雷达跟踪测角技术的研究

雷达跟踪测角技术的研究
雷达跟踪测角技术的研究

雷达跟踪测角技术的研究

——单脉冲跟踪测角的原理及仿真1.引言

雷达测角的物理基础是电波在均匀介质中传播的直线性和雷达天线的方向性。为了快速地提供目标的精确值,要采用自动测角的方法。当目标方向偏离天线轴线(即出现了误差角{ EMBED Equation.KSEE3 \* MERGEFORMAT | )时,就能产生一误差电压,误差电压的大小正比于误差角,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标。本文主要研究单脉冲雷达角度跟踪的原理及仿真,单脉冲测角获得目标信息的时间可以很短,理论上只需要分析一个回波脉冲就可以确定角误差,可以获得比圆锥扫描高很多的精度。

2.单脉冲雷达角跟踪系统的组成及基本工作原理

2.1单脉冲雷达角跟踪系统的基本组成

单脉冲雷达角跟踪系统一般由扫描天线以及信号变换(混频、中放等)、相位检波和伺服系统组成,其系统的组成如图l所示。其中和差网络完成和、差处理,形成和差波束。信号变换用以变换信号参数之间的相位关系。相位检波形成角跟踪误差信号。伺服系统根据角跟踪误差信号控制天线的转动。

基本工作原理为:天线接收到的回波信号经“和差网络”后形成包含目标角误差信号的高频信号,经“信号变换”(包括混频、中放等)后送至“相位检波”电路,检出角误差信号。最后,伺服系统控制天线转动,直到角误差为0(天线电轴对准目标)。

图1 角度跟踪系统组成框图

2.2和差网络

2.2.1和差比较器

和差比较器是单脉冲雷达的重要关键部件,它完成和、差处理,形成和、差波束。和差比较器用得较多的是双T接头,如图2(a)所示。它有4个端口Σ(和)端、Δ(差)端、1端和2端。假定4个端都是匹配的,则从Σ端输人信号时,1、2端使输出等幅同相信号,Δ(差)无输出:若从1、2端输人同相信号时,则Δ(差)端输出两者的差信号,Σ端输出和信号。

图2 双T接头及和差比较器示意图

和差比较器的示意图如图2(b)所示,1到Σ与2到Σ均要经过/4,因此在Σ端同相相加:而l端到△端经过/4,2端到凸端经过3/4,两者相差/2,因此在△端反相相加。和差比较器的1、2端与形成两个波束的两相邻馈源1、2相连。发射时,从发射机来的信号加到和差比较器的Σ端,故1、2端输出等幅同相信号,两个馈源被同相激励,并辐射出相同的功率,结果两波束在空间各点产生的场强同

相相加,形成发射和波束。

2.2.2和、差波束

雷达天线在一个角平面内有两个部分重叠的波束。振幅和差单脉冲雷达取得角误差信号的基本方法是将这两个波束同时收到的信号进行和、差处理,分别得到和信、差信号。图3(b)和(c)所示为与和、差信号相对应的和、差波束。

差波束用于测角,和波束用于发射、观察和测距,和波束信号还用作相位比较的基准。

图3 和、差波束

2.3相位检波器和角误差信号的变换

和差比较器△端输出的高频角误差信号还不能直接来控制天线跟踪目标,必须把它转换成直流误差电压,其大小应与高频角误差信号的振幅成比例,极性由高频角误差信号的相位来决定。这一变换由相位检波器来完成,将和、差信号通过各自的接收通道,经变频、中放后一起加到相位检波器上进行相位检波。差波束用于测角,和波束用于发射、观察和测距,和信号作为相位检波器的基准信号。

在和差比较器的和端,完成两信号的同相相加,输出和信号。设和信号为,其振幅为两信号振幅之和。假定两个波束的方向性函数完全相同,设为,两波束接收到的信号电压振幅为,且到达和差比较器端时保持不变,两波束相对天线轴线的偏角为,则对于方向的目标,和信号的振幅表达式如下:

式中,=为接收和束方向性函数,与发射和波束的方向性函数完全相同。

在和差比较器的差端,两信号反相相加, 输出差信号,设为。若到达端的两信号用表示,它们的振幅仍为,相位相反, 则差信号的振幅为:

式中=。

现假定目标的误差角为,则差信号振幅为,在跟踪状态,很小,将展开成泰勒级数并忽略高次项, 则:

因很小,上式中。

由上式可知,在一定的误差范围内,差信号的振幅与误差角成正比,相位与中的强者相同。由于在端相位相反,故目标偏向不同,的相位差180°。因此,端输出差信号的振幅大小表明目标误差角的大小,其相位则表示目标偏离天轴线的方向。

图4 角鉴别特性曲线

3.实验仿真

和差器前面两个输入信号的高频相移和幅度不平衡,和差器后面和差通道引入的中频相移和中频幅度不平衡,导致和、差双通道幅相特性不一致,从而造成测角误差。在下面的仿真中,不考虑和差通道幅度相位完全相同,利用matlab 编写程序仿真得到角鉴频特性曲线,u为定向斜率:

%matlab程序

k=0.730;

d=0.160;

k_pd=1;

A=1;

labda=2*pi/k;

theta_3db=1.2*labda/d;%天线波束宽度

theta_s=theta_3db/3;%相对等场强方向的波束倾斜角

theta_t=-2*theta_3db:0.2:2*theta_3db;

fi=k*d*sin(theta_t);

%g=0.5*sin(k*0.5*d.*theta)/(k*0.5*d.*theta);%天线方向图

g1=0.5*sin(k*0.5*d*(theta_s-theta_t))./(k*0.5*d*(theta_s-theta_t));

g2=0.5*sin(k*0.5*d*(theta_s+theta_t))./(k*0.5*d*(theta_s+ theta_t));

u=3;

ess=u^2*k_pd*(g1.^2-g2.^2)./((1+u*(g1+g2)).^2);%差信号

plot(theta_t/theta_3db,ess,'r-')

grid on

hold on

u=8;

ess=u^2*k_pd*(g1.^2-g2.^2)./((1+u*(g1+g2)).^2); plot(theta_t/theta_3db,ess)

axis([-1.1 1.1 -1 1]);

局部放大图

地质雷达测量技术

地质雷达测量技术 内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。 关键词:地质雷达测量技术 1 前言 地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。 地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。 2 地质雷达技术原理 地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图 3 雷达的使用特性 3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。 3.2 操作简便,使用者经过2-3天培训就能掌握。 探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。 3.3 测量精度高,测试速度快。在车载工作方式下,测试速度大大提高,当车速达80Km/h时,系统仍能正常工作。 3.4 收、发天线离地面的探测高度可以针对不同的埋地目标进行调整,以达到最佳的探测能力和探测分辨率:同时还可以调节收发天线之间的距离寻找系统工作的最好效果。 3.5 测点密度不受限制,便于点测和普查。 工作方式的灵活使得用户可以连续普查某一段工程的质量,也可随时对异常区域进行重点探测 和分析。 3.6 便于维护与保养。 本系统采用了结构化设计,对于使用不当或其它原因造成的质量问题,简单地更换接插件即可保证雷达的正常工作。 3.7 可扩充配置。 通过选择相应的发射源和收发天线,再配上相应的处理软件,就可以在中、深层探测范围,如地下管线、地基空洞、钢筋分布、堤坝密实程度等方面扩大应用。 4 地质雷达在检测隧道衬砌质量中的应用 新建隧道施工中为确保隧道衬砌质量,采用传统“钻、看”的检测方法显然已不能满足“多断面、全方位”的检测要求,业主和施工单位都在探索采用无损检测技术有效监控和确保隧道衬砌质量的新方法。 隧道衬砌的质量检测包括1)隧道衬砌厚度,2)隧道衬砌背后未回填的空区,3)隧道衬砌的密实程度,4)施工时坍方位置及坍方的处理情况。5)有时还可检测围岩中地下水向隧道侵入的位置。4.1 工作方法

地表雷达检测技术方案

地表雷达检测技术 方案 贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间

地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 3月15日 目录 1 工程概况 ........................................................................... 错误!未定义书签。 2 探测项目和方法................................................................ 错误!未定义书签。 3 编制依据 ........................................................................... 错误!未定义书签。 4 雷达探测的基本原理........................................................ 错误!未定义书签。

5 探测流程 ........................................................................... 错误!未定义书签。 6 检测仪器和设备................................................................ 错误!未定义书签。 7 需有关单位配合的事项.................................................... 错误!未定义书签。 7 质量和安全保证措施........................................................ 错误!未定义书签。 8 预期成果 ........................................................................... 错误!未定义书签。 9 本工程项目安排................................................................ 错误!未定义书签。

基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc

此文档下载后即可编辑 随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日

大连理工大学Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

地质雷达探测地下管线报告格式

地下管线探测报告 编写: 检测: 审核: 批准: ****有限公司 二〇一九年七月十八日

地下管线探测报告 一、任务概况 1.1作业目的 为满足****工程施工需要,****有限公司于****有限公司年7月07日对该项目地下综合管线进行物探工作。 1.2测区概况 项目位于****市****有限公司区,物探位置参如图1.1所示。 图1.1工程场地地理位置图 二、管线探测 探测范围为以委托方指定的范围为界。 2.1管线的调查 管线的调查主要针对架空管线及明显管线点(包括接线箱、变压箱、变压器、消防栓、人孔井、阀门、窨井、仪表井等附属设施)进行。 ①明显管线点的各种数据均应直接打开井,用检验合格的钢尺量测,精

确到厘米。实际作业时按规程及甲方提供表格所列各类管线调查内容,参考各专业部门提供的资料,到实地调查核实,查清各类被调查管线的类型、管径、材质、埋深、起止、走向以及同类管线的连接关系,以便进行仪器探测。在调查量取时首先认真仔细量读,确保调查成果的准确性。其次,管线调查时应注意量取各类管线的偏距,即管道中心线至井盖中心的水平偏移距。 ②在实地调查中应邀请管线权属单位的管线管理人员、管线的规划、设计、施工人员和当地居民等熟悉管线情况的人员协助。 2.2地下管线探测原理 金属管线探测采用电磁感应原理。地下金属管线在发射机发出的电磁场的激励下产生感应电流,该感应电流又在管线的周围产生二次感应磁场,通过接收机接收该二次磁场来确定地下管线的位置与深度。 发射机现场工作有三种方式:第一种采用偶极电磁感应法,探测时将发射机的发射线圈垂直地放在地表,或水平放置于管线的正上方;第二种是采用直接感应法,探测时用夹钳夹住管线,发射机通过夹钳直接激发管线;第三种是采用充电法,直接将发射机的一极接在管线的一端,另一极接在待测管线的另一端或较远处的大地上,使发射电流直接流过被测管线。直接感应法和充电法应具备管线露头的条件,其中充电法只能用于给水、热力等管线外露且不带电的管线,多用于管线的追踪;偶极电磁感应法适用范围较广,既可应用于已知管线的追踪,也可以进行未知管线的普查。 接收机接收电磁场有两种方式:一种是采用垂直线圈接收,该接收方法在地下管线的正上方信号最大,离开管线信号逐渐减小,极大值点与半极大值点的水平距离x为管线中心线的埋深h,如图3.1所示。另一种是采用水平线圈接收,该接收方法在地下管线的正上方信号最小,在管线两侧各有一个

雷达自动跟踪技术研究

31 自动跟踪 本章介绍了跟踪检测目标的技术。使用雷达硬件和雷达信号处理实现跟踪,从而形成一个闭环系统。单目标跟踪(STT)和边跟踪边扫描(TWS)模式(在第2章中介绍)被检验。在我们考虑跟踪测量和方法之前,我们需要定义一些术语。 估计,准确性和精确度通常用于描述跟踪的不同方面。估算应用于任何参数的值,该参数的值(1)仅在与腐蚀干扰相结合时才能测量,例如热噪声(图31-1);(2)不能直接测量,例如基于一系列距离测量的距离速率。 根据该定义,雷达系统测量或计算的每个参数,无论多么精确,都是估计值。 接下来,区分两个重要参数:准确度和精度。通常,两者都指数量的测量,其在跟踪中包括目标参数,例如真实范围,速度和方位。因此,测量值表示雷达系统对目标的真实参数的估计。 准确度表示测量值与真实值的接近程度,而精度表示在同一参数的多个测量值中存在多少可变性。它们共同构成了雷达系统对真实目标参数进行估算的基础。图31-2显示了一个示例,其中准确度和精度可以看作非常不同并且(有时)彼此独立。跟踪雷达的目标是具有高准确度和高精度。

跟踪中使用的另一个术语是判别式,其量化测量函数的校准。它通常由执行测量的硬件或软件输出与跟踪误差的真实值的关系图表示(图31-3)。曲线的线性部分的斜率是判别式并且确定测量的灵敏度。通常,斜率随着信噪比的增加而增加。 判别式的一个重要特征是它们通常是归一化的,因此无量纲。因此,不一定需要精确测量电压或功率电平。此外,除了信噪比的影响之外,跟踪误差的测量值不随信号强度而变化。它们与目标的大小,范围,机动和雷达截面(RCS)波动无关。如果需要,可以通过将判别式乘以预先计算的常数来给出判别式。在整个跟踪过程中使用判别式,其目的是改进目标测量参数的估计,例如距离,多普勒,仰角和方位角。 31.1 单目标跟踪 单目标跟踪可提供有关目标位置,速度和加速度的连续且准确的当

红外_雷达协同探测跟踪模型

第35卷,增刊红外与激光工程2006年10月V ol.35 Supplement Infrared and Laser Engineering Oct.2006 红外、雷达协同探测跟踪模型 贺有 (炮兵学院南京分院,江苏南京 211132) 摘要:雷达一直是战场进行目标跟踪识别的重要传感器,但是由于雷达在工作时要向空中辐射大功率电磁波,因而易遭受“电子对抗、反辐射导弹、隐身飞机和超低空突防”这“四大威胁”的攻击。和雷达不同,红外探测系统通过接收目标辐射源的电磁辐射进行探测和定位,因而不易被侦察或定位,具有强的抗干扰能力;此外,红外系统还可以获得目标的图像特征可进行目标识别。红外、雷达配合使用可成为相互独立又彼此补充的探测跟踪手段,本文中给出了红外探测系统与雷达协同探测的目标跟踪仿真模型。 关键词:雷达;目标跟踪;红外图像;仿真模型 中图分类号:TN219 文献标识码:A 文章编号:1007-2276(2006)增D-0306-06 Simulation model for combinatorial detecting and tracking process of IR and radar HE You (Nanjing Artillery Academy, Nanjing 211132, China) Abstract: IR sensors detecting in coordination with radar is a new trend in early-warning detecting systems. Radar and IR sensor are limited in respective aspects, however, the combination utilization of radar and IR sensor can make significant difference in the detecting capability. Moreover, a better precision and improved survivability could be derived for such a combination. The simulation model for the detecting and tracking process of such a combination is given. Key words: Radar; Target tracking; Infrared image; Simulation model 0引言 有源雷达一直是战场进行目标跟踪识别的重要传感器,但是由于雷达在工作时要向空中辐射大功率电磁波,因而易遭受“电子对抗、反辐射导弹、隐身飞机和超低空突防”这“四大威胁”的攻击。和雷达不同,红外探测通过接收目标辐射源的电磁辐射进行探测和定位,因而不易被侦察或定位,具有强的抗干扰能力;此外,红外系统还可以获得目标的图像特征可进行目标识别。红外已成为重要的被动探测手段。但是,红外也有其缺点,而红外、雷达配合使用可成为相互独立又彼此补充的探测跟踪手段。红外传感器的正确使用, 收稿日期:2006-08-14 作者简介:贺有(1965-),男,山西运城人,副教授,主要从事情报侦察指挥方面的研究。

雷达机动目标跟踪技术研究

1 绪论 1.1 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 1.2 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

地质雷达二衬检测施工细则

雷达检测施工细则 为保证本项目部在本次雷达检测过程中能够及时准确地完成任务,我检测组特针对雷达检测施工工作做出以下细则,本细则自即日期开始实施,要求全部检测人员认真、严格执行。 一、前期准备工作 (一)雷达检测组技术负责人制定雷达检测工作进度表,下发全体技术人员,要求技术人员按此进度表制定详细工作计划,以便于雷达检测组能及时地向施工方提前发出雷达检测通知,便于施工单位提前做好雷达检测的必要准备工作,以保证施工单位调整施工进度,且利于我方及时、高效地完成雷达检测工作。(二)雷达检测组技术负责人要根据检测目的计算好仪器的参数设置,以保证能在现场采集到全面、高效的数据记录;布线方式可根据掌子面地质情况及施工条件,现场设计合理的采集测线。 (三)雷达检测组技术负责人在出发前进行仪器的全面检查,避免由人为因素造成工地采集过程中出现采集中断。 二、现场采集工作 (一)雷达采集过程中要求有至少两名专业技术人员在场,以保证仪器操作、天线布设及仪器采集过程中的维护工作,同时在采集过程中要做好仪器的保护工作,防止人为或落石等造成仪器的损坏情况发生。 (二)雷达检测数据采集现场保证至少一人为专业地质描述人员,按要求做好掌子面及周边围岩的描述。 三、雷达检测组描述人员管理 (一)雷达检测组描述人员做好现场记录,为能准确记录现场地质情况,要求描述人员带必要的工具(地质锤、罗盘、放大镜、皮尺、花杆)。 (二)描述人员要对周边围岩进行详细的描述,对于大于25cm的裂隙或节理一定要进行详细描述(包括长度、走向、宽度、数量),对其可能的延伸方向要进行三维推断描述。要求描述信息准确,有效,并在野外做出描述草图,以备后期的资料整理与存档。 (三)雷达检测描述人员要对记录进行全面记载,包括: 1、断面号,要求为简单易记,能反映断面所处隧道的准确位置。 2、里程号,要求精确到0.1m (如XX检测的位置为K66+000.3)。 3、面积,要求有整体的把握,并对其做出准备合理的描述,包括影响深度、范围、影响消失边界。 (四)雷达检测描述人员也要准确记录已支护拱顶及周边变形及渗水情况,做好野外描述,要求描述语言要严格按规范中语言对地质情况进行客观描述,对有疑义处必须进行必要的咨询,对确难定义处要求争取多人意见,最终得出结论,并做好记录。 (五)雷达检测采集人员在现场采集过程中要及时做好雷达记录与现场地质情况的对比,以便于为后期的资料处理过程中提供参考。 (六)雷达检测采集人员要做好现场的班报记录(包括检测位置、文件名、仪器

隧道衬砌地质雷达无损检测技术

. . . . 隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H: H V T =??2(1)

式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性

地质雷达合同新doc

密级: 合同编号:科研(2005-7)号中铁二十四局福建铁路建设有限公司科研 项目合同 项目名称:应用地质雷达法检测混凝土结构物强度及缺陷位置 的试验研究 负责单位:福州铁建工程质量检测有限公司 课题负责人:王兴照 起止年限:2005年1月至2005年12月 中铁二十四局集团福建铁路建设有限公司 2005年9月10日

一、项目简要说明: 通过本项目研究,找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系,利用不同介质的物性差异所引起波的反射来判定被测目标情况,进行混凝土强度及缺陷位置的判定。 二、主要研究内容及技术关键: 1、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系; 2、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土缺陷位置(H)之间的相关关系,即H=f(ε,ΔT); 3、混凝土结构物缺陷的定性判识。 三、达到的目标、技术经济指标和成果形成: 1、通过本项目研究,研究在一般测试环境中,地质雷达法测评混凝土强度等级范围的方法。 2、通过本项目研究,研究在不同条件下,寻找相对介电常数ε和电磁波的传播时间ΔT 及缺陷厚度H之间的关系规律。 3、通过模拟试验,研究不同预埋物及缺陷在地质雷达图像中判识。 4、形成《地质雷达检测混凝土结构物作业指导书》一份(用于指导操作人员),编制《地质雷达检测混凝土结构物方法介绍》一份(用于科普介绍和技术交流)。 成立QC小组,组织技术攻关,形成地质雷达检测混凝土结构物的攻关QC成果一份,参加公司QC成果发布。总结形成科技论文一篇。 四、采用的研究和试验方法:

地质雷达探测技术在路基病害检测中的应用继续教育答案

第1题 由于松散体部充填不同性状的土体排列无规律,因此松散体部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:D 题目分数:5 此题得分:0.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:D 题目分数:5 此题得分:0.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米围的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

公路水运继续教育---地质雷达探测技术在路基病害检测中的应用

第1题 由于松散体内部充填不同性状的土体排列无规律,因此松散体内部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞内部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米范围内的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。 0 引言 目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。 1用扩展卡尔曼滤波算法预测机动目标轨迹 首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况: 其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。 然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为: 式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。 由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

地质雷达探测技术说明C.doc

减免税进口仪器、设备说明 今有中国地质大学(北京)地球物理与信息技术学院进口Scintrex公司CG-5型重力仪一套。 一、仪器主要部分 1.灵敏系统:主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。灵敏系统的位移方式属角位移。 2.测量系统:由测读装置、测程调节装置及纵、横水准器等组成,测量出弹簧长度变化后经过电子系统转化成电流的大小,从而数字化将测量值显示到主机显示屏上。 二、仪器性能 相比较其他传统金属弹簧重力仪而言Scintrex公司生产的CG-5型重力仪不容易产生掉格现象从而保证了更高的测量精度和稳定性: (一)石英材料的滞后作用比金属材料小。对于悬挂承重的石英弹簧来说,一旦去掉承重,弹簧就会精确地恢复原状,而一个金属弹簧则会保持一定的记忆。Scintrex所制造的石英传感器是整体铸造,包括石英弹簧及其悬挂连接点是一个整体结构,它的滞后作用比类似的金属部件要小许多。

(二)传感器的所有联结点,象悬挂弹簧的支点和石英弹簧本身焊成一个整体。相反,金属弹簧重力仪的各种功能部件都是通过机械连接装配在一起的。所以整体熔凝的石英传感器不会出现部件之间的滑移或内部变形。这是使石英传感器不易产生掉格的又一个重要原因,也使它很少出现测试数据混乱的现象。 (三)石英弹簧比金属弹簧具有比较大的温度系数,并且石英弹簧传感器是垂直悬挂式弹簧,对于相同的重力值,它的弹簧伸长比金属弹簧重力仪中的金属弹簧小。三、仪器工作原理 Scintrex公司CG-5型重力仪采用无静电熔凝石英材料做为传感器,是基于一种垂直悬挂式石英弹簧,弹簧末端的重锤上悬挂一根测量弹簧。当作用在重锤上的重力发生变化时,可以伸缩测量弹簧,使摆杆改变原来的静平衡位置。这样通过测量弹簧的伸缩量来测定重力的变化。重力变化同弹簧的伸缩量成线性关系,从而勘探地表重力场变化的先进仪器。 通过测定地表各点上的重力加速度的值,对地下介质和地质体的分布做出推断。 四、仪器技术参数 传感器类型:无静电熔凝石英 测量范围:8000mGal,不用重置 自动修正:潮汐、仪器倾斜、温度、噪声、地震噪声 尺寸:30cmX21cmX22cm 重量(含电池):8kg 电池容量:2X6Ah(10.78V) 袖珍锂电池 功耗:25°C时4.5W 工作温度:-40~+45°C 环境温度修正:通常0.2microGal/°C 大气压力修正:通常0.15microGal/kPa 磁场修正:通常1microGal/Gauss(微伽/高斯) 五、仪器在教学中的应用 该仪器是我院“地球物理学”专业和“地球探测与信息技术”专业勘探地质构造、

地质雷达操作规程

地质雷达法检测操作规程 1、地质雷达法适用范围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

相关文档
最新文档