三角恒等式证明的基本技巧

三角恒等式证明的基本技巧
三角恒等式证明的基本技巧

三角恒等式证明的基本技巧

浙江省定海第一中学(316000) 符海龙

三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角

观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。

例1求证:tan

2

3x - tan

2

1x =

x x x 2cos cos sin 2+

思路分析:本题的关键是角度关系:x=

2

3x -2

1x ,可作以下证明: 右式=

x

x x x 2

1cos

23cos

2)2123sin(

2-

=x

x x

x x x 2

1cos 23cos 21sin

23

cos

21

cos

23sin

-= tan

2

3x - tan

2

1x 。

2.化函数

三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设

A

B A tan )tan(-+

A

C 2

2sin

sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。

思路分析:欲证tan 2C = tanA ·tanB ,将条件中的弦化切是关键。可作以下证明: ∵ sin 2

C=

C

C 2

2

tan 1tan + ,sin 2

A=

A

A

2

2

tan 1tan

+ ∴

A

C 2

2sin

sin =

)

tan

1(tan

)tan 1(tan 2

2

22C A A C ++ 由已知可得

A

C 2

2

sin

sin =1-

A

B A tan )tan(-=

)

tan tan 1(tan )

tan 1(tan 2

B A A A B ++,

)

tan tan 1(tan )

tan 1(tan 2

B A A A B ++=

)

tan

1(tan

)tan 1(tan 2

2

22C A A C ++ ∴

C

C 2

2

tan 1tan +=

B

A A

B tan tan 1tan tan +

即tan 2C = tanA ·tanB 命题成立。 3.化幂

应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。

例3求证 cos4α-4cos2α+3=8sin 4α

思路分析:应用降幂公式,从右证到左:

右边=8(2

2cos 1α-)2=2(1-2cos2α+cos 2

2α)= 2(1-2cos2α+2

4cos 1α-)=cos4α-4cos2α

+3=左边。 4.化常数

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2

α+cos 2

α=sec 2

α-tan 2

α=csc 2

α-cot 2

α=tan αcot α=sin αcsc α=cos αsec α,1=tan450=sin900=cos00等等。如何对常数实行变换,这需要对具体问题作具体分析。

例4 求证 αααα2

2sin cos cos sin 21--=α

α

tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2α+cos 2

α”代替,问题便迎刃而解。 左边=

)

sin )(cos sin (cos )

cos (sin 2

αααααα+--=

α

αααsin cos )cos (sin +--=

α

αtan 1tan 1+-=右边

5.化参数

用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。

例5 已知acos 2

α+bsin 2

α=mcos 2

β,asin 2

α+bcos 2

α=nsin 2

β,mtan 2

α=ntan 2

β(β≠n π) 求证:(a+b)(m+n)=2mn

思路分析:消去参数,当m=0时,由mtan 2α=ntan 2β得n=0,显然成立。当m ≠0时,只须消去α、β即可。由acos 2α+bsin 2α=mcos 2β,asin 2α+bcos 2α=nsin 2β得 αααα2

2

22sin cos cos sin b a b a ++=

m

n tan 2β,再由mtan 2α=ntan 2

β得

α

ααα2

2

2

2sin cos cos sin b a b a ++=tan 2α即可得

α

α22

tan tan b a b a ++=tan 2α,解得tan 2α=1,所以sin 2α=cos 2

α=

2

1。

求得cos 2β=m

b a 2+,sin 2β=n

b a 2+,又由cos 2β+sin 2β=1不得。∴m

b a 2++n

b a 2+=1 ,

即 (a+b)(m+n)=2mn

6.化比

一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。

例6 已知(1+ cos α)(1- cos β)=1- 2( ≠0,1)。求证:tan 2

2

α

=

-+11tan 2

2

β

思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中

-+11为向导,应用

合比定理即可达到论证之目的。 由已知得1+ cos α- cos β- 2cos αcos β=1- 2,

2(cos αcos β-1)= (cos α-cos β),∴ =

1

cos cos cos cos --βαβα 依合分比定理得

-+11=

β

αβαβαβαcos cos 1cos cos 1cos cos cos cos +---+-=

)

1)(cos cos 1()1)(cos cos 1(-+--βααβ=2

sin

2

cos

42sin 2

cos

42

2

2

2

βααβ

=tan

2

2

α

cot

2

2

β

∴ tan

2

2

α

=

-+11tan

2

2

β

7.化结构

观察等式左右结构上的差异,立足于统一结构形式也是三角恒等式的一种技巧。

例7设A+B+C=π,求证:sinA+sinB+sinC=4cos

2

A cos

2

B cos

2

C

思路分析:这里等式左右分别为和积的形式,现将左边化成积。 ∵ A+B+C=π ∴ sinC=sin[π-(A+B)]=sin(A+B) ∴左边=2sin 2

B A +cos

2

B A -+

sin(A+B)= 2sin 2

B A +(cos 2

B A -+cos

2

B A +)=2sin

2

B A +2cos

2

A cos

2

B

=4 cos

2

A cos

2

B cos

2

C

8.化拆项

这一类恒等式可与数学求和结合起来,常拆项相消法。

例8 求cosx+cos2x+…+cosnx=2

sin 2sin 21cos

x x

n x n +

思路分析:左边同乘以sin 2

x ,去括号,积化和差可得

左边=2

1[(sin

23x

-sin

2

x )+(sin

2

5x -sin

23x

)+…+(sin 2

)12(x

n +-sin

2

)12(x

n -)]

=

21(sin

2

)12(x

n +- sin 2

x )=cos

2

)1(x

n +sin

2

nx

9.数学归纳法

与自然数有关的命题,还可以用数学归纳法解决。 上述例题可用数学归纳法证明。

三角形全等的证明教案

三角形全等的证明 【知识梳理】 (一)三角形概述: 1.定义(包括内、外角) 2.性质:三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。 ⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。 ⑶角与边:在同一三角形中 3.三角形的主要线段 (1)定义:高线、中线、角平分线、中垂线 (2)××线的交点—-- 三角形的×心及性质 4.特殊三角形(等腰三角形、等边三角形)的判定与性质 等腰三角形: 定理:等腰三角形的两个底角相等,(简称:“等边对等角”) 定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) 等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,(简称“等角对等边”)。 等边三角形的性质及判定: 有一个角是60°的等腰三角形是等边三角形 5.全等三角形 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 全等的判定:SAS 、ASA 、AAS 、SSS : 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA ;b :有两边和其中一角对应相等,即SSA 。 记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 寻找对应元素的方法: (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 翻折 如图(1),?BOC ≌?EOD ,?BOC 可以看成是由?EOD 沿直线AO 翻折180?得到的; 等边 等角 大边 大角 小边 小角

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

三角形内有关角的三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , , …… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2

(2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2 (3)左到右:化积--->--->留“1”提取-->化积 (4)左到右:化积--->提取---->化积sin2C=sin2(A+B) (5)左到右: (6)左到右:tgA+tgB=tg(A+B)(1-tgAtgB) (7)左到右:通分后利用(4)的结果 2.2教师注意记录学生的“选择”,问:为什么认为你们的选择有代表性? 体现学法的“暗导”。选择的出发点可以多种多样,如从品种、不同的证法、逻辑源头等考虑。 2.3另一组学生判定结果或给出其他解法,(解法可能多样。)也可对前一组学生所选择书写的“例题”的“代表性”进行评价。教师记录之。注意学生的书写中的问题(不当的跳步等……)。 2.4其他证法备考: 1.如右到左用积化和差,(略) 2.利用已做的习题:

常见的三角恒等式

常见的三角恒等式及其证明 设A,B,C是三角形的三个内角 (1) tanA+tanB+tanC=tanAtanBtanC 证明: tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tan(π-c)(1-tanAtanB)+tanC=-ta nC(1-tanAtanB)+tanC=tanAtanBtanC (2) cotAcotB+cotBcotC+cotCcotA=1 证明: tanA+tanB+tanC=tanAtanBtanC cotX*tanX=1 tanA*cotAcotBcotC+tanB*cotAcotBcotC+tanC*cotAcotBcotC=tanAtanBtanC* cotAcotBcotC cotAcotB+cotBcotC+cotCcotA=1 (3) (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 证明: (cosA)^2+(cosB)^2+x^2+2cosAcosBx=1 x^2+2cosAcosBx+(cosA)^2+(cosB)^2-1=0 x={-2cosAcosB+-√[(2cosAcosB)^2-4((cosA)^2+(cosB)^2-1)]}/2 x=-cosAcosB+-√[(cosAcosB)^2-((cosA)^2+(cosB)^2-1)] x=-cosAcosB+-√[1-(cosA)^2][1-(cosB)^2] x=-cosAcosB+-√[(sinA)^2(sinB)^2] x=-cosAcosB+-sinAsinB x=-cos(A+B)或x=-cos(A-B) x=cosC或x=-cos(A-B) 所以 cosC是方程的一个根 所以 (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 (4) cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) 证明: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) cos(180-B-C)+cosB+cosC=1+2sin(A/2)[2sin(B/2)sin(C/2)] cos(180-B-C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)] -cos(B+C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)]

【北师大版初三数学】第1讲:三角形的证明-教案

知识讲解: 1.通过探索、猜测、计算、证明得到的定理: (1)与等腰三角形、等边三角形有关的结论: 性质:等腰三角形的两个底角相等,即等边对等角; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; 等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等. 等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°; 等边三角形的三条角平分线、三条中线、三条高互相相等. 判定:有两个角相等的三角形是等腰三角形; 有一个角是60°的等腰三角形是等边三角形; 三个角都相等的三角形是等边三角形. (2)与直角三角形有关的结论: 勾股定理的逆定理; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 斜边和一直角边对应相等的两个直角三角形全等.(HL) (3)与一般三角形有关的结论:

在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明). 2.命题的逆命题及其真假: 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题. 一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理. 3.尺规作图 线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形 角平分线的性质定理和判定定理;用尺规作已知角的平分线. 课堂练习: 考点一:等腰三角形 【例题】 1、【14外国语期中】等腰三角形的一边为5另一边为9,这这个三角形的周长为()A.19 B.23 C .14 D.19或23 2、【14外国语月考】等腰三角形补充下列条件后,仍不一定成为等边三角形的是() A.有一个内角是600 B.有一个外角是1200 C.有两个角相等 D.腰与底边相等 3、【经开一中月考】将两个全等的有一个角为300的直角三角形拼成如图所示,其中两条直角边在同一直线上,则图中等腰三角形的个数是() A.4B.3C.2D.1 4、【14外国语月考】腰长为5,一条高为4的等腰三角形的底边长为。 5、【经开一中月考】一个等腰三角形有一角是700,则其余两角分别为。 6、【经开一中月考】等腰直角三角形一条边长是1cm,那么它斜边上的高是 cm. 7、【经开一中月考】已知:如图AB=AC,DE∥AC求证:△DBE是等腰三角形。 8、【14外国语月考】如图,等边△ABC中,AO是BC边上的中线,D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE。 (1)求证:AD=BE

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

八年级数学下册第一章三角形的证明回顾与思考教案1新版北师大版

《回顾与思考》 教学目标 1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思 路和方法,尺规作图等。 2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规 范的数学语言表达论证过程的能力。 教学重点 通过例题的讲解和课堂练习对所学知识进行复习巩固 教学难点 本章知识的综合性应用。 教学过程 知识回顾 1、等腰三角形的性质:(边)_______________ ;(角)_______________ ;“三线合一”的 内容____________________________________ 。 2、等边三角形的性质:(边)_______________ ;(角)__________________ 。 3、判定等腰三角形的方法有:(边)_______________ ;(角)________________________ 。 4、判定等边三角形的方法有:(边)_______________ ;(角)________________________ 。 5、_________________________________________________ 线段垂直平分线的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的垂直平分线性质:___________________________________________________ 。 6、_____________________________________________________________ 角的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的角平分线性质:_____________________________________________________ 。 7、___________________________________________________ 三角形全等的判定方法有:。 8 30°锐角的直角三角形的性质: ______________________________________________ 。 9、方法总结: (1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;3)等角对等边;4)等腰三角形三线合一的性 质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。 (2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。

北师版八年级数学下册教案第一章三角形的证明

第一章三角形的证明 1等腰三角形 第1课时全等三角形及等腰三角形的性质 1.理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理. 2.经历“探索-发现-猜想-证明”的过程,让学生进一步掌握证明的基本步骤和书写格式. 3.掌握等腰三角形性质定理的推论. 重点 掌握等腰三角形的性质定理及推论. 难点 证明等腰三角形的相关性质. 一、复习导入 1.请学生回忆并整理已经学过的8条基本事实中的5条: (1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; (2)两条平行线被第三条直线所截,同位角相等; (3)两边及其夹角对应相等的两个三角形全等(SAS); (4)两角及其夹边对应相等的两个三角形全等(ASA); (5)三边对应相等的两个三角形全等(SSS). 2.在此基础上回忆全等三角形的判定定理:(推论)两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明. 3.回忆全等三角形的性质. 二、探究新知 1.等腰三角形的性质定理 问题1:什么是等腰三角形? 问题2:你会画一个等腰三角形吗?并把你画的等腰三角形裁剪下来. 问题3 :试用折纸的方法回忆等腰三角形有哪些性质. 引导学生得出等腰三角形的性质: 等腰三角形的两底角相等.(简称为“等边对等角”) 问题4:你能利用已有的基本事实和定理证明这些结论吗? 已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C. 分析:方法一:作∠BAC的平分线,交BC边于点D;方法二:过点A作AD ⊥BC于点D;方法三:取BC的中点D. 证法一:取BC的中点D,连接AD. ?? ? ?? AB=AC BD=CD AD=AD ?△ABD≌△ACD?∠B=∠C.

第七章 三角恒等式的证明

第七章 三角恒等式的证明 要证明三角恒等式就必须了解证明三角恒等式的方法,为此我们将在下面一一介绍。 第一节 一般恒等式 (一)基本思想、方法和技巧 三角恒等变形的基本思想是:首先考察函数式能不能直接应用三角公式(或者三角公式的变形)进行变形;若不能则用代数法对三角函数中的角进行适当的变换,使之变形为可以应用三角公式的形式。 1、熟悉公式的变形,做到“三会”(会正用,会逆用,会变形用) 例题1:在非直角三角形中,求证:C B A C B A tan tan tan tan tan tan =++. 证明:由题有A+B+C=π则 左=()()C B A B A tan tan tan 1tan +-+ =-()C B A C tan tan tan 1tan +-=右 例题2:求证:340tan 20tan 340tan 20tan =??+?+?. 分析: 在正切恒等式中常常出现3,应于33 tan =π 相联系,这样问题就好解决了。 证明: 仿例题1即可。 例题3:求证:8 1804020= ???Cos Cos Cos 。 分析:角度成倍数增长,就应该和二倍角联系在一起,构造适合条件形式,从而解决问题。 证明:左= ?????202804020202Sin Cos Cos Cos Sin =?? 2016081Sin Sin =右。 例题4:求证:x x x Sin x Cos SinxCosx tan 1tan 1212 2-+=-+. 分析:弦化切(先降次)或者切化弦。 证明:左= ()x x Sinx Cosx Cosx Sinx x Sin x Cos Cosx Sinx tan 1tan 1222 -+=-+= -+=右。 2、注意角间的关系,正确应用三角公式进行变换 必须领会和掌握公式的实质,决不能停留在表面上。若:SinxCosx x Sin 22=, 也可以改写为2 32323222x Cos x Sin x Sin x Cos x Sin Sinx ==或者,因此,对三角公式要善于变换其中角的表现形式以及发现恒等式变形问题中角之间的相互关系: ⑴改变角的表现形式; 如()()βαβαββααα α-+=-+-=? =,,2 2。

《三角形的证明》复习教案

第一章《三角形的证明》 1、性质和判定 2、尺规作图 垂直平分线的应用: (1)确定到两点(三点)距离相等的点的位置 (2)确定线段的中点 (3)过一点作已知直线或线段的垂线 角平分线的应用 (1)把一个角分成n2等份 (2)确定到角的两边或三角形三边距离相等的点 (3)与垂直平分线结合,解决实际问题 3、全等三角形的判定(AAS,SSS,SAS,ASA,HL) 双基训练: 1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是____________. 2.一个等腰三角形的顶角是40°,则它的底角是________________. 3.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是________________. 4.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是 . 5.已知⊿ABC中,∠A = 090,角平分线BE、CF交于点O,则∠BOC = . 6.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC 的度数为. 7.Rt⊿ABC中,∠C=90o,∠B=30o,则AC与AB两边的关系

是 , 8.等腰三角形一腰上的高与另一腰的夹角为300 ,腰长为6,则其底边上的高是 。 9. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF , 要使△ABC ≌△DEF ,还需要的条件是( ) A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D 10.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( ) A.30° B.36° C.45° D.70° 11.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个 12. 如图, DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB . 13.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ; 14.如图,在△ABD 和△ACE 中,有下列四个等式: ①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。 已知: . 求证: . 证明: 提升练习 16.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上. D E C B A

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

第01讲-三角形的证明-教案

第01讲 三角形的证明 温故知新 三角形全等的条件 (1)三角形全等条件1:三条边分别相等的两个三角形全等,简写成“边边边”或“SSS”。 注意:①在运用“SSS”判定三角形全等,必须同时满足三边对应相等,只有一边或两边对应相等是不能得到全等的。②“SSS ”判定全等只适用于三角形,不能适用其他图形。 符号语言:已知△ABC 与△DEF 的三条边对应相等。 在△ABC 与△DEF 中,?? ? ??===DF AC EF BC DE AB ∴△ABC ≌△DEF (SSS ) (2)三角形全等条件2:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。 注意:①用“ASA”判定两个三角形全等时,一定要说明两个角及夹边对应相等 ②在书写两个三角形全等的条件“ASA”时,一般把夹边相等写在中间的位置。 符号语言:已知∠D=∠E ,AD =AE ,∠BAD =∠CAE .求证:△ABD ≌△ACE . 证明:在△ABD 和△ACE 中, ∠D=∠E AD=AE ∠BAD =∠CAE ∴△ABD ≌△ACE (ASA ) (3)三角形全等条件3: 两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“边边角”或“AAS”。 符号语言:如图:D 在AB 上,E 在AC 上,DC=EB,∠C=∠B .求证:△ACD ≌△ABE 证明:在△ACD 和△ABE 中. ∠C=∠B ∠A=∠A DC=EB ∴△ACD ≌△ABE (AAS ). 注意:“AAS”中的“S”是有限制条件的,必须是两组对应等角中一组等角的对边。 (4)三角形全等条件4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。 符号语言:在△ABC 与△DEF 中,

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

3.8 三角恒等式的证明

实用文档 3.8 三角恒等式的证明 【考点回顾】 1.三角公式在恒等变形中的应用; 2.常规恒等变形方法、定义法、分析法、综合法、比较法、切割化弦等方法. 例1.求证:.0)60tan(tan )60tan(tan )60tan()60tan(3=-+++-++ A A A A A A 例2.求证:.)cos 1(2)1cos(cos cos 3cos 2cos cos 21 ααααααα-+-= +++++n n n 例3.求证:.cos sin 1)sin (cos 2cos 1sin sin 1cos α ααααααα++-=+-+ 【基础训练】 1.求证:(sin α+tan α)(cos α+cot α)=(1+sin α)(1+cos α). 2.求证:(1-tan α)=(cos 2α-cot α)(sec 2α+1tan α). 3.求证:.1sin 1sin 2sin 3sin 22 -= 4.求证:tan13x -tan8x -tan5x = tan13x tan8x tan5x . 【拓展练习】 1.条件甲:3sin αcos(α+β)=sin(2α+β),条件乙:tan(α+β)=2tan α,则甲是乙的 ( )

实用文档 A .充分条件 B .必要条件 C .充要条件 D .即不充分也不必要条件 2.2tan 2cot cos 42α α α -等于 ( ) A .ααcos sin 21 ? B .sin2α C .-sin2α D .α2sin 16 1 3.已知α、β均为锐角,且则),sin(21sin βαα+=α、β的大小关系是 ( ) A .α>β B .α<β C .α≤β D .α与β的大小不确定 4.求证:).3tan 5(tan 44cos 2cos 3tan 5tan x x x x x x -=?+ 5.求证:(cscA+cotA)(1-sinA)-(secA+tanA)(1-cosA)=(cscA -secA)[2-(1-cosA)(1-sinA)].

三角形内角和定理的证明教学设计

名师精编优秀教案 北师大八年级下册数学 6.5《三角形内角和定理的证明》教学设计 西乡三中蒲忠明 在学生掌握了平行线的性质及严格的证明等知识的基础教案背景:上展开的本节课教学。 北师大八年级下册数学6.5《三角形内角和定理的证明》教学课题:教材分析: (一)教材的地位和作用: 这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。 三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;课本议一议引导学生一题多思,体现运动变化的观点,读一读为学生认识定理的发现过程另劈蹊径,渗透极限的思想,是学生认识客观世

界、不断探求新知的一种重要途径。 因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。 教学目标:)二( 名师精编优秀教案 [知识与技能目标]:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。 [过程与方法目标]: 1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。 2、通过一题多证、一题多变体会思维的多向性。 3、引导学生应用运动变化的观点认识数学。 [情感与态度目标]:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。感悟逻辑推理的价值。 (三)教学重难点: 本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。 本节课的难点是:应用运动变化的观点认识数学。从拼图过程中发现并正确引入辅助线是本节课的关键。 引导发现法、尝试探究法。教学方法:教学过程: 一、创设情景、提出问题:

三角形证明总复习教案

个性化教学辅导教案 学科:数学任课教师:黄老师授课时间:2014 年07 月21 日(星期一) 姓名郭海琪年级八年级性别女三角形的证明 教学目标知识点:等腰三角形、等边三角形的性质与判定、勾股定理及其逆定理、直角三角形全等的判定方法、含有30°的直角三角形的性质、线段的垂直平分线定理、角的平分线定理. 难点重点重点:一般三角形全等公理的回顾与运用,有关定理的探索和证明,其定理包括等腰三角形、等边三角形的性质与判定、勾股定理及其逆定理、直角三角形全等的判定方法、含有30°的直角三角形的性质、线段的垂直平分线定理、角的平分线定理. 课堂教学过程课前 检查作业完成情况:优□良□中□差□建议__________________________________________ 过 程 教学大纲: A、主要知识点: 一、公理 (1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角 (或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则

相关文档
最新文档