engineer能帮你计划CFD模拟工程并解决在使用FLUENT 中所遇到的困难。在遇到困难时我们建议你使用Support Engineer。但是在使用之前有以下几个注意事项:●仔细阅读手册中关于你使用并产生问题的命令的信息 ●回忆导致你产生问题的每一步 ●如果可能的话,请记下所出现的错误信息 ●对于特别困难的问题,保存FLUENT出现问题时的日志以及手稿。在解决问题时,它是最好的资源。

FLUENT算例 (9)模拟燃烧

计算流体力学作业FLUENT 模拟燃烧 问题描述:长为2m、直径为0.45m的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为0.0005 m,高0.05 m的薄板,以利于甲烷与空气的混合。燃烧火焰为湍流扩散火焰。在燃烧器中心有一个直径为0.01 m、长为0.01 m、壁厚为0.002 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。空气从喷嘴周围以0.5 m/s的速度进入燃烧器。总当量比大约是0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为5.7×103。 假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O 反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。 1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件 2、使用非耦合求解器求解燃烧问题 3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果 4、利用分布云图检查反应流的计算结果 5、预测热力型和快速型的NO X含量 6、使用场函数计算器进行NO含量计算 一、利用GAMBIT建立计算模型 第1步启动GAMBIT,建立基本结构 分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的

二维结构就可以了,几何结构如图2所示。 (1)建立新文件夹 在F盘根目录下建立一个名为combustion的文件夹。 (2)启动GAMBIT (3)创建对称轴 ①创建两端点。A(0,0,0),B(2,0,0) ②将两端点连成线 (4)创建小喷嘴及空气进口边界 ①创建C、D、E、F、G点

大涡模拟的fluent算例

Introduction:This tutorial demonstrates how to model the2D turbu-lent?ow across a circular cylinder using LES(Large Eddy Simula-tion),and compute?ow-induced noise(aero-noise)using FLUENT’s acoustics model. In this tutorial you will learn how to: ?Perform2D Large Eddy Simulation(LES) ?Set parameters for an aero-noise calculation ?Save surface pressure data for an aero-noise calculation ?Calculate aero-noise quantities ?Postprocess an aero-noise solution Prerequisites:This tutorial assumes that you are familiar with the menu structure in FLUENT,and that you have solved or read Tu-torial1.Some steps in the setup and solution procedure will not be shown explicitly. Problem Description:The problem considers turbulent air?ow over a2D circular cylinder at a free stream velocity U of69.19m/s. The cylinder diameter D is1.9cm.The Reynolds number based on the?ow parameters is about90000.The computational do-main(Figure3.0.1)extends5D upstream and20D downstream of the cylinder,and5D on both sides of it.If the computational domain is not taken wide enough on the downstream side,so that no reversed?ow occurs,the accuracy of the aero-noise prediction may be a?ected.The rule of thumb is to take at least20D on the downstream side of the obstacle. c Fluent Inc.June20,20023-1

fluent多相流算例

Tutorial:Dam-Break Simulation Using FLUENT’s Volume of Fluid Model Purpose This tutorial examines the dam-break problem using the Volume of Fluid(VOF)multiphase model. This tutorial demonstrates how to do the following: ?Set up a dam-break problem. ?Choose the time step by estimating the maximum possible velocity of the interface and the grid cell dimension. ?Solve the problem using the VOF model. ?Manipulate the solution parameters. Prerequisites This tutorial assumes that you are familiar with the FLUENT interface and that you have a good understanding of basic setup and solution procedures.In this tutorial,you will use VOF multiphase model,so you should have some experience with it.This tutorial will not cover the mechanics of using this model;instead,it will focus on the application of this model to solve a dam-break problem. If you have not used this model before,it would be helpful to?rst refer to the FLUENT6.3 User’s Guide and the FLUENT6.2Tutorial Guide. Problem Description The initial setup of the dam-break problem is shown in Figure1. In this problem,a rectangular column of water,in hydrostatic equilibrium,is con?ned between two walls.Gravity is acting downwards with a magnitude of-9.81m/s2.At the beginning of the calculation,the right wall is removed and the water is allowed to?ow out to the horizontal wall.

fluent的一个实例(波浪管道的内部流动模拟).

基于FLUENT 的波浪管道热传递耦合模拟 CFD 可以对热传递耦合的流体流动进行模拟。CFD 模拟可以观察到管道内部的流动行为和热传递,这样可以改进波浪壁面复杂通道几何形状中的热传递。 目的: (1) 创建由足够数量的完整波浪组成的波浪管道,提供充分发展条件; (2) 应用周期性边界条件创建波浪通道的一部分; (3) 研究不同湍流模型以及壁面函数对求解的影响; (4) 采用固定表面温度以及固定表面热流量条件,确定雷诺数与热特性之间的 关系。 问题的描述: 通道由重复部分构成,每一部分由顶部的直面和底部的正弦曲面构成,如图。 图1 管道模型 空气的流动特性如下: 质量流量: m=0.816kg/s; 密度: ρ=1kg/m 3; 动力粘度:μ=0.0001kg/(m ·s); 流动温度: Tb=300K ; 流体其他热特性选择默认项。 流动初试条件: x 方向的速度=0.816m/s ; 湍动能=1m 2/s 2; 湍流耗散率=1×105m 2/s 3。 所有湍流模型中均采用增强壁面处理。 操作过程: 一、 完整波浪管道模型的数值模拟 (1) 计算 Re=uH/v=0.816×1/ (0.0001/1) =8160 Cf/2=0.0359Re -0.2=0.0359× (8160)-0.2=0.0059259 0628.00059259.0816.02 =?==f t C u u y +=u t y/v y=0.00159

(2)创建网格 本例为波浪形管道,管道壁面为我们所感兴趣的地方所以要局部细化。入口和出口处的边界网格设置如图。 图2 边网格 生成面网格 图3 管道网格 (3)运用Fluent进行计算 本例涉及热传递耦合,所以在fluent中启动能量方程,如图。 图4 能量方程

FLUENT算例 (3)三维圆管紊流流动状况的数值模拟分析

三维圆管紊流流动状况的数值模拟分析 在工程和生活中,圆管内的流动是最常见也是最简单的一种流动,圆管流动有层流和紊流两种流动状况。层流,即液体质点作有序的线状运动,彼此互不混掺的流动;紊流,即液体质点流动的轨迹极为紊乱,质点相互掺混、碰撞的流动。雷诺数是判别流体流动状态的准则数。本研究用CFD 软件来模拟研究三维圆管的紊流流动状况,主要对流速分布和压强分布作出分析。 1 物理模型 三维圆管长2000mm l =,直径100mm d =。 流体介质:水,其运动粘度系数6 2 110m /s ν-=?。 Inlet :流速入口,10.005m /s υ=,20.1m /s υ= Outlet :压强出口 Wall :光滑壁面,无滑移 2 在ICEM CFD 中建立模型 2.1 首先建立三维圆管的几何模型Geometry 2.2 做Blocking 因为截面为圆形,故需做“O ”型网格。

2.3 划分网格mesh 注意检查网格质量。 在未加密的情况下,网格质量不是很好,如下图 因管流存在边界层,故需对边界进行加密,网格质量有所提升,如下图

2.4 生成非结构化网格,输出fluent.msh等相关文件 3 数值模拟原理 紊流流动

当以水流以流速20.1m /s υ=,从Inlet 方向流入圆管,可计算出雷诺数10000υd Re ν ==,故圆管内流动为紊流。 假设水的粘性为常数(运动粘度系数62 110m /s ν-=?)、不可压流体,圆管光滑,则流动的控制方程如下: ①质量守恒方程: ()()()0u v w t x y z ρρρρ????+++=???? (0-1) ②动量守恒方程: 2()()()()()()()()()()[]u uu uv uw u u u t x y z x x y y z z u u v u w p x y z x ρρρρμμμρρρ??????????+++=++??????????'''''????+---- ???? (0-2) 2 ()()()()()()()()()()[]v vu vv vw v v v t x y z x x y y z z u v v v w p x y z y ρρρρμμμρρρ??????????+++=++??????????'''''????+- ---???? (0-3) 2 ()()()()()()()()()()[]w wu wv ww w w w t x y z x x y y z z u w v w w p x y z z ρρρρμμμρρρ??????????+++=++??????????'''''????+- ---???? (0-4) ③湍动能方程: ()()()()[())][())][())]t t k k t k k k ku kv kw k k t x y z x x y y k G z z μμρρρρμμσσμμρεσ????????+++=+++????????? ?+ ++-?? (0-5) ④湍能耗散率方程: 212()()()()[())][())][())]t t k k t k k u v w t x y z x x y y C G C z z k k εεμμρερερερεεεμμσσμεεεμρσ??????? ?+++=+++??????????+++-?? (0-6) 式中,ρ为密度,u 、ν、w 是流速矢量在x 、y 和z 方向的分量,p 为流体微元体上的压强。 方程求解:采用双精度求解器,定常流动,标准ε-k 模型,SIMPLEC 算法。 4 在FLUENT 中求解计算紊流流动 4.1 FLUENT 设置 除以下设置为紊流所必须设置的外,其余选项和层流相同,不再详述。

fluent6.3算例在linux集群(服务器)上提交方法大全

LINUX系统上FLUENT算例提交方法大全 ——classic1573@https://www.360docs.net/doc/c312084191.html, Fluent任务的提交方法有多种,我只会linux系统的一种一、对于**.pbs文件的修改: #!/bin/sh -l #PBS -N fluent #PBS -q batch #PBS -l nodes=1:ppn=4 ####fluent env ###### export PA TH=/opt/Fluent.Inc/bin:$PATH FLUENTSOLVER=2d cd $PBS_O_WORKDIR exportrDir=`pwd` echo $rDir exportjoufile=N-0.001.N2.jou exportoutfile=N-0.001.N2.out INPUT=$rDir/$joufile OUTPUT=$rDir/$outfile rm -f pnodes1 rm -f pnodes exportpnodes_tmp=`cat $PBS_NODEFILE` echo $pnodes_tmp | sort > pnodes1 sed 's/ /\n/g' pnodes1 >pnodes exportncpus=`cat pnodes | wc -l` fluent -pethernet -g $FLUENTSOLVER -t $ncpus -cnf=pnodes -i $INPUT >$OUTPUT 2>&1 1 增大ppn=?的值可以提高计算速度。 2 exportPATH=/opt/Fluent.Inc/bin:$PATH是linux刀片服务器上安装的fluent路径,入不确定可通过如下方法查找 (在ssh界面内输入指令) (首先输入cd回车返回主文件夹,输入ls查看所在文件夹内包含的文件(这时候是查不到fluent路径的,这不操作只是告诉你先在所处的位置),然后输入cd /opt回车,这是后就进入隐藏的文件夹路径opt里面(注意:里面的文件基本都是系统文件,不懂不要随意修改,比如当时差点把fluent6.3.26的license文件内容修改掉,那麻烦就大了),输入ls查看opt 中的文件内容,如果装有会有有关fluent的文件(比如Fluent.Inc等),然后在输入cd Fluent.Inc/回车,进入该文件夹,ls查看文件内容,里面会有bin文件夹,在输入cd bin/回车进入bin文件夹,ls可以查看里面的文件内容(千万不要对文件做修改),然会输入pwd 回车,界面就给出了你的fluent路径,复制到阴影部分就行了,然会记得输入cd返回主文件夹。 3 FLUENTSOLVER=2d(根据自己的算例是2维还是3维、单精度还是双精度来确定,有

GAMBIT实例教程4_燃烧室模型的建立.

4. 燃烧室模型的建立(3-D ) 在这份指导书中,你可以通过运GAMBIT 中的top-down 几何结构法来为燃烧室生成几何模型(用实体来生成容积)。你可以通过非结构化六面体网格法来为画出的燃烧室几何体划分网格。 在这份指导书中你可以学习到如何去: ● 移动一个体积; ● 从一个体积中扣除另一个; ● 把一个体积阴影化; ● 交叉两个体积; ● 混合一个体积的边; ● 通过对面进行扫描来生成体积; ● 为读入FLUENT/UNS来准备网格。 4.1 前提 这份指导书假定读者已经掌握了指导书1并且已对GAMBIT 界面相当熟悉。 4.2 问题描述 这个问题在图4-1中以图解的形式表示出来。此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,在这个指导书中由于几何结构对称你可以仅作出燃烧室几何体的1/4模型。喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。 4.3 策略

在这份指导书中,你可以运用top-down 几何结构法来生成燃烧室几何体,你可以生成体积(在本例中为方体和圆体)并用布尔运算把它们结合起来,交叉、扣除这些体积以生成基本体积,最后,通过“融和”命令,你可以舍掉一些边界以完成几何体生成。 在这个模型例子中,简单的选择捡起几何体并用六面体单元对整个区域进行网格划分是不可能的,由于Cooper 工具(在本向导中要应用)需要两组面,一组平行于扫描路径,另一组垂直于扫描路径,不管怎样,融和边界不适合于任一组。对cooper 工具更详细的描述见GAMBIT Modeling Guide 。你需要把几何体分成许能用cooper 来划分网格的部分。在GAMBIT 中有许多分解几何体的方法。在这个例子中,你可以采用把那些挨着弯面的体积部分从主体积中分开的方法。对这个燃烧室进行分解的详细步骤在下面给出。 注意到几何体中有许多面,其默认的网格划分方案是pave 方案。这些面中的大部分与Z 方向垂直。在Z 方向有许多几何突起,因此在cooper 网格方案中应被选为主方向。为使其可能,X 、Y 方向的铺砌面(图4-2中的两个对称面)必须改变以去用Submap 或Map 网格划分方案。 默认的,GAMBIT 对这两个面选择Pave 网格划分方案,是因为它们每一个都在融合处都有一个圆边。如果你把每个面圆角分裂出来并通过一个体积把它们连接

fluent实例

Fluent 实例分析求解操作 一、实例简介 本实例主要是求解管道内速度场的操作过程,其中, 管道的宽度远大于它的高度,所以侧壁对速度场的影响比较小,可以对速度场的模拟进行简化。简化后如下图所示,这是原来管道z=0处XY 截面,他可以看做槽道,其长度为50mm ,高度为1mm 。由于其长高比大于10符合槽道流动的必要条件,设槽道入口的水流速为0.1m/s 。 二、实例操作步骤 1、利用Gambit 建立计算区域和指定边界条件类型 步骤1:文件的创建及其求解器的选择 (1)启动Gambit 软件 (2)建立新文件 选择File-New 打开如下图所示文件创建框,输入channel 作为创建的文件名。 (3)选择求解器 单击主菜单Solver 在弹出的对话框中选择FLUENT5/6,即利用Fluent 求解器求解。 步骤2:创建控制点 选择Operation-Geometry-V ertex 打开如下图所示对话框 进口 L H 出口 y O

在左边XYZ坐标对应的三个文本框中依次输入四个控制点坐标分别为(0,0,0)、(0,1,0)、(50,1,0)、(50,0,0)创建后如下图所示 步骤3:创建边 选择Operation-Geometry-Edge,打开如下图所示对话框

在上图上面对话框中点击向上的箭头即可得到下面的对话框,选择2、3控制点单击向右的箭头在上面的框中单击Apply即可使2、3号控制点连线,同理把其余点依次连线组成矩形 如右图所示 步骤4:创建面 选择Operation-Geometry-Face即可打开一对话框,在Edges文本框中把四根线都选上,然后单击Apply,可以看到四根线变成蓝色表明面已经创立。利用Gambit软件右下角Global Control中Shade按钮就可以看到创建的面,如下图所示 步骤5:网格划分

FLUENT多相流模型

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则

1、基本原则 1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型 或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特性,选择合适的流动模 型。此时由于模型只是对部分流动特征采用了较好的模拟,其精度必然低于只包含单个模式的 流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混合模型,反之使用欧拉模型。 2)如果相间曳力规律已知,欧拉模型通常比混合模型更精确;若相间曳力规律不明确,最好选用混合 模型。 3)如果希望减小计算量了,最好选用混合模型,它比欧拉模型少解一部分方程;如果要求精度而不在 意计算量,欧拉模型可能是更好的选择。但是要注意,复杂的欧拉模型比混合模型的稳定性差, 可能会遇到收敛困难。

相关文档
最新文档