烧结烟气中二氧化硫的脱除技术

烧结烟气中二氧化硫的脱除技术
烧结烟气中二氧化硫的脱除技术

烧结烟气中二氧化硫的脱除技术

摘要:烧结烟气脱硫是钢铁行业污染减排的重点,减排形势日趋严峻。而烧结工序是二氧化硫的主要排放源,因此也是烟气脱硫技术研发的主要领域。本文主要介绍了石灰-石膏法、循环流化床法、密相干塔法三种脱硫技术原理及优缺点,并论述了烧结烟气脱硫技术的选定原则与发展方向。

关键字:烧结烟气,二氧化硫,脱硫

Abstract:Sintering gas desulfurization is emphasized in iron and steel industry.SO2 emission reduction was serious. The main origin of the sulfur dioxide was sinter process, so it is the main research field of flue gas desulfurization technology.This paper mainly introduces the process principles, advantage and disadvantage of some sintering gas desulphurization technologies such as limestone/lime-plaster, CFB, dense flow absorber.And the select principle and development trend of sintering flue gas desulphurization technology are demonstrated.

Key words:sintering flue gas,sulfur dioxide,desulfurization

1 引言

众所周知钢铁企业作为国家的支柱性产业,为国家建设做出了突出的贡献。但同时其产生的污染也是不可忽视的,钢铁行业在其生产和加工过程中消耗大量的燃料和矿石,同时排放出大量的空气污染物。统计表明我国钢铁行业SO2排放量仅次于电力行业居第2位。钢铁生产包括焦化、烧结、炼铁和轧钢等工艺过程,其中烧结工序是钢铁生产中SO2减排的重点工序。烧结过程排放的SO2占钢铁工业年排放量的60%以上[1]。因此,烧结烟气脱硫已成为SO2污染控制的重点。目前国家已经从排放总量与排放浓度两个方面对烧结烟气SO2排放进行了控制,标准非常严格,无论是现有企业还是新建企业都应建设烟气脱硫装置,才能达到SO2排放国家标准。

由于烧结烟气具有自身的特殊性,烧结烟气脱硫技术发展缓慢。目前世界上

烧结烟气脱硫应用的主要技术有石灰石-石膏法、硫酸铵法、旋转喷雾干法、循环流化床半干法等[2]。我国在这方面已投入运行的烧结烟气脱硫装置采用的主要工艺有石灰-石膏法、密相干塔法、循环流化床法半干法、ENS半干法等。但投入运行中还存在诸多问题需要进一步研究改善。

2 烧结烟气的来源及特点

2.1 烧结烟气的来源

以攀钢烧结原料来代表说明,攀钢炼铁厂烧结机烧结混合料由29种原料组成,其中铁精矿5种、富矿9种、熔剂6种、燃料3种、辅料4种,其它铁料2种[3]。其组分见表2.1

表2.1烧结混合料组成及原料含硫量

名称占烧结混合料质量百分(%)含硫量(%)

精矿粉58.9 0.67

石灰石粉9.0 0.038

澳矿 4.8 0.11

外购白灰 4.5 —

焦炭粉 4.3 0.51

高加粉 4.3 0.51

无烟煤粉 2.8 0.52

钢渣粉 2.2 0.27

中加粉 1.6 0.082 由表2.1中可以看出钢铁企业烧结烟气中SO2主要来源于含硫量较高的铁精矿,其他原料如焦炭粉、高加粉也对烟气中SO2的产生有一定贡献。除了表中的来源燃料中硫的氧化反应也会产生不少的SO2。除了铁矿石和固体燃料中硫含量的影响,烧结过程中SO2的产生还受铁矿石粒度和品位、烧结矿碱度和添加物性质、燃料及返矿的用量的影响。可见从源头控制使用含硫量低的铁矿石和燃料能

有效的减少SO2的产生,但是由于受到资源、成本等多种条件的限制。就目前原料短缺的现状来看,此法难以全面推广应用。

2.2 烧结烟气的特点

①产生的烟气量大:每生产1 t烧结矿大约产生4000~6000 m3烟气。

②不稳定性:由于烧结工况波动烟气量、烟气温度、SO2浓度等经常发生变化阵发性强。

③烟气温度较高:随烧结工况变化烟气温度一般在120~180℃。

④含湿量大。为了提高烧结料层的透气性混合料在烧结前加水制粒,因此,致使烟气中含湿量较大,按体积比计算水分含量一般在10%左右。

⑤烟气粉尘浓度高:粉尘主要以铁及其化合物为主,由于使用不同的原料还可能含有微量重金属元素。

⑥含有害气体:烟气中含有一定量的SOx、NOx、HCl和HF等,它们遇水后将形成酸雨腐蚀金属构件。此外,还含有对人体健康危害极大的二噁英和呋喃等[4]。

⑦含SO2浓度相对较低:随原料硫负荷等因素的变化而变化国内企业一般在1000~3000 mg/m3。

3 烧结烟气的脱硫方法

上面已经分析从源头上控制SO2的排放很难推广,事实上从烧结过程中控制减少SO2的产生也不大容易进行。因为在原料、燃料结构一定的前提下,硫的脱除和烟气中SO2的生成主要受烧结温度、烧结时间、空气中氧浓度、焦粉粒度等因素的影响。但通过控制烧结过程减少SO2排放的方法应同时考虑过程控制不影响烧结矿质量,减少的SO2排放以硫的化合物形式进入高炉,减排SO2要不影响高炉顺行和不增加高炉生产成本等因素。所以过程中控制减少SO2现实也很难实施[5]。那么最好的方法也就是末端治理即过程后脱硫了,下面介绍几种比较可行的主流的脱硫方法。

3.1 石灰-石膏法

石灰石-石膏法是一种典型的湿法脱硫技术,在20世纪70年代就已成为一种应用较广的烟气脱硫工艺,约占已建成投产的烟气脱硫装置的84%。其原理是利用冷却塔对烧结烟气进行冷却增湿,然后进入吸收塔与石灰浆液进行脱硫反应,同时将吸收塔中的浆液鼓入空气,氧化后的浆液再经浓缩、脱水生成纯度90%以上的石膏[6]。

石灰石-石膏法烟气脱硫的过程包括以下两步:首先,气液传质和水合过程。即烟气中SO2分子与水接触时溶解在水中并与水分子水合为亚硫酸;其次,H2SO3与溶解在水中的碱性脱硫剂作用。该工艺采用的脱硫剂是石灰,其主要成分是氧化钙。石灰-石膏法烟气脱硫系统采用5%~10%的浆液脱硫以保证烟气脱硫效率。主要反应过程如下:

CaCO3+SO2+1/2H2O→CaSO3·1/2H2O+CO2

Ca(OH)2+SO2→CaSO3·1/2H2O+1/2H2O

CaSO3·1/2H2O+1/2O2+3/2H2O→CaSO4·2H2O

烧结烟气经烟道进入烟气换热器,与从吸收塔排出的低温烟气换热降温后进入吸收塔,经过均流孔板上行,与多层雾化喷淋下来的洗涤液进行充分混合,SO2被吸收液洗涤吸收。含有细液滴水气的烟气经过水幕式喷淋洗涤液时,烟气中的细小液滴被较大液滴吸收分离,再经过上部多层脱水除雾装置进一步除雾后经管道排出吸收塔外,进入烟气换热器,与进口高温烟气换热升温后经引风机进入烟囱高空排放。洗涤液吸收烟气中的SO2后落入吸收塔下部的氧化池,SO2与石灰反应生成亚硫酸钙,被均布在池底的氧化装置送入的空气进一步氧化成稳定的硫酸钙。

石灰-石膏法脱硫效率高,在Ca/S比小于1.1的时候,脱硫效率可高达90%以上;吸收剂利用率高,可达到90%;吸收剂资源广泛,价格低廉;适用于高硫燃料,尤其适用于大容量烧结烟气处理;副产品为石膏,高品位石膏可用于建筑材料。但该工艺的缺点是:系统复杂,占地面积大;造价高,一次性投资大;

运行问题较多副产品CaSO4易沉积和粘结,所以,容易造成系统积垢,堵塞和磨损;运行费用高,高液气比所带来的电、水循环和耗量非常大。

3.2 循环流化床法

循环流化床法是在循环流化床反应器内,以钙基物质或其它碱性物质作为吸收剂和循环床料脱除二氧化硫的方法。其将生石灰消化后引入脱硫塔内,在流化状态下与通入的烟气进行脱硫反应。烟气脱硫后进入布袋除尘器除尘,再由引风机经烟囱排出,布袋除尘器除下的物料大部分经吸收剂循环输送槽返回流化床循环使用。由于循环流化使脱硫剂整体形成较大反应表面,脱硫剂与烟气中的SO2充分接触,脱硫效率较高[7]。主要有以下化学反应:

CaO+H2O→Ca(OH)2

SO2+H2O→H2SO3

Ca(OH)2+H2SO3→CaSO3·H2O+H2O

CaSO·3H2O+O2+H2O→CaSO4·2H2O

循环流化床法的脱硫剂是石灰,副产物是亚硫酸钙和硫酸钙的混合干粉。优点是系统阻力低、水耗、电耗小、运行费用相对较低,吸收塔占地面积小,不需要考虑防腐,投资相对较小。缺点是脱硫效率相对低于湿法脱硫工艺,脱硫副产物成分复杂,特别是脱硫灰中的亚硫酸钙含量过高不好利用,基本采用抛弃、堆存处理。

3.3 密相干塔法

密相干塔法是利用干粉状的钙基脱硫剂,与布袋除尘器除下的大量循环灰一起进入加湿器进行增湿消化,使混合灰的水分体积分数保持在3%~5%之间,然后循环灰由密相塔上部进料口进入反应塔内。大量循环灰进入塔后,与由塔上部进入的含SO2烟气进行反应。含水分的循环灰有极好的反应活性和流动性,另外塔内设有搅拌器,不仅克服了粘壁问题而且增强了传质,使脱硫效率可达90%以上。脱硫剂不断循环使用,有效利用率达98%以上。最终脱硫产物由灰仓排出循环系统,通过气力输送装置送入存储仓[8]-[9]。主要有以下化学反应:

CaO+H2O→Ca(OH)2

Ca(OH)2+SO2→CaSO3·H2O

密相干塔法脱硫剂是石灰,副产物是亚硫酸钙和硫酸钙的混合干粉。优点是系统阻力低,水耗、电耗小,运行费用相对较低,吸收塔占地面积小,不需要考虑防腐,投资相对较小。缺点是脱硫效率相对低于湿法脱硫工艺,脱硫副产物成分复杂,脱硫剂在运行过程中可能不能完全与烟气进行反应,造成部分活性灰外排,对后部的除尘器要求较高[10]。特别是脱硫灰中的亚硫酸钙含量过高不好利用,基本采用抛弃、堆存处理。

4 结论

在众多脱硫方法如何做出最佳的选择,理想的烧结烟气脱硫技术是技术成熟可靠,投资省,脱硫剂来源广泛,副产品易于处理不产生二次污染,能回收高质量有广阔应用前景的脱硫副产品,运行成本低,占地面积小的符合循环经济理念要求的脱硫工艺。符合高效化、资源化、综合化的要求,以达到烟气脱硫成本经济化的目的。从有效性、经济性、安全性等方面综合评价烟气脱硫技术。

现有的各种脱硫方法各有优缺点。石灰-石膏法脱硫是目前技术最成熟,运行状况最稳定的脱硫工艺。而具有中国自主知识产权的密相干塔法,投资节省,脱硫效率高,运行成本低,副产物可利用,也是是一种较好的烧结烟气脱硫技术值得大力推广。未来烧结烟气脱硫技术的发展方向应该是将烟气中SO2的脱除与NO x、二噁英、重金属等的脱除同步实现。活性炭法在这方面有其独特的优势,需要进一步研究推广,日本等国家应用活性炭法较多我国太钢在这方面也有生产应用[11]。

5 参考文献

[1]Biniak S, Szymanski G, Siedledlewski J. etal. The Characterization of Activated Carbons With Oxygen and Nitrogen Surface Groups[J].Carbon,2007,35(12):1799. [2]ZHANG Li,LIU Yun-yi,KUNIO Kato.Removal of SO2by Limestone and Some Salt Mixture in a Semidry Process With Powder-Particle Spouted Bed[J].Journal of Shenyang Institute of Chemical Technology,2002,16(3):177.

[3]胡勇,尹华强,岑望来,等.治理攀钢烧结烟气二氧化硫污染的对策分析[J].四川化工,2010,10(1):41-46.

[4]刘征建,张建良,杨天钧.烧结烟气脱硫技术的研究与发展[J].中国冶金,2009(2):19.

[5]杨亚欣,马玉香,任爱玲,郭斌,张轶润.烧结烟气脱硫技术及脱硫产物综合利用研究进展[J]. 环境科学导刊,2009,28(6):67-70

[6]杨华明,杨刚.湿法脱硫技术在烧结废气治理中的应用[J].湖南冶金,1995,(2):47.

[7]Alexander Fleischanderl. Improved Dry-Type Gas-Cleaning Processfor the Treatment of Sinter Offgas [J].Metallurgical Plant and Technology International,2006,(3):36.

[8]宋存义,杨天钧,陈凯华,等.一种选择性脱硫的密相干塔装置[P].中国专利:CN1895749,2007-01-17.

[9]张晓刚,宋存义,王亮,等.密相干塔技术在烧结烟气脱硫中的应用[J].钢铁,2007,42(7):79.

[10]郝继锋,汪莉,宋存义.钢铁厂烧结烟气脱硫技术的探讨[J].太原理工大学学报,2005(4):491.

[11]张春霞,王海风,齐渊洪.烧结烟气污染物脱除的进展[J].钢

铁,2010,45(12):34.

锅炉烟气中二氧化硫的测定实验指导

锅炉烟气中二氧化硫的测定 一、实验目的 掌握甲醛吸收-副玫瑰苯胺分光光度法测定烟气中的二氧化硫的方法 学会使用尘毒采样器 熟练使用分光光度计 熟练滴定操作 复习标准曲线的测定 掌握正确的采样布点的方法 二、实验原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 三、仪器 多孔板吸收管(短时间采样) 空气采样器() 具塞比色管 分光光度计 四、试剂 1. 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 2. 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液 (3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3. 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 4. 乙二胺四乙酸二钠盐(EDTA)溶液,0.05g/100mL。 称取0.25gEDTA[-CH2N(CH2COONa)CH2COOH]2·H20溶于500mL新煮沸但已冷却的水中。临用现配。 5. 二氧化硫标准溶液。 称取0.200g亚硫酸钠(Na2SO3),溶于200mLEDTA·2Na溶液(3.13)中,缓缓摇匀以防充氧,使其溶解。放置2~3h后标定。此溶液每毫升相当于320~400μg二氧化硫。

标定出准确浓度后,立即用吸收液(3.4)稀释为每毫升含10.00μg二氧化硫的标准溶液贮备液,临用时再用吸收液(3.4)稀释为每毫升含1.00μg二氧化硫的标准溶液。在冰箱中5℃保存。10.0Qμg/mL的二氧化硫标准溶液贮备液可稳定6个月;1.00μg/mL的二氧化硫标准溶液可稳定1个月。 6. 副玫瑰苯胺(Pararosaniline,简称PRA,即副品红,对品红)贮备液,0.20g/100mL。 其纯度应达到质量检验的指标(见国标附录A)。 7. PRA溶液,0.05g/100mL。 吸取25.00mLPRA贮备液(3.15)于100mL容量瓶中,加30mL85%的浓磷酸,12mL浓盐酸,用水稀释至标线,摇匀,放置过夜后使用。避光密封保存。 五、测定步骤 采样: 短时间采样:根据空气中二氧化硫浓度的高低,采用内装10mL吸收液的U形多孔玻板吸收管,以O.5L/min的流量采样。采样时吸收液温度的最佳范围在23~29℃。 分析步骤 1. 校准曲线的绘制 取14支10mL具塞比色管,分A、B两组,每组7支,分别对应编号。A组按表1配制校准溶液系列: 表1 B组各管加入1.00mL PRA溶液(3.15),A组各管分别加入0.5mL氢氧化钠溶液(3.1),混匀。再逐管迅速将溶液全部倒入对应编号并盛有PRA溶液的B管中,(立即具塞混匀后放入恒温水浴中显色。显色温度与室温之差应不超过3℃,)根据不同季节和环境条件按表2选择显色温度与显色时间: 表2

烟气脱硫脱硝技术方案

1、化学反应原理 任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应, 生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环 工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分 捕获的同时,连续进行三次全面的综合性高精度微分净化处理。 2、串联叠加法工作原理 现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。 工艺流程工作原理 传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。 1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体 化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全 面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖 技术装备。 2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化 学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。 3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及 其它标准件的保修期,按其相应行业标准执行。 4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。 5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量 以及相应补充水即可正常运行。 6、工艺流程: 三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。 (1)可以采用废水的补充水进入进行第三级处理的稀碱池,通过第三级循环泵或者称 为稀碱泵,进行第三次微分捕获微分净化处理,然后溢流至中水池。 (2)从稀碱池溢流来的稀碱水自流进入中水池,经过第二级循环泵或者称为中水泵的 加压循环,进行第二次微分捕获微分净化处理的喷淋布水。 (3)从中水池溢流来的中水进入稀酸池,第一级循环泵或者称为稀酸泵泵出的循环工 质,在进行第一级微分捕获微分净化处理循环过程当中,在稀酸池经过处理,成为多元酸, 通过补充水和澄清水保持两个循环系统工作。

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

紫外吸收法测试烟气中SO2

第一章烟气监测中干扰SO2测试的几种气体随着国家环保部开展的以锅炉或炉窑监测SO2/NOx为主的气态污染源调查,以及全国各省市环保局主张的CEMS在线监测系统的大力普及,SO2/NOx的CEMS在线监测与瞬时监测之间的数据不统一性的矛盾日趋突出。 目前国内普及的SO2/NOx 常用的瞬时监测仪器多为恒电位电解法—亦即电化学传感器法,国内自95年推出第一台电化学传感器的烟气测试仪以来,以电化学传感器为探测原件的便携式烟气监测仪籍其体积小、重量轻、测试方便等特点在十五年间迅速占领中国市场,成为锅炉烟气或炉窑尾气排放监测的主打仪器,目前国内生产该类型的便携式监测仪器有十几个生产厂家,加上来自英国、德国等国外品牌,供货厂家大致有20个。 几乎所有的便携式的以电化学传感器为探测元件的生产厂家都使用同一厂家即英国CITY公司生产的3SF/F—SO2传感器/3NF—NO传感器,个别厂家使用或部分使用瑞士公司生产的电化学传感器。 本人自1991年参加工作以来,一直从事烟尘烟气便携式测试仪器的市场调研、研发定向及市场推广、售后服务等,在实际的工作当中不断有用户反映烟气或管道气SO2的监测数据误差较大。我所接触的顾客最早提出该问题的是上海市环境监测中心,他们提出在对管道煤制气的监测中,SO2显示数值特别高,到了无法令人信服的地步,由于当时对SO2电化学的相关知识知之甚少,当时无法解答顾客的

疑问。2000年后,随着各地装备的CEMS在线监测仪器越来越多,CEMS的标定及校准仍使用电化学传感器的便携式烟气监测仪,但某些行业--例如水泥行业、铝业制造及钢铁冶炼高炉等炉窑的SO2排放使用原来电化学仪器标定其CEMS的SO2数值大部分是明显偏高的。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多与会代表提出目前电化学传感器测试烟气中的SO2存在许多问题,中环总站副站长在会上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷?建议环境监测仪器的生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 2008年3月份,山东省环境监测中心、淄博市环境监测站、淄博市淄川区环境监测站三级监测部门分别使用英国、雷博3020烟尘烟气测试仪及3012自动烟尘气测试仪对淄川辖区的山水水泥集团淄博分公司的一台水泥轮窑尾气排放进行监测,测出的SO2结果分别为0、2200、3700mg/m3.出现明显错误,针对这一现象,淄博市环境监测中心曾两次召开办公会研究对策,顾客曾多次质疑我公司,为什么会出现这么大的差异。带着疑问笔者与英国CITY公司上海办事处的技术支持张先生多次深入探讨,3SF/F SO2电化学传感器的影响因素除温度、压力外,主要的影响因子就是烟气成分的复杂多样。 附表一列出了烟气其它气体组分对SO2监测的正负干扰及大致干扰幅度。 笔者于2008年12月参加中铝中州分公司高炉的现场监测,用英国一公司生产的电化学传感器的便携式仪器测试其SO2为

中国烧结机烟气脱硝调研报告

中国烧结机脱硝的技术和市场调研报告 1、钢铁行业烧结烟气的特点 钢铁冶炼行业是高耗能重污染的一个行业。有数据显示,在冶炼钢铁过程中铁矿烧结工序会产生约48%的NOx和51%~62%SOx,是SO 和NOx的最大污染物来源。 2 钢铁行业在高温烧结过程中会产生SO2、NOx、HCl、HF、CO2、CO和二恶英等多种污染物和粉尘的废气。由于烧结工艺及原料成分和配比的不稳定性,烧结烟气的成分比较复杂,烟气流量、温度和污染物浓度变化幅度较大。 英国规定氮氧化物200-310 mg/m3;现行国家标准《工业窑炉大气污染物排放标准》中未对钢厂烧结单元氮氧化物排放有限制;在《钢铁工业大气污染物排放标准-烧结(报批稿)》中规定新建企业限值为400mg/m3,现有企业限值为500mg/m3;河北省地方标准《钢铁工业大气污染物排放标准》已于2011年11月15日由河北省环境保护厅、河北省质量技术监督局联合发布,并于2011年11月30日起正式实施。此排放标准中确定新建企业限值为400mg/m3,现有企业限值为500mg/m3。山东《钢铁工业污染物排放标准DB37 990-2008》中规定新建企业限值为200mg/m3,现有企业限值为200mg/m3。 2012年2月29日,环保部相关负责人透露,我国即将颁布实施钢铁烧结机烟气排放标准,目前正在制定保障烧结机脱硫建设和运行的优惠政策。另外,环保部正在拟定分省大气污染物减排目标责任书,时间表正在排定中。“十二五”期间,新建烧结机应配套安装脱硫脱硝设施,全面推进现役烧结机烟气脱硫工程。到2015年末,所有烧结机和位于城市建成区的球团生产设备实施烟气脱硫,脱硫效率达到80%以上;位于城市建成区的烧结机,应建设烟气脱硫脱硝一体化示范工程,开展二氧化硫、氮氧化物、二噁英等多种污染物协同控制;530台共7.8万平方米(单机烧结面积90平方米以上)烧结机要新建脱硫设施,23台共0.7万平方米烧结机要建设脱硫脱硝一体化示范工程。此外,对于已投运的烧结机烟气脱硫设施,不能稳定达标排放的、实际使用原料硫分超过设计硫分的以及部分烟气脱硫的,应通过脱硫设施改造、加强管理等措施,增强减排能力。“十二五”期间,已投运的129台共1.7万平方米烧结机烟气脱硫设施要进行改造。 可以肯定,“十二五”及以后的一段时间内,烧结机烟气脱硝的市场必将开启,并且逐步扩大,会成为继火电燃煤烟气脱硝之后的另一个环保脱硝的新兴市场。 1.1 烧结烟气的特点

烟气SO2分析方法

1.1烟气中二氧化硫含量的测定及吸收率计算 1目的 测定进出口气中二氧化硫含量,可计算吸收率,调节吸收塔操作,使出口气中的二氧化硫含量控制在要求的范围内。 1.1.2原理 气体中所含的二氧化硫在通过一定量的碘溶液时被氧化成硫酸。其余气体收集在量气管中,待淀粉指示剂的兰色刚刚消失,表示反应完毕,根据碘和余气的数量可计算出二氧化硫的含量。 反应按下式进行: SO2 + I2 + H2O H2SO4 + 2HI 1.1.3仪器和试剂 A仪器 (1)反应管; (2)气体定量管(400毫升); (3)水准瓶(500毫升); (4)温度计(0--100℃); (5)采样管; (6)气体冷凝管; (7)移液管(10毫升)。 B试剂 (1)0.01N碘溶液; (2)0.001N碘溶液; (3)0.5%淀粉溶液; (4)蒸馏水。 1.1.4测定 A测定的准备工作 (1)检查量气管,水准瓶以及仪器装置是否漏气; (2)用移液管移取0.01N或0.001N (看气相中二氧化硫含量而定) 碘溶液10毫升注入反应管,加水至反应管的3/4处,加0.5%淀粉溶液2毫升,塞紧橡皮塞备用。 (3)检查采样管是否畅通。在负压下采样时,取样管与水准瓶连接,抬高水准瓶利用排水吸气法将样气抽处,充分置换进入反应管前管道中的余气,然后才进行测定。

B 测定方法 (1) 将仪器按图(1)连接好,旋转塞2,提高水准瓶,使气流由反应管的毛 细管中呈“豌豆;大小的气泡,由明显间隔的连续冒出,直到溶液兰色刚刚消失时,停止进气,将水准瓶中水位与量气管中的水位对平,读取量气管内气体体积和温度,根据读数进行查表和计算。 (2) 分析完毕后,打开水准瓶,使量气管内水位恢复零点。 1.1.5计算 二氧化硫含量的计算: 图1 气体中二氧化硫含量测定装置 1—气体管路;2—三通旋塞;3—冷却器;4—反应管;5—水准瓶;6—气体量管; 7—温度计 SO 2%(v )=N W N V t P P V V ++?-??273273760100 =N W N V t P P V V ++?-??])00367.01(760[100 式中: V N —与碘反应的二氧化硫体积(标准状态),毫升;V N =1.0944R ,R 为反应管中 加入的碘溶液的毫升数; V — 气体量管上表示的吸收二氧化硫后的余气体积,毫升; P — 大气压力,毫米汞柱;

国内外烧结烟气脱硫脱硝技术进展及发展趋势苍大强,张

国内外烧结烟气脱硫脱硝技术进展及发展趋势苍大强,张国内外烧结烟气脱硫脱硝技术进展及发展趋势 苍大强 ,张玲玲 ,李宇, 刘小明 北京科技大学冶金与生态工程学院 ;北京科技大学土木与环境工程学院 1 国内外烧结烟气脱硫脱硝的不同作法 国内外钢铁工业对烧结烟气的污染物处理方法差别较大 ,大体有以下几方式 : 1)禁止钢铁公司建烧结厂 最典型的是瑞典 SSAB-Lul ea , SSAB-OX 和芬兰若特若基钢铁公司等。这些钢铁公司由于没用 烧结矿 , 改用几乎 100% 的球团矿炼铁 , 通过摸索获得了很好冶炼效果 , 焦比低 , 渣量少 (吨 铁 150 公斤左右 ) ,铁水质量高等。 2) 采用“ 源头治理” + “ 过程治理” 结合的方法抑制 SO 和 NO 在烟气中的产生 , 以获得烟 2 x 气排放直接达标的目的。该方法在国内外还没有得到实际应用 , 仅北京科技大学正在进行研 发中, 主要方法是对烧结料采用廉价的物理和化学的方法,将 SO 和 NO 固化在烧结矿中 , 2 x 使烧结烟气中的 SO 和 NO 浓度很低,试图避免建设庞大的脱除 SO 和NO 的装置和高的运行

2 x 2 x 费用。该方法已经完成实验室的试验工作, 最佳效果已经能使 70%的硫被固化在烧结料中 , 下一步将继续研究更高的固化比例和同时固化 NO 的方法。 x 国外烧结烟气 SO 减排和控制措施主要采用低硫原料配入法, 从源头减少硫进入烧结过程。 2 烧结烟气中的 SO 是由烧结原料中的硫在高温烧结过程中与空气中的氧化合生成的。因此 , 2 在确定烧结原料方案时 , 按规定的 SO 允许排放量配比燃料 , 实现从源头上控制烧结烟气中 2 SO 的排放量。但此法使原料的来源受到限制, 烧结矿的成本也随着低硫原料价格的上涨而 2 增加。就目前国内原料的状况看, 此法较难全面推广。 3) 采用“末端治理” 的方法治理 SO 和 NO , 就是将已经在烧结烟 气中产生 SO 和 NO 脱除掉 , 2 x 2 x 这是过去和现在国内外绝大多数烧结厂采用的方法, 结果是一次投资高 ,运行成本也高 , 这

废气SO2NOX现场测试复习题2003

废气中SO2、NO x、NO2复习题 一. 填空题 1.气态污染物在采样断面内,一般是混合均匀的,可取靠近(烟道中心)的一点作为采样点。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.1.2) 2.气态污染物采样时,采样管入口与气流方向(垂直),或(背向)气流。 (空气和废气监测分析方法第349页) 3.根据气态污染物测试分析方法不同,分为(化学)法和(仪器直接测试)法。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.2) 4.为防止烟尘进入试样干扰测定,在采样管入口或出口出装入阻挡尘粒的滤料,滤料应选择(不吸收)亦不与待测污染物起(化学反应)的材料,并能耐受(高温)排气。 (GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.3.1.2) 5.烟气中的二氧化硫被(氨基磺酸铵)和(硫酸铵)混合溶液吸收,用碘标准溶液滴定。(空气和废气监测分析方法第349页) 6. 目前SO2测试常用的方法有(碘量法)、(定电位电解法)、(电导法)等,为避免采样气体在采样管中冷凝,通常对采样管进行(加热保温),温度(120—150)度。连接管要进行保温,内径应大于(6)mm,管长应(尽可能短)。 7. 烟气采样中应记录现场大气压力以及(采样流量)、(采样时间)、(流量前的气体温度),(流量前的气体压力)。 8.烟气化学法采气系统一般由(采样管)、连接导管、(吸收瓶)、旁路吸收瓶、干燥剂、(流量计)、(温度计)、(压力计)、抽气泵组成。 (环境空气监测质量保证手册110页) 9.烟气脱硫的工艺很多,根据脱硫介质的不同可分为(湿)法、(干)法和(半干)法。(环境测试技术基本理论试题集225页) 10.用吸收瓶采集烟气样品前,用旁路吸收瓶抽气的目的是为了置换吸收瓶前采样管路中的(空气),并使(滤料)被待测气体饱和。 (环境测试技术基本理论试题集225页) 11.用吸收瓶正式采集烟气样品前,应先用(旁路吸收瓶)抽气5-10min。 (环境测试技术基本理论试题集213页) 12.定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器(标定零点)。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.1) 13. 定电位电解法测定烟道废气时,当仪器采样管插入烟道中,既可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可(读数)。同一工况下应连续测定(三)次,取(平均值)作为测量结果。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.2) 14. 定电位电解法电化学传感器灵敏度随时间变化,为保证测试精度,根据仪器使用频率每(三)月至(半)年需校准一次。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.4.1)

烧结烟气联合脱硫脱硝工艺的比较

烧结烟气联合脱硫脱硝工艺的比较 陈妍 唐山钢铁集团有限责任公司河北唐山 063016 摘要:钢铁行业SO2和NOX的排放主要来自于烧结过程,传统脱硫脱硝技术会造成烟气净化系统复杂和治理成本提高,因此联合脱硫脱硝技术应运而生。鉴于烧结烟气的脱硫脱硝技术是目前国内外脱硫脱硝研究的一大热点,介绍了典型的可用于烧结烟气脱硫脱硝技术以及目前国内外新兴的烟气同时脱硫脱硝技术,并对各种技术的优缺点进行了分析。 关键词:烧结烟气;脱硫脱硝;氨法脱硫 中图分类号:C35 文献标识码: A 前言:钢铁联合企业中烧结生产的特点是物流量大、能耗高、污染严重,所产生的固体废弃物、烟气、噪音等对环境的破坏已引起社会的广泛关注。多年来,我国烧结厂在烟气除尘方面做了大量的工作,成果显著。但是对于烟气中的有害组分,如SO2、NOx、二英等的脱除有些尚处于起步阶段,而有的至今没有采取任何措施而直接排放。分析结果显示,在钢铁冶炼过程中约48%的NOx,及51%~62%的SOx来自铁矿烧结工艺,可见烧结厂已是SO2和NOx的最大产生源[1]。随着钢铁企业的快速发展,烧结矿产量大幅度增加,SO2和NOx排放量随之增大,烧结厂环境保护的压力也随之增加。 一、钢铁行业烧结烟气的概述和特点 钢铁工业是国民经济的重要支柱产业,其SO2和NOX排放量分别占全国总排放量的8.8%及8%,均仅次于电力行业,位居全国第二。钢铁企业中有约80%的SO2和50%的NOX来自铁矿烧结工艺,烧结烟气已成为钢铁企业SO2和NOX的最大产生源。 钢铁行业烧结过程是一个高温燃烧条件下的复杂物理、化学过程,在高温烧结过程中产生含有SO2、NOX、HCl、HF、CO2、CO、二噁英等多种污染物和粉尘的废气。由于烧结工艺及原料成分和配比的不稳定性,致使烟气成分复杂,烟气

烟气中二氧化硫及粉尘的计算方法

一、燃料燃烧过程二氧化硫排放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso2=2××B×S×(1-η)=×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso2=2BS×(1-η) 式中:Gso2—SO2产生量量,kg ; W—燃煤(油)量,kg; S—煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso2=×C H S×10-3 式中:Gso2—SO2产生量量,kg ; V—气体燃料消耗量,m3(标); C H S—气体燃料中H2S的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO2排放量计算: G SO2=2×(B×式中: Gso2—水泥熟料烧成中排放SO2量,t; B—烧成水泥熟料的煤耗量,t; S—煤或油的全硫分含量,(重量)%; M—水泥熟料产量,t; f1—水泥熟料中S032-的含量(%); G d—水泥熟料生产中产生的窑灰量,回转窑一般占孰料量的25%(20%~30%),t; f2—粉尘中SO32-含量(%); —系数,即S/S032-=32÷80= 。 2.硫酸生产中排放S02的计算: Gso2=W×S×H×J×(1-Z)×(1-A)×2 式中:Gso2—硫酸废气SO2排放量,t; W—硫铁矿石用量,t; S—硫铁矿石含硫量(%): H—硫磺烧出率(%); J—净化工序硫的净化效率(%); Z—转化工序转化为SO3的转化率(%); A—尾气氨吸收净化率(%)。 3.烧结废气中排放SO2计算: G SO2=2×(SH-SJ-SF) 式中: G SO2—废气中SO2含量(千克/吨),烧结矿; SH—混合料中含硫量(千克/吨); SJ—烧结矿中含硫量(千克/吨); SF—粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d=10—6·Q f·C f·t 式中: G d—工业粉尘排放量,kg; Q f—排尘系统风量,m3(标)/h; C f—设备出口排尘浓度, mg/ m3(标)(实测); t—排尘除尘系统运行时间。

莱烧结烟气脱硫脱硝工艺的比较(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 莱烧结烟气脱硫脱硝工艺的比较 (标准版)

莱烧结烟气脱硫脱硝工艺的比较(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:烧结机头是钢铁行业SO2和NOx主要排放源。随着环境保护的压力不断加大,烧结烟气脱硫脱硝工艺的选择就显得尤为重要。本文主要介绍了目前国内外主流的烧结烟气脱硫脱硝工艺,并对各种工艺的优缺点进行比较分析。 钢铁生产在国民经济中具有重要作用,同时污染也较为严重。为了降低钢铁行业的污染物排放水平,生态环境部等五部门于2019年4月联合发布了《关于推进实施钢铁行业超低排放的意见》(环大气[2019]35号),在全国范围内推动钢铁行业超低排放改造。钢铁行业是SO2和NOx的排放大户,而烧结机头烟气是SO2和NOx的主要排放源。钢铁行业的超低排放要求烧结烟气SO2和NOx的排放质量浓度小时均值不高于35mg/m3和50mg/m3。因此,钢铁企业烧结烟气为满足达标排放的要求,必须采取脱硫脱硝措施。 1我国烧结烟气脱硫脱硝现状 目前,我国烧结烟气采取脱硫措施较为普遍,大部分烧结机均采

烧结烟气脱硝技术的探讨

烧结烟气脱硝技术的探讨 大多数的工业烟气中含有氮氧化物,它们大量排放到大气中,不仅形成酸雨, 破化臭氧层,并造成温室效应导致全球变暖。钢铁行业作为国家工业的一个重要 部分,国家对其环保要求也日益严格。研究表明,钢铁厂中各种设备放出的NO x 总量在固定发生源中占第二位,仅次于SO 2的排放量。其中,烧结生产过程NO x 排放量约占钢铁厂NO x 排放总量的一半左右。因此,对烧结烟气NO x 排放量的严 格控制,可有效降低钢厂的NO x 的排放量。 烧结过程中的NO x 主要来源于烧结过程中燃料的燃烧。烧结生产中的燃料分 为点火燃料和烧结燃料两种。燃料燃烧都会产生一定的氮氧化物,表1是中国工 业部门各燃料类型的NO x 排放因子。 表1 中国工业部门各燃料类型的NO x 排放因子 一般情况下,燃烧过程中产生的氮氧化物主要是NO和NO 2 ,这二者统称为N O x ,在低温条件下燃烧还会产生一定量的N 2 O。燃烧过程中产生的NO x 的种类和数 量除了与燃料性质相关外,还与燃烧温度和过量空气系数等燃烧条件密切相关。 在通常的燃烧温度下,煤燃烧产生的NO x 中NO占90%以上,NO 2 占5%-10%,N 2 O 占1%左右。 目前,根据《钢铁工业大气排放标准》(征求意见稿),钢铁企业烧结烟气NO x 的排放标准如下: 表2 钢铁工业烧结烟气NO x 排放标准

对于工业烟气中NO x 的处理,燃煤电厂最主要的处理工艺有SCR,SNCR以及脱硫脱硝一体化技术等。下面我们就国内外几种主流的烟气脱硝技术进行介绍,以寻求最适合钢厂脱硝的技术。 1 几种主流烟气脱硝技术介绍 目前,相对较成熟烟气脱硝技术主要有选择性催化还原技术(SCR)和选择性非催化还原技术(SNCR)。此外,还有一些湿法脱除氮氧化物的技术。 1.1选择性非催化还原技术(SNCR) 选择性非催化还原技术是用NH 3、氨水、尿素等还原剂喷入燃烧室内与NO x 进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。还原剂喷入燃烧室温度为850℃-1100℃的区域,该还原剂(尿素)迅速热分解成NH 3 并与烟气中 的NO x 进行SNCR反应生成N 2 ,该方法是以燃烧室为反应器。 NH 3或尿素还原NO x 的主要反应为: 4NH 3 +4NO+O 2 →4N 2 +6H 2 O (NH 3 ) 2NO+CO(NH 2 ) 2 +1/2O 2 →2N 2 +CO 2 +2H 2 O (尿素) SNCR烟气脱硝技术的脱硝效率一般为30%-40%。该技术的工业应用是在20 世纪70年代中期日本的一些燃油、燃气电厂开始的,欧盟国家从80年代末一些燃煤电厂也开始SNCR技术的工业应用。美国的SNCR技术在燃煤电厂的工业应用是在90年代初开始的,目前世界上燃煤电厂SNCR工艺的总装机容量在5GW以上。由于SNCR工艺需要的反应温度太高(850℃-1100℃),因此该技术不适用于钢厂烧结烟气脱硝。 1.2 选择性催化还原技术(SCR) 从技术的成熟性角度来说,选择性催化还原法(SCR)由于具有较高的脱硝效率(最高可达90%),目前在日本、德国、北欧等国家和地区的燃煤电厂得到广泛应用。在我国,越来越多的燃煤电厂已认可并开始广泛使用该技术,且效果良好。考虑到钢厂烧结烟气的实际状况(烟气量波动大、含湿量高、粉尘成分复杂)与燃煤锅炉烟气的不同,只有在燃煤电厂中使用的烟气脱硫脱硝技术成熟,同时,我们也需要在设计时结合钢厂烧结烟气的实际状况来进行优化设计,在钢厂烧结烟气的处理中才有可能使用成功。 在SCR工艺中,将氨喷入烧结烟气中,在催化剂的作用下发生反应。喷氨量与N O x 入口浓度及NO x 的脱除效率有关。设计的技术参数一定要令喷氨量满足脱除NO x 的需要,同时不会产生大量的氨气泄漏。主要的化学反应方程式如下: 烟气中的NO x 主要由NO和NO 2 组成,其中NO约占NO x 总量的95%,NO 2 约占NO x 总量的5%。因此,化学反应方程式(1)被认为是脱硝反应的主要反应方程式, 它的反应特性为:①NH 3和NO的反应摩尔比为1;②脱硝反应中需要O 2 参与反应; ③典型的反应温度窗口为320℃-400℃。

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

烧结烟气脱硫脱硝一体化技术分析

世界金属导报/2013年/5月/28日/第B10版 节能环保 烧结烟气脱硫脱硝一体化技术分析 樊响殷旭 1 工业烟气脱硫脱硝一体化脱除技术 随着国家环保法规的逐渐严格,对工业烟气脱硫后,再进行脱硝和其他多污染物脱除是种必然趋势。因此,开发经济高效、简单可靠的脱硫脱硝一体化技术对我国工业烟气治理有着极为重要的意义。烟气脱硫脱硝一体化技术可分为干法和湿法两大类。下面分类对一些近期研究出的烟气脱硫脱硝的新技术和新思路作简要介绍。 1.1 湿法烟气脱硫脱硝一体化技术进展 根据吸收原理不同,可将湿法同时脱硫脱硝技术分为氧化吸收法和还原吸收法、络合吸收法三大类。 1.1.1 氧化吸收法 氧化吸收法是将烟气先通过强氧化性环境,把NO转化为NOx,进而再将NOx与H2O反应生成NO3-,再用碱性溶液吸收。由于将NO转换为NOx的难度较大,因此氧化剂的选择和制备是此类方法的研究核心。目前,研究较多的氧化剂有HClO3、NaClO2、O3、H2O2和KMnO4等,其中因H2O2无毒无二次污染,所以对其研究较多。同时试验证明,H2O2与紫外光协同作用时,脱硫脱硝性能远远好于单一的H2O2氧化。该工艺在氧化吸收的同时脱除效率较高,一般脱硫效率可达到98%左右,脱硝效率约80%左右。但是鉴于上述强氧化剂造价和运输安全等问题的原因,在开发出新型廉价的氧化添加剂之前,该工艺还难以推广应用。 1.1.2 还原吸收法 还原吸收法是用液相还原剂将NOx还原为N2。目前,研究较多的还原剂主要是尿素。 国内有学者研究的方法是:烟气通过吸收装置并在其中与尿素溶液接触,烟气中的NOx被还原成N2,尿素反应生成CO2和H2O;SO2则与尿素反应生成硫酸铵,净化后的烟气可直接排放,反应后的溶液可回收制成硫酸铵化肥。试验证明,当反应温度为60℃、溶液的pH值为5-9、尿

烧结烟气脱硫脱硝

烧结烟气脱硫脱硝 发表时间:2017-12-06T12:10:11.550Z 来源:《基层建设》2017年第24期作者:赵彬 [导读] 摘要:简要介绍了国内钢铁企业烧结烟气的脱硫脱硝现状及最新进展,对主要的脱硫脱硝技术进行了综合分析,并对烧结烟气的脱硫脱硝工艺提出了建议和展望。 唐山钢铁国际工程技术股份有限公司河北唐山 063000 摘要:简要介绍了国内钢铁企业烧结烟气的脱硫脱硝现状及最新进展,对主要的脱硫脱硝技术进行了综合分析,并对烧结烟气的脱硫脱硝工艺提出了建议和展望。 关键词:烧结;烟气脱硫;脱硝;技术 1.背景环境 近几年我国钢铁企业对于烟气粉尘治理方面取得了较为显著的成效,但对于烟气中有害气体成分的治理进展较为缓慢,大部分钢铁企业尚未采取较为合适的治理措施。钢铁企业排入大气中SO2 的90 %、NOx 的48 %来自烧结厂[1]。因此,烧结厂成为了钢铁企业环境治理的重中之重。 2.脱硫技术 烧结尾气中SO2的控制方法有三种:吸收、吸附和使用低硫原燃料。使用低硫燃料属于燃烧前控制方法,对于烧结物料选择的要求较为重要。而在实际生产中,排除原燃料的控硫措施,燃烧后的控制方法运用的更为普遍。吸收法作为目前工业脱硫较为广泛运用的方法,可以根据脱硫产物的形态分为湿法、干法和半干法三类[2]。 2.1湿法脱硫 在烧结烟气处理中应用比较广泛的湿法脱硫工艺有钙法和镁法。钙法具有代表性的脱硫工艺为石灰-石膏法。石灰-石膏法是应用于烧结烟气脱硫领域最广泛的方法,脱硫效率高达95 %以上,烟气中的SO2 通过吸收塔中喷淋的石灰石浆液发生吸收反应,其副产品石膏可回收利用。而镁法脱硫的主体工艺与钙法相似,只是在脱硫剂原料选取中选用的不是CaO,而是MgO。镁法脱硫较钙法脱硫相比,在脱硫过程中不易发生设备堵塞和结垢是其最为明显的优势。但针对我国内矿产资源的分布,镁矿相对于石灰储量较低,脱硫剂原料成本偏高,使镁法脱硫在国内的广泛运用受到限制。 2.2干法脱硫 干法和半干法脱硫以循环流化床和旋转喷雾法作为代表。该方法的关键在于石灰消化处理技术,在一体化的增湿器中加水增湿,使循环灰的水分含量从2 %增加到5 %,然后以流化风为动力,借助烟道负压进入截面为矩形的脱硫反应器。这两种方法都存在副产物难以回收利用的问题,国外有研究人员将该脱硫灰喷入高炉处理,但对铁水成分的影响还有待验证。 3.脱硝技术 发达国家对NOx 污染的研究起步较早,已有相应的控制技术在工业上得到应用。日本和欧洲普遍采用选择性催化还原系统(SCR),其氮氧化物去除率达60 %~80 %。美国则采用选择非催化还原系统(SNCR)的改进系统,使氮氧化物去除率提高到80%[3]。 3.1选择性催化还原法 选择性催化还原法烧结废气脱硝技术是20世纪70 年代在日本发展起来的。在含氧气氛下,还原剂优先与废气中NOx 反应的催化过程称为选择性催化还原。以NH3 作还原剂、V2O5-TiO2-WO3 体系为催化剂来消除尾气中NOx 的工艺已比较成熟,是目前唯一能在氧化气氛下脱除NOx 的实用方法。SCR 的化学反应主要是NH3 在一定温度和催化剂的作用下,把烟气中的NOx 还原为N2,同时生成水。催化的作用是降低NOx 分解反应的活化能,使其反应温度降低至150~450 ℃。催化剂的外表面积和微孔特性在很大程度上决定了催化剂的反应活性。该法的NOx 脱除率可达70 %。烧结烟气一般温度不能达到SCR的反应温度区间,一般需要将烧结烟气进行加热,致使脱硝成本显著增加。由于温度限制的原因,该方法在国内大陆尚无成功运用的案例。同时,对于选择性催化还原低温催化剂的研发,也是目前该工艺的主要研究方向。 3.2选择性非催化还原法 选择性非催化还原法也是一项比较成熟的技术,1974 年在日本首次投入商业应用。SNCR法是在900~1100℃,无催化剂存在的条件下,利用氨或尿素等氨基还原剂选择性地将烟气中的NOx还原为N2和H2O,而基本上不与烟气中的氧气作用。选择适宜的温度区间在SNCR 法的应用中是至关重要的,对于氨的最佳反应温度区间为870~1100 ℃,而尿素的最佳反应温度区间为900~1150 ℃。与SCR法所面临的问题相同,对于反应温度的要求更高。目前有学者提出,通过焦炉煤气将烧结烟气进行加热至900℃,通过SNCR将氮氧化物还原为氮气,反应后的烟气由于温度较高,后置热量回收发电技术,将脱硝成本进一步降低。 3.3臭氧法 臭氧法是通过高压放电产生的臭氧通入至脱硫塔前的烟气管道中,臭氧经过特定的气流分布装置,与烧结烟气进行充分的混合,使臭氧与烟气中的氮氧化物进行反应,其中最主要的使与NO氧化反应。通过一系列的氧化还原反应,将烟气中的氮氧化物转化成N2O5。 N2O5。进入后置的脱硫塔内进行吸收,最终转换成硝酸盐,使烧结烟气中的氮氧化物得以去除。该方法的脱硝效率大约在60-70%左右,由于产生的臭氧对设备和管道具有较为严重的腐蚀作用,在实际应用中对设备管道的材质要求具有一定的防腐能力,且对于臭氧的通入量有严格的控制要求。 4.同时脱硫脱硝技术 脱硫脱硝一体化工艺则结构紧凑,投资和运行费用低。为了降低烟气净化的费用,从20世纪80 年代开始,国外对联合脱硫脱硝技术的研究开发很活跃,具有实用价值的方法有活性炭法、NOXSO、SNRB、电子束法等。目前,在烧结尾气脱硫上获得应用的只有活性炭法。活性炭法是设置有两个移动床,在一个床中以活性炭吸收SO2,另一个床中用活性炭作催化剂,通过喷氨使NOx 转变为N2。在烟气中有氧和水蒸气的条件下,脱硫反应在脱硫床中进行,使SO2 转变为H2SO4;在脱NOx 床中加入NH3 使NO、NO2 转变为N2 和水。在再生阶段,饱和态的活性炭被送入再生器中加热到400℃,解吸出浓缩后的SO2 气体,每摩尔的再生活性炭可解吸出2 摩尔的SO2。再生后的活性炭送回反应器中循环,而浓缩后的SO2 在用冶金焦炭作还原剂的反应器中被转化为硫元素[4]。

烟气中二氧化硫及粉尘的计算方法

烟气中二氧化硫及粉尘 的计算方法 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、燃料燃烧过程二氧化硫排 放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso 2=2×0.8×B ×S ×(1-η)=1.6BS ×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso 2=2BS ×(1-η) 式中:Gso 2—SO 2产生量量,kg ; W —燃煤(油)量,kg ; S —煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso 2=2.857V ×C H S ×10-3 式中:Gso 2—SO 2产生量量,kg ; V —气体燃料消耗量,m 3(标); C H S —气体燃料中H 2S 的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO 2排放量计算: G SO2=2×(B ×S-0.4Mf 1-0.4G d f 2) 式中: Gso 2—水泥熟料烧成中排放SO 2量,t ; B —烧成水泥熟料的煤耗量,t ; S —煤或油的全硫分含量,(重量)%; M —水泥熟料产量,t ; f 1—水泥熟料中S032-的含量(%); G d —水泥熟料生产中产生的窑灰量,回转窑一般占孰料 量的25%(20%~30%),t ; f 2—粉尘中SO 32-含量(%); 0.4—系数,即S /S032-=32÷80=0.4 。 2.硫酸生产中排放S02的计算: Gso 2=W ×S ×H ×J ×(1-Z)×(1-A)×2 式中:Gso 2—硫酸废气SO 2排放量,t ; W —硫铁矿石用量,t ; S —硫铁矿石含硫量(%): H —硫磺烧出率(%); J —净化工序硫的净化效率(%); Z —转化工序转化为SO 3的转化率(%); A —尾气氨吸收净化率(%)。 3.烧结废气中排放SO 2计算: G SO2=2×(SH -SJ -SF) 式中: G SO2—废气中SO 2含量(千克/吨),烧结矿; SH —混合料中含硫量(千克/吨); SJ —烧结矿中含硫量(千克/吨); SF —粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d =10—6·Q f ·C f ·t 式中: G d —工业粉尘排放量,kg ; Q f —排尘系统风量,m 3(标)/h ; C f —设备出口排尘浓度, mg/ m 3(标)(实测);

相关文档
最新文档