高一下学期生物期末考试知识要点复习

高一下学期生物期末考试知识要点复习
高一下学期生物期末考试知识要点复习

第4章:细胞的物质输入和输出第1节:物质跨膜运输的实例

⒈细胞和环境进行物质交换必须经过细胞膜;

⒉发生渗透作用的两个条件:必须具有半透膜;半透膜两侧溶液具有浓度差;

⒊动物细胞吸水或失水的多少取决于:细胞质和外界溶液的浓度差,差值越大,吸水或失水越多; ⒋成熟的植物细胞是渗透系统:半透膜:原生质层(细胞膜,细胞质,液泡膜);浓度差:细胞液和

外界溶液有浓度差;

⒌发生质壁分离及质壁分离复原的细胞是:活的,成熟的植物细胞; ⒍质壁分离的本质:细胞壁和原生质层的分离;

⒎质壁分离的原因:细胞壁的伸缩性比原生质层的伸缩性小;

⒏当细胞液浓度小于外界溶液浓度时,细胞通过渗透作用失水发生质壁分离; ⒐当细胞液浓度大于外界溶液浓度时,细胞通过渗透作用吸水,发生质壁分离复原; ⒑质壁分离状态下:细胞液浓度增大,颜色加深,液泡体积变小;

⒒质壁分离状态下:细胞壁和原生质层(细胞膜)间充满外界溶液(因为细胞壁是全透性的); ⒓若外界溶液的溶质分子可以通过细胞膜进入细胞,则在该溶液中发生了质壁分离的细胞会发生质壁分离的自动复原;

⒔观察质壁分离及质壁分离复原实验中,外界溶液的浓度不能太高,否则细胞失水过多失活,无法看到质壁分离的复原;

第2节:生物膜的流动镶嵌模型

⒈19世纪末欧文顿提出:膜是由脂质组成的; ⒉20世纪初:膜的主要成分是脂质和蛋白质; ⒊1925年,荷兰科学家提出:细胞膜中的脂质分子必然排列为连续的两层;

⒋1959年罗伯特森提出:所有生物膜都是由蛋白质—脂质—蛋白质构成的静态统一结构; ⒌1970年通过细胞融合实验证明了:细胞膜具有流动性;

⒍1972年桑格和尼克森提出的流动镶嵌模型为大多数人所接受。其基本内容包括:

①磷脂双分子层构成膜的基本支架(磷脂双分子层可以运动); ②蛋白质分子镶嵌或横跨在磷脂双分子层上(大多数的蛋白质分子可以运动); ③细胞膜外表有一层由细胞膜上的蛋白质和糖类结合形成的糖蛋白,也做糖被;

④细胞膜的功能特性:选择透过性; ⑤细胞膜的结构特点:具有一定的流动性;

第3节:物质跨膜运输的方式

⒈自由扩散①特点:从高浓度向低浓度顺浓度梯度扩散;不需要细胞膜上的载体蛋白协助;不消耗能量;②实例:氧气(O2)、二氧化碳(CO2),水(H2O),乙醇,乙二醇,甘油,苯,尿素,脂肪酸,胆固醇;

⒉协助扩散①特点:从高浓度向低浓度顺浓度梯度扩散;需要细胞膜上的载体蛋白协助;不消耗能量;②实例:葡萄糖进入红细胞; ⒊被动运输:自由扩散和协助扩散统称为被动运输; ⒋被动运输吸收物质时,不需要消耗能量,但需要膜两侧的浓度差,浓度差是动力,浓度差越大,吸收物质越容易;

⒌主动运输①特点:从低浓度向低高浓度逆浓度梯度扩散;需要细胞膜上的载体蛋白协助;消耗能量;②实例:葡萄糖,氨基酸,核苷酸,无机盐离子等;③意义:保证了活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物质;

⒍大分子或颗粒状物质进出细胞的方式:胞吞或胞吐(依赖于细胞膜的流动性,消耗能量,不需要载体蛋白的参与);

⒎和物质跨膜运输过程中载体的形成有关的细胞器:核糖体;和物质跨膜运输过程中消耗的能量有关的细胞器:线粒体;

第5章:细胞的能量供应和利用第1节:降低化学反应活化能的酶

⒈细胞中每时每刻都进行着许多化学反应,统称为细胞代谢;

⒉比较过氧化氢在不同条件下的分解实验中要用新鲜的肝脏研磨液,新鲜时酶活性高,研磨有利于过氧化氢酶的释放;

⒊变量:实验过程中可以变化的因素;①自变量:人为改变的变量; ②因变量:随着自变量的变化而变化的变量;

③对照实验:除了一个因素外,其余因素都保持不变的实验叫对照实验; ⒋酶能加快反应速率的原因:能降低反应的活化能;

⒌同无机催化剂相比,酶降低活化能的作用更显著,因而催化效率更高; ⒍酶的本质:绝大部分的酶是蛋白质,极少数的酶是RNA(称核酶);

⒎酶的定义:酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质,少量的酶是RNA;

⒏酶的特性:①酶具有高效性(酶的催化效率大约是无机催化剂的107—1013倍); ②酶具有专一性(每种酶只能催化一种或一类化学反应);

③酶的作用条件较温和:在最适温度和pH条件下,酶的活性。温度和pH 偏高或偏低,酶活性都会明显降低;

④高温,强酸,强碱均会使酶变性失活(蛋白质的空间结构破坏)而失去催化活性; ⑤胃蛋白酶最适pH为1.5

第2节:细胞的能量“通货”——ATP

⒈直接能源物质:ATP;主要能源物质:糖类;主要储能物质:脂肪; ⒉ATP 的名称:三磷酸腺苷; ⒊ATP的结构简式:A—P~P~P(A:腺苷;P:磷酸;~:高能磷酸键);

⒋1个ATP分子中含有:A:1个;P:3个;~:2个; ⒌ADP:二磷酸腺苷;Pi:磷酸; ⒍ATP中远离腺苷(A)的高能磷酸键容易断裂,发生ATP的水解,形成ADP和Pi,同时释放出大量的能量;细胞内的ATP和ADP间的相互转化不是可逆反应(物质可逆,能量不可逆);ATP在细胞内的含量很少,但和ADP之间的转化非常的迅速,其含量处于动态平衡之中,ATP含量降为0即意味着细胞的死亡;

⒎ADP转化成ATP时所需能量的主要来源:在动物、人、真菌和大多数细菌细胞内主要来自呼吸作用;在绿色植物细胞内来自光合作用和呼吸作用;

⒏ATP断裂高能磷酸键释放的化学能能迅速转化为光能,电能,渗透能,热能,机械能供细胞代谢直接利用;

第3节:ATP的重要来源——细胞呼吸(重点内容)

⒈有氧呼吸①有氧呼吸是高等动植物细胞呼吸的主要形式; ②主要场所:线粒体; ③最常利用的物质:葡萄糖; ④过程:酶

C6H12O6—→2CH3COCOOH + 4[H] + 少量能量(场所在细胞质基质) 酶

2CH3COCOOH + 6H2O—→6CO2 + 20[H] + 少量能量(场所在线粒体基质)

24[H] + 6O2—→12H2O + 大量能量(场所在线粒体内膜) ⑤总反应式:酶

C6H12O6 + 6*O2 + 6H2O—→ 6 CO2 + 12H2*O + 能量(2870KJ,转移至ATP能量1161KJ,生成ATP38mol);

注意:产物H2O中的O全部来自O2,H来自C6H12O6和H2O;CO2中的O来自C6H12O6和H2O,C来自C6H12O6;

⑥相关小结:Ⅰ有氧呼吸CO2的生成在第二阶段,O2参与反应在第三阶段; Ⅱ有氧呼吸大量能量的释放在第三阶段;

Ⅲ有氧呼吸H2O参与反应在第二阶段,H2O的生成在第三阶段; ⒉无氧呼吸①场所:细胞质基质;最常利用的物质:葡萄糖; ②过程:酶

C6H12O6—→2CH3COCOOH + 4[H] + 少量能量(场所在细胞质基质) 酶

2CH3COCOOH + 4[H]—→2C3H6O3 + 少量能量酶

2CH3COCOOH + 4[H]—→2CH3CH2OH + 2CO2 + 少量能量③总反应式:酶

C6H12O6 —→2CH3CH2OH + 2CO2 + 能量(212KJ,转移至ATP能量61.08KJ,生成ATP2mol) 或酶

C6H12O6—→2C3H6O3 + 能量(196.65KJ,转移至ATP能量61.08KJ,生成ATP2mol) ⒊无氧呼吸产生酒精的典型生物类群:酵母菌和绿色植物;

⒋无氧呼吸产生乳酸的典型生物类群:人和高等动物及马铃薯的块茎,甜菜的块根等; ⒌在探究酵母菌细胞呼吸的方式实验中,CO2和

CH3CH2OH的检测

①CO2 + 澄清石灰水—→浑浊;CO2 + 溴麝香草酚蓝—→黄色(颜色变化过程:蓝色→绿色→黄色); ②CH3CH2OH + 重铬酸钾+ H+→灰绿色(颜色变化过程:橙色→灰绿色); ③酵母菌是单细胞真菌,在有氧和无氧的条件下都能生存,属于兼性厌氧菌

相关主题
相关文档
最新文档