Fenton_水解酸化_厌氧接触_接触氧化工艺处理高盐生产废水

Fenton_水解酸化_厌氧接触_接触氧化工艺处理高盐生产废水
Fenton_水解酸化_厌氧接触_接触氧化工艺处理高盐生产废水

54

给水排水 Vol 37 N o 2 2011

工业给排水

Fenton 水解酸化 厌氧接触 接触氧化工艺处理高盐生产废水

许 劲

1,2

赵绪光

1,2

洪国强

1,2

董晓梦3 李家祥

3

(1重庆大学城市建设与环境工程学院,重庆 400045;2重庆大学三峡库区生态环境教育部重点实验室,重庆 400045;

3南京绿岛环境工程有限公司,南京 210046)

摘要 高盐废水中的高含盐量对微生物的生长有较强的抑制作用,增加了其生物处理的难度。重庆某化工厂日排成分复杂的高盐高浓度生产废水,其COD Cr 51~63g /L,氯化物75~91g/L 。通过驯化耐盐微生物作为主体菌种,采用Fenton 水解酸化 厌氧接触 接触氧化组合工艺,出水各项指标均达到!污水综合排放标准?(GB 8978 1996)三级标准。

关键词 高盐废水 耐盐微生物 Fenton 接触氧化

1 工程概况

重庆某精细化工厂主要生产羧甲基纤维素钠(Carbox y M ethy l Cellulose,简称CM C),其生产工艺为:碱化 醚化 中和洗涤精制 离心 耙干 烘干 粉碎拼混 产品。CMC 是天然纤维素经化学改性后获得的一种水溶性好的聚阴离子化合物,能吸水膨胀,形成透明的粘稠胶液,广泛应用于食品、医药、牙膏等行业。其排放的高浓度生产废水含盐量高、难以生物降解,COD Cr 51~63g /L,氯化物75~91g/L,NaCl 约113g /L,乙醇酸钠约65g /L,呈黄褐色,水质水量变化较大。这部分废水必须先采用物理化学方法进行预处理,去除难生物降解物质并提高废水的可生化性。高盐废水一直是废水处理的难点,以前通常采用物理化学法处理,因为高盐环境及盐度的变化对生物处理有抑制作用,导致有机物去除率下降,增大生物处理的难度[1~6]。但物化法处理费用太高,如何将物理化学法与生物处理法相结合实现高效降解高盐废水污染物也因此成为研究热点[1,4,6]。目前在高盐废水生物处理的研究与应用中,又可分为利用耐盐菌与利用嗜盐菌两种不同方式,本工程主要利用耐盐菌不脱盐进行生物处理。考虑到该厂的长远发展,废水处理工程按1137.5m 3/d 规划,分2期实施,一期设计水量为650m 3

/d,其中高浓度废水150m 3

/d,低浓度废水500m 3/d 。一期工程设计水量和水质参数见表1,出水执行!污水综合排放标准?(GB 8978 1996)三级标准。由于现阶段该厂只上了三分之一的生产线,所以

表1 工程设计水量和水质参数

项目水量/m 3/d COD C r /g/L NaCl /g/L 乙醇酸钠/g/L 氧化物/g/L Na +

/g/L pH

高浓度废水15051~63113

65

68.53

62.7

低浓度废水500 2.5混合废水

650

18.46

26.07

15

15.81

14.47

6~8

图1 废水处理主要工艺流程

实际处理水量180~200m 3/d 。2 废水处理工艺流程(见图1)

3 工艺说明及主要构筑物

(1)Fenton 氧化池。1座,尺寸2.5m #2.9m #5m 。经Fenton 氧化,废水中难生物降解有机物得到降解或去除,可生化性提高。其进水COD Cr 40~80g /L,进水含盐量110~170g/L,pH 为9.5~10.5,需加酸控制pH 为3~4。然后按比例投加H 2O 2和Fe 2SO 4进行Fenton 反应,整个过程需机械搅拌。废水经Fenton 氧化后呈酸性,需加碱液中和至中性,同时曝气使其混合均匀。

给水排水 Vol 37 N o 2 2011

55

(2)均质池。1座,尺寸9.3m #8.1m #6.7m,H RT 18.6h 。高浓度废水经Fenton 氧化系统处理后自流至均质池,同时将含盐量视为零的生活污水抽至其中,设曝气管进行搅拌、均和。可以均衡水质的盐度、浓度、温度、pH 等,避免水质出现较大波动,造成对后续处理的冲击。由于混合废水仍然缺乏氮磷,需适当添加尿素和磷酸二氢钙等。

(3)水解酸化池。1座,尺寸13m #3.5m #9m,HRT 15h,容积负荷9.5kgCOD Cr /(m 3 d)。采用上向流式池型,底部由穿孔管进水,表层由穿孔管出水,末端设配水井,配水井重要用于厌氧接触池污泥回流、酸碱以及微量营养元素的投加。池内设置弹性填料,以增大微生物浓度,主要利用生物膜对废水中的大分子物质及难降解有机物进行水解,提高废水可生化性,并增强系统的抗冲击负荷能力。其工艺段重点在于污染物质化学结构和性质上的改变。(4)厌氧接触池。上向流式池型,1座,尺寸13m #13m #9m ,H RT 56.2h,容积负荷2.3kg COD Cr /(m 3 d)。分16格,采用4个同型号的脉冲式布水装置均匀布水,脉冲式工作,同时具有搅拌污泥的功能,脉冲时使污泥处于悬浮状态,使进水与污泥颗粒充分接触。池内上部装有弹性填料,将废水中的颗粒污泥截留,以增加系统生物量,提高处理效率。表层以穿孔管收集上清液自流至厌氧沉淀池。(5)接触氧化池。1座,尺寸16.4m #8.3m #5.8m,HRT 29.2h,容积负荷0.8kgCOD Cr /(m 3 d)。接触氧化池主要用于去除有机物,池内设置软性填料,并淹没在废水中,填料上长满生物膜,废水与生物接触过程中,水中的有机物被微生物吸附、氧化分解和转化为新的生物膜。从填料上脱落的生物膜,随水流到沉淀池后,部分回流,部分排入污泥处理系统,废水得到净化。设在池底的不锈钢穿孔布气管曝气,出水DO 控制在2~3mg /L 。

(6)絮凝反应沉淀池。1座,尺寸1.5m #3.5m #5m,按质量比25?1投加PAC 和PAM ,一般PAM 连续投加,好氧沉淀池出水COD Cr 未达设计值时再投加PA C 。末端设齿形出水堰出水。

(7)污泥处理系统。由物化集泥池、生化集泥池和污泥浓缩池组成。物化污泥池主要收集Fenton 沉淀池排出的污泥,生化污泥池则收集厌氧沉淀池、好

氧沉淀池和絮凝反应沉淀池的污泥。浓缩池1座,尺寸6.9m #3.7m #4m ,经过约10h 沉淀,上清液排至调节池2中,底部污泥自流至污泥储泥池,然

后经由螺杆泵抽送至压滤机中,压出的干污泥外运或另行处置。

4 废水处理系统调试运行

该工程2009年6月开工建设,2009年8月完工。系统调试期间经历了CM C 泄漏和强碱泄漏两次重大事故,导致耐盐菌大量死亡,厌氧系统不得不重新培养耐盐菌,在此期间好氧系统超负荷运行,出水基本达标,但电耗较高。经过半年左右的调试运行,出水完全达到!污水综合排放标准?(GB 8978 1996)三级标准。

4.1 耐盐微生物驯化培养

采用重庆市鸡冠石污水处理厂脱水污泥作为菌种进行驯化,厌氧耐盐菌和好氧耐盐菌的驯化同时启动,独立实施完成。

水解酸化池与厌氧池作为一个整体考虑。系统启动初期,一次性投足接种污泥,本项目水解酸化池30t,厌氧接触池110t,投加量为池容的30%~50%。进入生物处理系统的废水,控制COD Cr 在800~1500m g/L,容积负荷0.3~1kg COD Cr /(m 3 d),这样有利于微生物的筛选。当COD Cr 去除率达到80%以后,才提高负荷。系统启动初期含盐量应控制在4000mg /L,并以1000~2000m g/L 的含盐量梯度逐步提高废水含盐量,以逐渐驯化出能适应工程设计要求的耐盐微生物。当生物池内填料上挂有厚厚的生物膜、出水较清澈并能达标时,标志挂膜成功,水解酸化池和厌氧接触池驯化工作完成。

接触氧化池启动初期,一次性投足接种污泥30t,污泥缺氧时间不得超过12h 。污泥投入后,首先进行闷曝并及时加入粪便水以恢复污泥活性。闷曝24h 后,同样加入易生物降解污水,控制COD Cr 为800~1500m g/L,若微生物适应良好,则每3~6d 按1000~2000mg /L 的含盐量梯度提高废水盐度,必要时投加营养物质和微量元素。当COD Cr 去除率达到80%、好氧沉淀池出水清澈时,可认为好氧生物膜培养基本结束。

在整个培菌过程中,进水含盐量的相对稳定至

56

给水排水 Vol 37 N o 2 2011

关重要。当含盐量提升至2%~3%时,整个处理系统敏感又脆弱,处理出水不易稳定。鉴于CMC 废水的特性,建议将实际进水含盐量控制在2%左右,可保证整个处理系统运行稳定,出水达标。4.2 工程试运行

试运行阶段,将水解酸化池、厌氧接触池和接触氧化池连通同步运行,主要是通过周期性提高进水有机物负荷,使整个处理系统逐渐步入生产性运行,同时注意废水中碳、氮、磷的合理比例和微量元素的投加,及时发现并解决试运行过程中出现的各种问题,并不断完善各种防范与应对措施。当接触氧化池生物镜检观察到原生动物如钟虫等较多、出水水质稳定达标时,即可进入正式运行阶段。

4.3 工程验收

重庆市环境监测中心于2010年3月对本项目验收。验收监测期间,生产废水最终处理出水中污染物最大日均浓度分别为COD Cr 236mg/L,BOD 564.9mg/L,氨氮4.59mg/L(详见表2),均未超出!污水综合排放标准?(GB 8978 1996)三级标准限制,同时符合鸡冠石污水处理厂进水水质要求,验收合格。

表2 主要构筑物进出水水量与水质

项目水量/m 3/d COD C r /mg/L BOD 5/mg/L 氨氮/m g/L 氯化物/m g/L pH

调节池1进水23517007740010 物化沉淀池出水2346200

74300 6.62均质池180******** 11.8 94107.05最终出水180

236 64.9 4.599770

8.12标准限值

500

300

6~9

5 经济分析

该废水处理工程按一期设计,二期另建,其中混凝土池按350元/m 3

考虑,房屋按860元/m 2

考虑。调节池1、调节池2、均质池、物化集泥池、生化集泥池、浓缩池、储泥池及所有配套房屋都按两期共用一次设计、施工到位,其余处理单元按照一期设计。总投资626万元,其中土建236万元,设备262.4万元,其他费用127.6万元。

本项目总运行费用约为4.18元/m 3

,不含设备折旧费,其中人工费0.51元/m 3

,动力费1.12元/m 3

,药剂费2.30元/m 3,运行维护费0.25元/m 3。

6 小结

(1)常规生物处理系统通过适当驯化后能够处理高盐废水,但驯化菌种的耐盐度有限,而且驯化时间长,易受冲击。应注意实际进水水质的变化,并保证均质池的含盐量稳定。

(2)在接触氧化工艺中,生物膜是降解有机物的主体。生物膜的耐盐能力大于活性污泥,利用生物膜法可提高耐盐菌浓度,延长其停留时间,避免耐盐菌的流失。

(3)高盐污泥沉降性能较差,应注意合理设计沉淀池,适当增加沉淀时间。

(4)Fenton 氧化预处理难降解废水可提高废水的可生化性,物化+生化组合法可以合理价格处理高盐高浓度工业废水,并能达标排放。

(5)本项目为高盐废水处理,当采用!水质化学需氧量的测密重铬酸性法?(GB 11914 89)测定COD Cr 时受Cl -

影响较大,不易测准,建议改进高盐废水COD 的测定方法,或用TOC 等水质指标替代。

参考文献

1

Lefeb vre O,M oletta R .T reatm ent of organic pollution in industrial saline w as tew ater:a literature review.

Water

Research,2006,40:3671~3682

2 Abou-E lela S I,Kamel M M ,Faw zy M E.Biological treatment

of s alin e w as tew ater u sing a salt -tolerant microorganism.Desalination ,2010,250(1):1~53 Ch ow dhu ry P,Viraraghavan

T,S rinivasan

A.

Biological

treatment processes for fish pr ocess ing w as tew ater-A review.Biores ou rce T echnology,2010,101(2):439~449

4 T uin B J ,Geerts R,W es terink J B,,et al.Pretreatment and

biotreatmen t of s alin e industrial wastewaters.W ater S cien ce an d T echnology,2006,53(3):17~25

5 邹小玲,丁丽丽,赵明宇,等.高盐度废水生物处理研究.工业水

处理,2008,28(9):1~4

6 雷云,解庆林,李艳红.高盐度废水处理研究进展.环境科学与管

理,2007,32(6):94~98

%通讯处:400045重庆大学B 区城市建设与环境工程

学院环境教研室

电话:(023)65121412E-mail:x ujing lily@https://www.360docs.net/doc/c317800496.html, 收稿日期:2010-10-18

《高盐废水处理》word版

高盐废水处理 高盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。 一、高浓度含盐废水处理的生物流程 高含盐废水生物处理流程的选择:高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。 (1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。 在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。有高浓度含盐废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。 (3)二沉池。二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,尤其是含NaCl废水。处理水量较大时,特别是含CaCL2废水,最好采用周边传动式刮泥机,以适应污泥浓度高、密度大的特点。在采用传统活性污泥法处理高CaCL2废水时,应适当加大污泥回流量,以减少废水波动造成的冲击,提高系统的稳定性。

印染废水(水解酸化接触氧化)

水解酸化-接触氧化-混凝-脱色 XX有限公司 印染废水处理工程设计方案 广州益方田园环保科技开发有限公司 广东工业大学校办产业总公司 二零零三年四月

工程名称:4000吨/天印染废水处理 设计阶段:方案设计 工程编号:021001 方案设计目录 一、工程概况 二、设计水质、水量及排放标准 三、设计依据 四、设计范围 五、设计原则 六、方案设计和工艺流程简介 七、主要处理设施及设计参数 八、污水处理站总体设计 九、工艺流程图及平面布置图

一、工程概况 印染混合废水具有如下特点:①含活性染料废水,色度高,难脱色;②水质复杂,有机物含量高,耗氧量大,悬浮物多;③受原料、季节、市场需求等变化的影响,使水质水量变化很大。目前设计日排废水量约为4000m3/d。 为了保护我们的生存环境,保护我们的有限水资源,同时也为了使企业能更好地生存和持续地发展,为创造更好的环境效益和社会效益,严格执行国家环保‘三同时’制度,继续保持良好的企业形象,公司拟建废水处理站一座。日处理废水量4000m3,利用技术先进,运行、维护简单,效果稳定的处理系统消减污染,以使废水达到国家及珠海市环保要求排放。 受厂家委托,我公司对该废水治理进行设计,本着实事求是、真诚合作的原则,我公司根据同类废水的治理经验,在经过大量的文献参阅、专业技术人员的认真探讨后拟成了本设计方案,恭请各级领导和专家审查并提出宝贵意见,希望能够贡献我们的技术和力量。 二、设计水质水量及排放标准 (一)、水质: 按同类型企业生产废水情况估计,本方案设计综合废水水质主要指标为: CODcr:600mg/l~1000mg/l BOD5:200mg/l~250mg/l

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较根据有机物在厌氧处理中所要求达到的分解程度,可将其分为两种类型,即酸发酵(水解酸化)和甲烷发酵。前者以有机酸为主要发酵产物,而后者则以甲烷为主要发酵产物。酸发酵是一种不彻底的有机物厌氧转化过程,其作用在于使复杂的不溶性高分子有机物经过水解和产酸,转化为溶解性的简单低分子有机物,为后续厌氧处理中产乙酸产氢和产甲烷微生物或好氧处理准备易于氧化分解的有机底物(即提高废水的BOD5 / COD ,改善废水的可生化性)。因而,它常作为生物预处理工序或厌氧-好氧联合生化处理工艺中的前处理工序。 厌氧-好氧工艺是中、高浓度有机废水处理的适宜工艺。这是因为: 1.厌氧法多适用于高浓度有机废水的处理,能有效地降解好氧法不能去除的有机物,具有抗冲击负荷能力强的优点,但其出水综合的指标往往不能达到处理要求; 2.厌氧法能耗低和运行费便宜,尤其在高浓度有机废水时,厌氧法要比好氧法经济得多; 3.好氧法则多适用于中低浓度有机废水的处理,对于高浓度且水质、水量不稳定的废水的耐冲击负荷能力不如厌氧法,尤其当进水中含有高分子复杂有机物时,其处理效果往往受到严重的影响。厌氧-好氧联合处理工艺可大大改善水质及运行的稳定性,但由于厌氧段实现了甲烷过程,因而对运行条件和操作要求较为严格,同时因原水中大量易于降解的有机物质在厌氧处理中被甲烷化后,剩余的有机物主要为难生物降解和厌氧消化的剩余产物,因而尽管其后续的好氧处理进水负荷得到大大降低,但处理效率仍较低。此外,该工艺须考虑复杂的气体回收利用设施,从而增加基建费用。而水解酸化工艺则将厌氧处理控制在产酸阶段,不仅降低了对环境条件(如温度、p H、DO等)的要求,使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。由于厌氧段控制在水解酸化阶段,经水解后原水中易降解物质的减少较少,而原来难以降解的大分子物质则被转化为易生物降解的物质,从而使废水的可生化性及降解速率得到较大幅度的提高。因此,其后续好氧处理可在较短的HRT下达到较高的处理率。两相厌氧消化工艺即是将厌氧消化中的产酸相和产甲烷相分开,以便获得各自最优的运行工况。与水解酸化过程相比,其产酸段对产物的要求是不同的(以乙酸为其产物)。 水解酸化、混合厌氧和两相厌氧由于各自的作用不同、对产物要求及处理程度的不同,对各自的运行和操作要求也不同: 1. Eh不同。在混合厌氧消化系统中,由于承担水解和酸化功能的微生物与产甲烷菌共处于一个反应器中,整个反应器的氧化还原电位Eh须严格控制在- 300mV以下以满足甲烷菌的要求,因而其水解酸化菌也是在此Eh值下工作的。两

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法 称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理 化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化 学反应后再转移。

污水厌氧处理与好氧处理特点比较

污水厌氧生化处理 厌氧生物处理与好氧生物处理特点比较(优缺点) 厌氧生物处理是在厌氧条件下,由多种微生物共同作用,利用厌氧微生物将污水或污泥中的有机物分解并生成甲烷和二氧化碳等最终产物的过程。在不充氧的条件下,厌氧细菌和兼性(好氧兼厌氧)细菌降解有机污染物,又称厌氧消化或发酵,分解的产物主要是沼气和少量污泥,适用于处理高浓度有机污水和好氧生物处理后的污泥。 1、厌氧生物处理的优点 ⑴容积负荷高,典型工业废水厌氧处理工艺的污泥负荷(F/M)为~(kgMLVSS?d),是好氧工艺污泥负荷~(kgMLVSS?d)的两倍多。在厌氧处理系统中,由于没有氧的转移过程,MLVSS可以达到好氧工艺的5~10倍之多。厌氧生物处理 /(m3?d),而好氧生物处理有机容积负荷只有~有机容积负荷为5~10kgBOD 5 (m3?d),两者相差可达10倍之多。 ⑵与好氧生物处理相比,厌氧生物处理的有机负荷是好氧工艺的5~10倍,而合成的生物量仅为好氧工艺的5%~20%,即剩余污泥产量要少得多。好氧生物处 产生的污泥量为250~600g,而厌氧生物处理系统每处理理系统每处理1kgCOD Cr 产生的污泥量只有20~180g。且浓缩性和脱水性较好,同时厌氧处理过1kgCOD Cr 程可以杀死污水和污泥中的一部分寄生虫卵,即剩余污泥的卫生学指标和化学指标都比好氧法稳定,因而厌氧污泥的处理和处置简单,可以减少污泥处置和处理的费用。 ⑶厌氧微生物对营养物质的需要量较少,仅为好氧工艺的5%~20%,因而处理氮磷缺乏的工业废水时所需投加的营养盐量就很少。而且厌氧微生物的活性比好氧微生物要好维持得多,可以保持数月甚至数年无严重衰退,在停运一段时间后能迅速启动,因此厌氧反应器可以间歇运行,适于处理季节性排放的污水。 因为曝气要耗电~1kWh,而厌氧生物处理 ⑷好氧微生物处理每去除1kgCOD Cr 就没有曝气带来的能耗,且处理含有表面活性剂的污水时不会产生泡沫等问题,不仅如此,每去除1kgCOD 的同时,产生折合能量超过12000kJ的甲烷气。 Cr ⑸好氧处理的曝气过程可以将污水中的挥发性有机物吹脱出来而产生大气污染,厌氧处理不存在这一问题,同时可以降解好氧工艺无法降解的物质,减少氯

废水处理工艺及流程说明

福建晶安光电有限公司1300吨/天生产废水处理 工艺流程和设计说明 一、处理对象和来源 本项目废水为生产废水。由外缘切割机、晶棒掏取机、滚切机、各道磨工序的磨床、切片机、倒角机、研磨机、铜抛机、粗抛机和细抛机等工序后的清洗环节产生废水。此外,还有废气处理装臵的外排水、车间地面清洗水、纯水设备冲洗水等生产废水。生产废水总排放量一期为649.07m3/d,二期建成后全厂总量为1298.14m3/d,目前湖头污水处理厂尚未建成,因此近期项目废水经处理达一级标准后排入西溪。 二、废水处理系统进水水质、水量 废水产生量及对应的处理设施设计规模单位:t/d 有机研磨抛光酸碱 一期废水产生量88.6 269.78 133.65 157.04 二期废水产生量88.6 269.78 133.65 157.04 处理设施设计规模180 540 280 300 注:废水处理系统一天运行20h,总设计水量应在1300t/d。 项目运营期间产生的酸洗废液、氨洗废液、切削废液作为危废分类集中收集处臵,暂存在厂区内危险废物储存场(设臵于废水处理站旁,设3 个塑料储罐,容积均为20m3,同时设一个地下储池,容积为100m3),每两周由有资质的危废处理单位清运一次;其它各工序废液可进入废水处理站处理(生活污水单独处理)。 项目废水的进水水质 CODCr BOD5 SS 氨氮总磷LAS 有机废水3000 1800 800 50 10 50 研磨废水1000 800 2300 40 3 45 抛光废水1500 900 1000 45 3 60 酸碱废水450 100 250 456 -- 80

三、废水处理系统出水水质 根据环评要求,该项目产生的废水经处理排放执行国家《污水综合排放标准》中GB8978-96 表4一级标准,具体数值见下表。 排放执行GB8978-96表4一级标准 项目单位标准限值(一级) pH值无量纲6~9 悬浮物(SS) mg/L ≤70 五日生化需氧量(BOD5) mg/L ≤20 化学需氧量(COD)mg/L ≤100 氨氮(NH3-N)mg/L ≤15 总磷mg/L ≤0.5 LAS mg/L ≤5 备注:本项目仅针对以上水质指标进行监测,其余指标不在本处理范围内。

高浓度含盐废水生化处理

高浓度含盐废水处理 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。 2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。这是盐度对微生物的一种选择。将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。因此,当盐度超过20g/,一般认为用不同淡水微生物无法进行处理。 3 适盐微生物的分类与利用 耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。 嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。按照最佳生长盐度范围可以分为三类。

水解酸化-接触氧化法处理生活污水

水解酸化-接触氧化法处理生活污水摘要:在生活污水处理方法上,生化处理工艺占据了绝大多数水处理二级处理系统。生活污水中含有的氨氮和磷,需要生化处理工艺有脱氮除磷的功效。水解酸化和接触氧化法结合处理生活污水,起到了很好的脱氮除磷功能,并且污泥产生量少,节省污泥处理费用。 关键词:生活污水;水解酸化;接触氧化;脱氮除磷 Abstract: Keywords:wastewater ;waste water treatment 1、概况 建新矿井及选煤厂项目是市重点建设工程项目之一。井田东西长约10.5公里,南北宽约6.4公里,可采面积约为41.9平方公里,地质储量2.1443亿吨,可采储量1.4306亿吨,具有广阔的发展前景。矿井设计年生产能力150万吨,采用斜井、立井混合开拓方式,全井田划分为6个盘区,布置一个综采工作面。 剑平瑞华环保技术担任新矿居住区生活污水处理站工程的总承包,根据污水处理具有常规生活污水需脱氮除磷的要求。采用水解酸化+接触氧化工艺处理,使生活污水处理后达到《城市污水再生利用城市杂用水水质》(GB/T18920-2002)中水质控制的较标准。设计处理水量480m3/d。 2、废水处理工艺选择 生活污水处理程序一般包括预处理系统、二级处理系统、深度处理系统及污泥处理系统,其中核心部分为二级生化处理。二级处理通过微生物的新代作用将污水中的大部分有机物转换成CO2和H2O;污泥处理时污水处理的重要组成部分,主要包括浓缩、脱水和干化等。 2.1预处理系统 预处理系统主要任务是去除污水中的机械杂质,生活污水中的杂质只要是塑料、纸、碎屑和呈悬浮物状态的固体污染物。通过预处理,悬浮固体的去除率为70-80%,BOD5的去除率达20%。通过机械格栅去除生活污水中的较大杂物,以防止水泵的堵塞。 2.2生化处理系统 生活污水营养丰富,易于生化处理,主要处理工艺有活性污泥法、生物接触氧化法等,也延伸出了诸如CASS、SBR、UNTANK、DIT-IAT等诸多新型工艺。

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

水解酸化池的工艺操作规程

编号:SM-ZD-71033 水解酸化池的工艺操作规 程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

水解酸化池的工艺操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 本项目水解酸化池的处理效果增强措施:

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

印染废水(水解酸化接触氧化).

水解酸化-接触氧化-混凝- 脱色 XX 有限公司 印染废水处理工程设计方案广州益方田园环保科技开发有限公司

广东工业大学校办产业总公司二零零三年四月

印染废水(水解酸化接触氧化). 工程名称:4000吨/天印染废水处理 设计阶段:方案设计 工程编号:021001 、 .二、工程概况 设计水质、水量及排放标准 三、设计依据 四、设计范围 五、设计原则 六、方案设计和工艺流程简介 七、主要处理设施及设计参数 八、污水处理站总体设计 九、工艺流程图及平面布置图

一、工程概况 印染混合废水具有如下特点:①含活性染料废水,色度高,难脱色;②水质复杂,有机物含量高,耗氧量大,悬浮物多;③受原料、季节、市场需求等变化的影响,使水质水量变化很大。目前设计日排废水量约为4000m3/d 。 为了保护我们的生存环境,保护我们的有限水资源,同时也为了使企业能更好地生存和持续地发展,为创造更好的环境效益和社会效益,严格执行国家环保‘三同时'制度,继续保持良好的企业形象,公司拟建废水处理站一座。日处理废水量4000m,利用技术先进,运行、维护简单,效果稳定的处理系统消减污染,以使废水达到国家及珠海市环保要求排放。 受厂家委托,我公司对该废水治理进行设计,本着实事求是、真诚合作的原则,我公司根据同类废水的治理经验,在经过大量的文献参阅、专业技术人员的认真探讨后拟成了本设计方案,恭请各级领导和专家审查并提出宝贵意见,希望能够贡献我们的技术和力量。 、设计水质水量及排放标准 (一)、水质: 按同类型企业生产废水情况估计,本方案设计综合废水

水质主要指标为: CODcr:600mg/l~1000mg/l BOD5: 200mg/l~250mg/l pH: 6.0 ?10.0 SS: 150 ?300mg/l 色度: 400?500 倍(二)、水量: Q=4000 m3/h. 每天按工作24 小时计,平 均每小时流量为167m3/h 。 (三)、排放标准: 废水经处理后达到DB44/26-2001 水污染物排放标 准一级标准(广东省地方标准)。 CODc:w 90mg/l BOD:w 20mg/l pH: 6.0 ?9.0 SS:< 60mg/l 色度:w 50倍 三设计依据 1 、《中华人民共和国环境保护法》 2、《水污染物排放标准》DB4426-89

水解酸化基础知识

水解酸化基本知识 水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。 酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。 从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两项厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。 影响水解酸化过程的重要因素: PH值:水解酸化微生物对PH值变化的适应性较强,水解酸化过程可在PH值3.5-10的范围内进行,但最佳的PH是5.5-6.5 水温:研究表明,水温在10-20摄氏度之间变化时,对水解反应速度影响不大,说明参与水解的微生物对低温变化的适应性强。 底物的种类和形态:底物的种类和形态对水解酸化过程的速度有很大影响。对同类有机物来说,分子量越大,水解越困难,相应的水解速度就越小。颗粒状有机物,粒径越大,单位重量有机物的比表面积就越小,水解速度也越小。 污泥生物固体停留时间:在常规的厌氧条件下,混合厌氧消化系统中,水解酸化微生物的比增值速度高于甲烷菌,因此,当系统的生物固体停留时间较小时,甲烷菌的数量将逐渐减少,直至完全淘汰。为了保持水解微生物的活性,水解池内水解微生物浓度应该保持一个合适的浓度。这都是靠控制水解池的生物固体停留时间来完成的。 水利停留时间:对水解酸化反应器来说,水利停留时间越长,底物与水解微生物的接触时间也越长,相应的水解效率就高。 水解酸化过程的判断指标: 一个水解反应池是否发生了水解,以及水解过程进行的程度,单从出水的水质COD、BOD等的去除率来判断是不全面的。判断指标为: BOD/COD比值的变化:废水可生化性的一个重要指标。 溶解性有机物的比例变化:水解处理后,溶解性有机物比例显著增加。 有机酸(VAF)的变化:进出水VAF的相差越大,说明水解酸化的程度越好。

高浓度含盐的废水处理方法

高浓度含盐废水的处理方法 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理 含盐废水主要毒物是无机毒物,即高浓度的无机盐。 有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。 ①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物

水解酸化-接触氧化法处理印染废水实例设计.

毕业设计 中文题目水解酸化-接触氧化法处理印染污水 实例设计 英文题目The design example of dyeing wastewater treatment by hydrolytic acidification - contact oxidation process 院系:环境科学与工程学院年级专业:10级环境工程 姓名:**** 学号:******* 指导教师:*** 职称:讲师 2014年5月10日

毕业设计诚信声明书 本人郑重声明:在毕业设计工作中严格遵守学校有关规定,恪守学术规范;我所提交的毕业设计是本人在指导教师的指导下独立研究、撰写的成果,设计中所引用他人的文字、研究成果,均已在设计中加以说明;在本人的毕业设计中未剽窃、抄袭他人的学术观点、思想和成果,未篡改实验数据。 本设计和资料若有不实之处,本人愿承担一切相关责任。 学生签名: 2014年5月10日 1 I

水解酸化-接触氧化法处理印染污水实例设计 【摘要】:在社会经济快速发展的当下,工业废水污染已成为全球普遍关注的重大的问题。各企业也积极推进内部运营机制向环境友好型转变。本毕业论文主要是针对植绒厂实际生产废水相关性质,进行高效、低成本投资的水污染处理设施的研究与建设。设计采用混凝沉淀与水解酸化—接触氧化相结合的工艺对废水进行分级处理,出水水质达《污水综合排放标准》中的一级标准。结合本人工程实践,对本项目进行技术经济分析,其中总投资近30万元,废水管理成本为2.3元/吨,而且占地面积为100m3。由此可知,本工程设计在实际运行中经济可观,获得良好的经济效益和社会效益,具有很好的现实指导意义。 【关键词】:水污染,印染废水,水解酸化-接触氧化 The design example of dyeing wastewater treatment by hydrolytic acidification - contact oxidation process 【Abstract】:Today,society and economy development rapidly,industrial wastewater pollution has become a major problem of global common concern.Enterprises is also actively promote the internal operation mechanism changes to the environment friendly.This thesis is mainly on the flocking factory actual production of wastewater related properties,research and construction of water pollution treatment facilities and efficient, low cost of investment.The design use of the coagulation and sedimentation,hydrolytic acidification, bio contact oxidation combining to grading treatment of sewage, the effluent can reach a level standard of " integrated wastewater discharge standard ".Combining engineering practice,for the technical and economic analysis of the project,The total investment of 300000 yuan, wastewater management cost II

印染废水(水解酸化接触氧化)讲解

------------------------------------------------------------精品文档-------------------------------------------------------- 水解酸化-接触氧化-混凝-脱色XX有限公司 印染废水处理工程设计方案 广州益方田园环保科技开发有限公司 广东工业大学校办产业总公司 二零零三年四月

天印染废水处理吨/工程名称:4000 设计阶段:方案设计021001 工程编号: 方案设计目录 工程概况一、 设计水质、水量及排放标准二、 设计依据三、 设计范围四、设计原则五、方案设计和工艺流程简介六、 主要处理设施及设计参数七、 污水处理站总体设计八、工艺流程图及平面布置图九、 2 一、工程概况 印染混合废水具有如下特点:①含活性染料废水,色度高,难脱色;

②水质复杂,有机物含量高,耗氧量大,悬浮物多;③受原料、季节、市场需求等变化的影响,使水质水量变化很大。目前设计日排3/d。废水量约为4000m 为了保护我们的生存环境,保护我们的有限水资源,同时也为了使企业能更好地生存和持续地发展,为创造更好的环境效益和社会效益,严格执行国家环保‘三同时'制度,继续保持良好的企业3,利用技术先4000m形象,公司拟建废水处理站一座。日处理废水量进,运行、维护简单,效果稳定的处理系统消减污染,以使废水达到国家及珠海市环保要求排放。 受厂家委托,我公司对该废水治理进行设计,本着实事求是、真诚合作的原则,我公司根据同类废水的治理经验,在经过大量的文献参阅、专业技术人员的认真探讨后拟成了本设计方案,恭请各级领导和专家审查并提出宝贵意见,希望能够贡献我们的技术和力量。 二、设计水质水量及排放标准 (一)、水质: 按同类型企业生产废水情况估计,本方案设计综合废水 水质主要指标为: CODcr:600mg/l~1000mg/l BOD:200mg/l~250mg/l 5 3 pH:6.0~10.0 SS:150~300mg/l

污水处理厌氧部分

废水厌氧生物处理 生物处理原理 废水生物处理有“好氧生物”处理、“厌氧生物”处理或“好氧生物”加“厌氧生物”处理。“好氧生物处理”是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;“厌氧生物处理“是在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 一、厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。 (一)厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

2、三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类; 上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一

水解酸化池工艺详解

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。在考虑到后续好氧处理的能耗问题,水解酸化就主要用于低浓度难降解废水的预处理了。

相关文档
最新文档