高中数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理学案无答案新人教A

高中数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理学案无答案新人教A
高中数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理学案无答案新人教A

高中数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理学案无答案新人教A 版必

修4

2.3.1 平面向量基本定理

学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.

知识点一 平面向量基本定理

思考1 如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?

答案 能.依据是数乘向量和平行四边形法则.

思考2 如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案 不一定,当a 与e 1共线时可以表示,否则不能表示.

梳理 (1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直

思考1 平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案 存在夹角,不一样.

思考2 △ABC 为正三角形,设AB →=a ,BC →

=b ,则向量a 与b 的夹角是多少? 答案 如图,延长AB 至点D ,使AB =BD ,则BD →

=a ,

∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°.

梳理 (1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →

=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).

当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.

(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .

1.平面内任意两个向量都可以作为平面内所有向量的一组基底.( × ) 提示 只有不共线的两个向量才可以作为基底. 2.零向量可以作为基向量.( × )

提示 由于0和任意向量共线,故不可作为基向量. 3.平面向量基本定理中基底的选取是唯一的.( × )

提示 基底的选取不是唯一的,不共线的两个向量都可作为基底.

类型一 对基底概念的理解

例1 (2017·衡水高一检测)设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2 D .e 1和e 1+e 2

考点 平面向量基本定理 题点 基底的判定 答案 B

解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),

∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.故选B.

反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练 1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )

A .e 1-e 2,e 2-e 1

B .2e 1-e 2,e 1-1

2e 2

C .2e 2-3e 1,6e 1-4e 2

D .e 1+e 2,e 1+3e 2 考点 平面向量基本定理 题点 基底的判定 答案 D

解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2? ????e 1-12e 2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二 用基底表示向量

例2 如图所示,在?ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →

=b ,试以a ,

b 为基底表示DE →,BF →

.

考点 平面向量基本定理 题点 用基底表示向量

解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →,

∴BE →=12AD →=12b ,CF →=12BA →

=-12AB →=-12a .

∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -1

2b ,

BF →=BC →+CF →=AD →+CF →

=b -12a .

引申探究

若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →

. 解 取CF 的中点G ,连接EG .

∵E ,G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,

∴DG →=DE →+EG →

=a +12b .

又∵DG →=34DC →=34

AB →,

∴AB →=43DG →=43?

????a +12b =43a +2

3b .

又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →

∴AD →=BC →

=b +12? ????43a +23b

=23a +43

b . 反思与感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.

跟踪训练2 如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →

μAF →

,其中λ,μ∈R ,则λ+μ=________.

考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 43

解析 设AB →=a ,AD →

=b , 则AE →=12a +b ,AF →

=a +12b ,

又∵AC →

=a +b ,

∴AC →=23(AE →+AF →

),即λ=μ=23,∴λ+μ=43.

类型三 向量的夹角

例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的

夹角是β,求α+β.

考点 平面向量的夹角求向量的夹角 题点 求向量的夹角

解 如图,作OA →=a ,OB →

=b ,且∠AOB =60°,以OA ,OB 为邻边作?OACB ,

则OC →=a +b ,BA →=OA →-OB →

=a -b , BC →=OA →

=a .

因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.

因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.

反思与感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.

(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.

跟踪训练3 在△ABC 中,∠C =90°,BC =12AB ,则AB →与BC →

的夹角是( )

A .30°B.60°C.120°D.150° 考点 平面向量的夹角求向量的夹角 题点 求向量的夹角 答案 C

解析 如图,作向量AD →=BC →,则∠BAD 是AB →与BC →

的夹角,在△ABC 中,因为∠C =90°,BC =

12

AB ,所以∠ABC =60°,所以∠BAD =120°.

1.给出下列三种说法:

①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量. 其中,说法正确的为( ) A .①②B.②③C.①③D.①②③ 考点 平面向量基本定理 题点 基底的判定 答案 B

2.如图所示,设O 是平行四边形ABCD 的两条对角线的交点,给出下列向量组:

①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. 其中可作为该平面内所有向量的基底的是( ) A .①②B.①③C.②④D .③④ 考点 平面向量基本定理 题点 基底的判定 答案 B

解析 ②中DA →与BC →共线,④中OD →与OB →

共线,①③中两向量不共线,故选B.

3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,

y =________.

考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 -15 -12

解析 ∵向量e 1,e 2不共线,

∴?????

2x -3y =6,3x -4y =3,

解得???

??

x =-15,

y =-12.

4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23

BC ,若DE →=λ1AB →+λ2AC →

(λ1,

λ2为实数),则λ1+λ2的值为________.

考点 平面向量基本定理的应用

题点 利用平面向量基本定理求参数 答案 12

解析 DE →=DB →+BE → =12AB →+23BC → =12AB →+23(AC →-AB →) =-16AB →+23AC →,

又∵AB →与AC →

不共线,

∴λ1=-16,λ2=23,λ1+λ2=-16+23=1

2

.

5.在△ABC 中,点D ,E ,F 依次是边AB 的四等分点,试以CB →=e 1,CA →=e 2为基底表示CF →

.

考点 平面向量基本定理 题点 用基底表示向量 解 AB →=CB →-CA →

=e 1-e 2,

因为D ,E ,F 依次是边AB 的四等分点, 所以AF →=34AB →=3

4

(e 1-e 2),

所以CF →=CA →+AF →

=e 2+34(e 1-e 2)=34e 1+14

e 2.

1.对基底的理解 (1)基底的特征

基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理

(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.

(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.

一、选择题

1.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →

等于( )

A.1

2(5e 1+3e 2) B.1

2(5e 1-3e 2) C.1

2(3e 2-5e 1) D.1

2

(5e 2-3e 1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A

解析 OC →=12AC →=12(BC →-BA →)=12(BC →+DC →)

=1

2

(5e 1+3e 2). 2.如图所示,用向量e 1,e 2表示向量a -b 为( )

A .-4e 1-2e 2

B .-2e 1-4e 2

C .e 1-3e 2

D .3e 1-e 2

考点 平面向量基本定理 题点 用基底表示向量 答案 C

3.已知A ,B ,D 三点共线,且对任一点C ,有CD →=43CA →+λCB →

,则λ等于( )

A.23

B.13C .-13D .-23

考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 C

解析 因为A ,B ,D 三点共线,

所以存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →

). 所以CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →. 所以???

??

1-t =43,t =λ,

解得λ=-1

3

.

4.(2017·石嘴山第三中学四模)设点D 为△ABC 中BC 边上的中点,O 为AD 边上靠近点A 的三等分点,则( ) A.BO →

=-16AB →+12AC →

B.BO →=16AB →-12AC →

C.BO →=56AB →-16AC →

D.BO →

=-56AB →+16AC →

考点 平面向量基本定理 题点 用基底表示向量 答案 D

解析 依题意,得BO →=AO →-AB →=13AD →-AB →

=13×12(AB →+AC →)-AB →=-56AB →+16

AC →

,故选D. 5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →

等于( ) A .a +λb

B .λa +(1-λ)b

C .λa +b

D.

11+λa +λ1+λ

b 考点 平面向量基本定理 题点 用基底表示向量 答案 D

解析 ∵P 1P →=λPP 2→

∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →

=11+λOP →1+λ1+λOP →2=11+λa +λ1+λ

b .

6.已知点O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ? ?????AB →|AB →

|+AC →|AC →|(λ∈(0,+∞)),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心

D .垂心

考点 平面向量基本定理 题点 用基底表示向量 答案 B 解析 AB

|AB →|

为AB →

方向上的单位向量, AC

|AC →|为AC →

方向上的单位向量,

AB

|AB →|+AC →

|AC →|

的方向为∠BAC 的角平分线AD →的方向. 又λ∈(0,+∞),

所以λ? ?????AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC →|AC →

|的方向相同. 而OP →=OA →+λ? ?????AB →|AB →

|+AC →|AC →|,

所以点P 在AD →

上移动,

所以点P 的轨迹一定通过△ABC 的内心.

7.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为( ) A .30°B.45°C.60°D.90°

考点 平面向量的夹角求向量的夹角 题点 求向量的夹角 答案 C 二、填空题

8.已知a =e 1+e 2,b =2e 1-e 2,c =-2e 1+4e 2(e 1,e 2是同一平面内的两个不共线向量),则

c =________.(用a ,b 表示)

考点 平面向量基本定理 题点 用基底表示向量 答案 2a -2b

解析 设c =λa +μb ,

则-2e 1+4e 2=λ(e 1+e 2)+μ(2e 1-e 2) =(λ+2μ)e 1+(λ-μ)e 2, 因为e 1,e 2不共线,

所以???

??

-2=λ+2μ,4=λ-μ,

解得???

??

λ=2,

μ=-2,

故c =2a -2b .

9.已知λ1>0,λ2>0,e 1,e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1________,a 与

e 2________.(填“共线”或“不共线”)

考点 平面向量基本定理 题点 用基底表示向量 答案 不共线 不共线

解析 ∵e 1,e 2不共线,λ1>0,λ2>0, ∴a 与e 1,e 2都不共线.

10.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设MA →=a ,MB →=b ,则MC →=________.(用

a ,

b 表示)

考点 平面向量基本定理 题点 用基底表示向量 答案 16a +56

b

解析 MC →=MA →+AC →=MA →+56AB →=MA →+56(MB →-MA →)=16MA →+56MB →=16a +56

b .

11.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则

实数λ的取值范围为______________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 (-∞,4)∪(4,+∞)

解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.

三、解答题

12.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB

=k .设AD →=e 1,AB →

=e 2,以

e 1,e 2为基底表示向量DC →,BC →

,MN →

.

考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,

∵AB →

=e 2,且DC AB

=k ,

∴DC →=kAB →

=k e 2.

又∵AB →+BC →+CD →+DA →

=0,

∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD → =e 1+(k -1)e 2.

又∵MN →+NB →+BA →+AM →

=0, 且NB →

=-12BC →,AM →=12

AD →,

∴MN →=-AM →-BA →-NB →

=-12AD →+AB →+12BC →

k +1

2

e 2.

方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .

同方法一可得DC →

=k e 2.

则BC →=BE →+EC →=-(AB →-DC →)+AD →

=e 1+(k -1)e 2, MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)

k +1

2

e 2.

方法三 如图所示,连接MB ,MC .

同方法一可得DC →

=k e 2, BC →

=e 1+(k -1)e 2.

由MN →=12(MB →+MC →

),

得MN →=12(MA →+AB →+MD →+DC →)

=12(AB →+DC →)=k +12

e 2. 13.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;

(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数

(1)证明 若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).

由e 1,e 2不共线,得?

??

??

λ=1,3λ=-2??

???

?

λ=1,λ=-2

3.

∴λ不存在,故a 与b 不共线,可以作为一组基底. (2)解 设c =m a +n b (m ,n ∈R ),则 3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2) =(m +n )e 1+(-2m +3n )e 2. ∵e 1与e 2不共线,

∴?

??

??

m +n =3,-2m +3n =-1,∴?

??

??

m =2,

n =1.

∴c =2a +b .

(3)解 由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2.

∴????

?

λ+μ=4,-2λ+3μ=-3,

∴???

??

λ=3,μ=1.

故所求λ,μ的值分别为3和1. 四、探究与拓展

14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________. 考点 平面向量的夹角求向量的夹角 题点 求向量的夹角 答案 90°

解析 由题意可画出图形,在△OAB 中,

因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°.

15.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →

的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →

(λ,μ∈R ),求λ+μ的值.

考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数

解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,

则OC →=OD →+OE →.

在Rt△OCD 中,∵|OC →

|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →

|=2, 故OD →=4OA →,OE →=2OB →,

即λ=4,μ=2,∴λ+μ=6.

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高中数学平面向量习题及答案

第二章 平面向量 一、选择题 1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .与相等 D .与相等 2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =b C .若=,则A ,B ,C , D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足=α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ). A .3x +2y -11=0 B .(x -1)2+(y -1)2=5 C .2x -y =0 D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A . 6 π B . 3 π C . 23 π D . 56 π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则=( ). A .λ(+),λ∈(0,1) B .λ(+),λ∈(0,22 ) C .λ(-),λ∈(0,1) D .λ(-),λ∈(0, 2 2) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+ D .+ 7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ). (第1题)

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

高中数学必修平面向量测试试卷典型例题含详细答案

高中数学必修平面向量测试试卷典型例题含详 细答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高中数学平面向量组卷一.选择题(共18小题) 1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度 |×|=||||sinθ,若 =(2,0),﹣=(1,﹣),则|×(+)|=() A.4B.C.6D.2 2.已知,为单位向量,其夹角为60°,则(2﹣) =() A.﹣1 B.0C.1D.2 3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=() A.2B.C.0D.﹣ 4.向量,,且∥,则=()A.B.C.D. 5.如图,在△ABC中,BD=2DC.若,,则=() A.B.C.D. 6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=() A.B.C.D. 7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若 ,则的夹角为() A.B.C.D. 8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是() A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,=3,则||的最小值为() A.B.C.D.2 10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=() A.﹣B.C.﹣D.

11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的 直线与该图象交于D,E两点,则() 的值为() A.B.C.1D.2 12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则 △ABC的形状一定为() A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比 等于() A.B.C.D. 14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的() A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D. 16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为() A.B.C.D. 17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于 () A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3 18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= () A.2B.4C.5D.10 二.解答题(共6小题) 19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA. (1)求∠AOB的余弦值; (2)求点C的坐标.

相关文档
最新文档