大学线性代数练习试题及标准答案

大学线性代数练习试题及标准答案
大学线性代数练习试题及标准答案

大学线性代数练习试题及答案

————————————————————————————————作者:————————————————————————————————日期:

2

3

第一部分选择题(共28分)

一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有

一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 111221

22=m ,a

a a a 131123

21=n ,则行列式a

a a a a a 111213

21

2223

++等于( )

A. m+n

B. -(m+n)

C. n -m

D. m -n

2.设矩阵A =100020003?? ??

?

??,则A -1等于( )

A. 13000

12000

1??

??

??????

B. 1000

12000

13?? ??

?????? C. 130********??

?

??????

D. 12000

130001??

?

?

?

????

? 3.设矩阵A =312101214---?? ??

?

??,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )

A. –6

B. 6

C. 2

D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 4

6.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )

A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0

B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0

C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0

D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λ

s αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为0

8.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解

B.

12η1+1

2

η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解

9.设n 阶方阵A 不可逆,则必有( )

4

A.秩(A )

B.秩(A )=n -1

C.A=0

D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )

A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量

B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值

C.A 的2个不同的特征值可以有同一个特征向量

D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ

3的特征向量,则α1,α2,α3有可能线性相关

11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价

C. A 与B 有相同的特征值

D. A 与B 合同

14.下列矩阵中是正定矩阵的为( ) A.2334??

?

?

? B.3426??

?

?

? C.100023035--?? ??

???

D.111120102?? ??

??? 第二部分非选择题(共72分)

二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每

小题的空格内。错填或不填均无分。

15.1

113

5

692536

= .

16.设A =111111--??

???,B =112234--?? ?

?

?.则A +2B = .

17.设A =(a ij )3×3,|A |=2,A ij 表示|A |中元素a ij 的代数余子式(i,j=1,2,3),则(a 11A 21+a 12A 22+a 13A 23)2+(a 21A 21+a 22A 22+a 23A 23)2+(a 31A 21+a 32A 22+a 33A 23)2=. 18.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a=.

19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为.

20.设A 是m ×n 矩阵,A 的秩为r(

21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)=. 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .

5

23.设矩阵A =010********---?? ?????,已知α=212-?? ??

?

??是它的一个特征向量,则α所对应的特征值为 .

24.设实二次型f(x 1,x 2,x 3,x 4,x 5)的秩为4,正惯性指数为3,则其规范形为 .

三、计算题(本大题共7小题,每小题6分,共42分)

25.设A =120340121-?? ?

?

?

??

,B =223410--?? ???.求(1)AB T ;

(2)|4A |. 26.试计算行列式

3112513420111

5

3

3

------. 27.设矩阵A =423110123-?? ??

?

??,求矩阵B 使其满足矩阵方程AB =A +2B .

28.给定向量组α1=-?? ??????2103,α2=1324-?? ??????,α3=3021-?? ??????,α4=0149-?? ??

????. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。 29.设矩阵A =1210

2242

6621023333

34-----??

????

?

?. 求:(1)秩(A );

(2)A 的列向量组的一个最大线性无关组。

30.设矩阵A=022234243----?? ??

?

??的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .

31.试用配方法化下列二次型为标准形

f(x 1,x 2,x 3)=x x x x x x x x x 12223212132323444+-+--,

并写出所用的满秩线性变换。

四、证明题(本大题共2小题,每小题5分,共10分)

32.设方阵A 满足A 3=0,试证明E -A 可逆,且(E -A )-1=E +A +A 2.

33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明

(1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; (2)η0,η1,η2线性无关。

6

答案:

一、单项选择题(本大题共14小题,每小题2分,共28分) 1.D 2.B 3.B 4.D 5.C 6.D 7.C 8.A 9.A 10.B 11.A 12.B 13.D 14.C

二、填空题(本大题共10空,每空2分,共20分) 15. 6 16. 337137--??

?

?

?

17. 4 18. –10

19. η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 20. n -r 21. –5 22. –2 23. 1

24. z z z z 12223242++-

三、计算题(本大题共7小题,每小题6分,共42分)

25.解(1)AB T =120340*********-?? ?????--?? ??

?

??

=861810310?? ??

???. (2)|4A |=43|A |=64|A |,而

7

|A |=1203

40121

2-=-.

所以|4A |=64·(-2)=-128 26.解

3

112513420111

5

3

3

51111113100105

5

3

------=----- =5

1111

11550---- =5

116

2

0550

62

55

301040---=

---=+=.

27.解AB =A +2B 即(A -2E )B =A ,而

(A -2E )-1=2231101211431531641

--?? ??

?

?

?=-----?? ??

???-. 所以B =(A -2E )-1A =143153164423110123-----?? ?????-?? ???

??

=3862962129-----?? ??

???. 28.解一----??

???????→?-----?? ??

????2130130102243419053213010112013112 ?→?--??

?????

??→???

?

?

?

?

?

?

1

3

50112008800141410350

11200110000

?→???

?

?

?

?

?

?

1002010100110

000,

所以α4=2α1+α2+α3,组合系数为(2,1,1). 解二考虑α4=x 1α1+x 2α2+x 3α3,

8

即-++=-=-+=+-=???????230312243491231223123x x x x x x x x x x .

方程组有唯一解(2,1,1)T ,组合系数为(2,1,1).

29.解对矩阵A 施行初等行变换

A ?

→?-----??

??

??

?

?1210

20006203282096

32 ?→?-----?? ???????→?----?? ????

?

?121020328300062000217121

20328300031000

00=B . (1)秩(B )=3,所以秩(A )=秩(B )=3.

(2)由于A 与B 的列向量组有相同的线性关系,而B 是阶梯形,B 的第1、2、4列是

B 的列向量组的一个最大线性无关组,故A 的第1、2、4列是A 的列向量组的一个最大线性无关组。

(A 的第1、2、5列或1、3、4列,或1、3、5列也是)

30.解A 的属于特征值λ=1的2个线性无关的特征向量为

ξ1=(2,-1,0)T , ξ2=(2,0,1)T .

经正交标准化,得η1=255550//-?? ?????,η2=2515451553///?? ??

?

??.

λ=-8的一个特征向量为

ξ3=122-?? ?????,经单位化得η3=132323///.-?? ?

?

???

所求正交矩阵为T =25521515135545152305323////////--?? ?

?

?

??.

对角矩阵D =100010008-?? ?

?

?

??.

(也可取T =25521515130532355451523////////---?? ??

?

??.)

31.解f(x 1,x 2,x 3)=(x 1+2x 2-2x 3)2-2x 22+4x 2x 3-7x 32 =(x 1+2x 2-2x 3)2-2(x 2-x 3)2-5x 32.

9

设y x x x y x x y x 1123

2233

322=+-=-=???

????,即x y y x y y x y 112223

332=-=+=???

??, 因其系数矩阵C =120011001-?? ??

?

??可逆,故此线性变换满秩。

经此变换即得f(x 1,x 2,x 3)的标准形 y 12-2y 22-5y 32 .

四、证明题(本大题共2小题,每小题5分,共10分) 32.证由于(E -A )(E +A +A 2)=E -A 3=E ,

所以E -A 可逆,且 (E -A )-1= E +A +A 2 .

33.证由假设A η0=b ,A ξ1=0,A ξ2=0.

(1)A η1=A (η0+ξ1)=A η0+A ξ1=b ,同理A η2= b , 所以η1,η2是Ax =b 的2个解。 (2)考虑l 0η0+l 1η1+l 2η2=0, 即 (l 0+l 1+l 2)η0+l 1ξ1+l 2ξ2=0.

则l 0+l 1+l 2=0,否则η0将是Ax =0的解,矛盾。所以 l 1ξ1+l 2ξ2=0. 又由假设,ξ1,ξ2线性无关,所以l 1=0,l 2=0,从而l 0=0 .

所以η0,η1,η2线性无关。

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

最新大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

山东大学网络教育《线性代数》期末考试复习题

1 专科《线性代数》 模拟题1 一 填空题 1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_. 2、如果向量α,β是正交的,则(α,β)=_0_. 3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵. 4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ?_矩阵. 5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解. 6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ . 二 单项选择题 t n s n t m n m B A B A T T t s n m ====?? ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵 矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3 向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s 三 是非题 。()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。()阶对称矩阵,则为若n A 、n A n A 、512 的解。()的解之和不是的解与线性相关。()αα可知ααα由α。()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组: ② ② ④ √ √ X √ X ① 0 6745 229 638 52432143 24214321====+-+-+---+-+x x x x x x x x x x x x x x

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

山大2017春季班期末考试 线性代数二(答案)

线性代数二 一.单选题. 1. 若)541()1(l k N -55 443211a a a a a l k 是五阶行列式ij a 的一项,则k 、l 的值及该项符号为( A ). (A )2=k ,3=l ,符号为负; (B) 2=k ,3=l 符号为正; (C) 3=k ,2=l ,符号为负; (D) 1=k ,2=l ,符号为正. 2. 下列行列式( A )的值必为零. (A) n 阶行列式中,零元素个数多于n n -2个; (B) n 阶行列式中,零元素个数小于n n -2个; (C) n 阶行列式中,零元素个数多于n 个; (D) n 阶行列式中,零元素的个数小于n 个. 3. 设A ,B 均为n 阶方阵,若()()2 2B A B A B A -=-+,则必有( D ). (A )I A =; (B)O B =; (C)B A =; (D)BA AB =. 4. 设A 与B 均为n n ?矩阵,则必有( C ). (A )B A B A +=+;(B )BA AB =;(C )BA AB =;(D )()111 ---+=+B A B A . 5. 如果向量β可由向量组s ααα,....,,21线性表出,则( D ) (A) 存在一组不全为零的数s k k k ,....,,21,使等式 s s k k k αααβ+++=....2211成立 (B) 存在一组全为零的数s k k k ,....,,21,使等式 s s k k k α ααβ+++=....2211成立 (C) 对β的线性表示式不唯一 (D) 向量组s αααβ,....,,,21线性相关 6. 齐次线性方程组0=Ax 有非零解的充要条件是( C ) (A)系数矩阵A 的任意两个列向量线性相关 (B) 系数矩阵A 的任意两个列向量线性无关 (C )必有一列向量是其余向量的线性组合 (D)任一列向量都是其余向量的线性组合 7. 设n 阶矩阵A 的一个特征值为λ,则(λA -1)2+I 必有特征值( C ) (a)λ2+1 (b)λ2-1 (c)2 (d)-2 8. 已知 ???? ? ??-=00000 123a A 与对角矩阵相似,则a =( A ) (a) 0 ; (b) -1 ; (c) 1 ; (d) 2 9. 设A ,B ,C 均为n 阶方阵,下面( D )不是运算律. (A )()A B C C B A ++=++)( ; (B )BC AC C B A +=+)(; (C ))()(BC A C AB =; (D )B AC C AB )()(=. 10. 下列矩阵( B )不是初等矩阵.

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

中山大学《线性代数》期中考试卷答案

珠海校区2009年度第一学期《线性代数》期中考试卷 姓名:专业:学号:成绩: 一,填空题(每题3分,共24分) 1.在5 阶行列式中,含有a13a34a51且带有负号的项是________________ 2.设A是3阶方阵,| A |= 1/3 ,则|(3A)-1 + 2A*| = 1 1 0 0 1 1 1 1 3. 5 2 0 0 = : 4 . x c b a = ; 0 0 3 6 x2c2b2a2 0 0 1 4 x3c3b3a3 5 . 已知矩阵 A = 1 1 , B = 1 0 , 则AB – BA T = ; 0 -1 1 1 1 0 2 6. 已知矩阵 A = 1 k 0 的秩为 2 ,则k = ; 1 1 1 2 1 1 1 7. 1 2 1 1 = ; 8. 若A = diag( 1 ,2 ,3 ,4 ) , 则A-1= ; 1 1 2 1 1 1 1 2 二. 判断题(每题2分,共10分) 1. 任一n 阶对角阵必可与同阶的方阵交换。() 2. n 阶行列式中副对角线上元素的乘积a n1a n-1,2…a1n总是带负号的() 3. 若A为n 阶方阵,则(A*)T = ( A T )* () 4. 设A , B 为n 阶方阵,则有(AB)3= A3B3() 5. 设A与B 为同型矩阵,则 A ~ B的充要条件是R(A)=R ( B ) ( ) 三,计算下列行列式( 每题8 分,共16 分) -2 -1 1 -1 0 1 0 …0 0 D4 = -2 2 4 8 1 0 1 …0 0 -2 1 1 1 D n = 0 1 0 …0 0 -2 -2 4 8 . . . . . 0 0 0 …0 1 0 0 0 … 1 0 -1 -1 0 四. 已知 A = -1 0 1 且AB = A – 2B , 求 B . 2 2 1

土木工程线性代数山东大学网络教育考试模拟题及答案

09年11月期末本科《线性代数》参考解答 线性代数模拟题1 一.单选题. 1.下列( )是4级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 答:A 2. 如果133 32 31 232221 131211 ==a a a a a a a a a D ,33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---=,那么=1D ( ). (A ) 8; (B) 12-; (C) 24; (D) 24-. 答:D 3. 设A 与B 均为n n ?矩阵,满足O AB =,则必有( ). 答:C (A )O A =或O B =; (B )O B A =+; (C )0=A 或0=B ; (D ) 0=+B A . 4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则 必 有 ()* kA 等于 ( ). 答:B (A )*kA ; (B )*1A k n -; (C )*A k n ; (D )*1A k -. 5.向量组s ααα,....,,21线性相关的充要条件是( ) 答:C (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C) s ααα,....,,21中有一个向量是其余向量的线性组合 (D) s ααα,....,,21中任意一个向量都是其余向量的线性组合 6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

山东大学专升本网络教育《线性代数》模拟题与答案

山东大学网络教育线性代数模拟题 (A) 一.单选题 . 1.下列( A )是 4 级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果 a 11 a 12 a 13 4a 11 2a 11 3a 12 a 13 D a a a 1, 21 22 23 D 4a 2a 3a a , 1 21 21 22 23 a 31 a 32 a 33 4a 31 2a 31 3a 32 a 33 那么 D (D ). 1 (A ) 8; (B) 12 ; (C) 24; (D) 24 . 3. 设 A 与 B 均为 n n 矩阵,满足 AB O ,则必有( C ). (A ) A O 或 B O ;(B ) A B O ; (C ) A 0 或 B 0;(D ) A B 0 . 4. 设 A 为 n 阶方阵 (n 3) ,而 * A 是 A 的伴随矩阵, 又 k 为常数,且k 0, 1,则必有 kA * 等于( B ). (A ) * kA ;(B ) k n 1 A * ;(C ) k n * A 1 A ; (D ) k * . 5.向量组 1 , 2 ,...., s 线性相关的充要条件是( C ) (A ) 1, 2 ,...., 中有一零向量 s (B) 1 , 2 ,...., s 中任意两个向量的分量成比例 (C) 1 , 2 ,...., s 中有一个向量是其余向量的线性组合 (D) 1 , 2 ,...., s 中任意一个向量都是其余向量的线性组合 6. 已知 1 , 2 是非齐次方程组 Ax b 的两个不同解, 1 , 2 是 Ax 0的基础解系, k 1 ,k 2 为任意常数,则 Ax b 的通解为( B ) (A) 1 2 k 1 k ( ) ; (B) 1 2 1 2 2 k 1 k 1 2 ( ) 1 2 1 2 2 (C) 1 2 k 1 k ( ) ; (D) 1 2 1 2 2 k 1 k ( 1 2 1 2 ) 1 2 2 7. λ=2 是 A 的特征值,则( A 2/3) 2/3) - 1 的一个特征值是( B ) (a)4/3 (b)3/4 (c)1/2 (d)1/4 8. 若四阶矩阵 A 与 B 相似,矩阵 A 的特征值为 1/2,1/3,1/4,1/5 ,则行列式 |B -1 -I|=(B)

相关文档
最新文档