如何分离金属性与半导体性碳纳米管

如何分离金属性与半导体性碳纳米管
如何分离金属性与半导体性碳纳米管

如何分离金属性与半导体性碳纳米管

姓名:王玉中学号:06008225 学校:东南大学

摘要:本文主要阐述了碳纳米管具有金属性以及半导体性的现实以及原因,并研究了对这两种性质碳纳米管进行分离的不同方法。包括了以前比较流行的化学方法,改进的库伦爆炸法以及最近发现的DNA法。

前言:纳米碳管所具有的独特结构和各种优异性能,使其在电子学、材料学、化学等领域展示了巨大的应用前景。具体而言,其在电性能方面,由于碳纳米管独特的结构,造就了它在实际应用中会产生两种性质,既金属性与半导体性。

随着科学技术的飞速发展,自从1991年,日本电子公司的饭岛澄男博士在用电子显微镜观察石墨电极直流放电的产物时,发现一种新的碳结构——碳纳米管(Carbon Nanotubes, CNTs),自此开辟了碳科学发展的新篇章,也把人们带入了纳米科技的新时代。纳米科学技术已经越来越受到各国科学家的重视,近几年来,经过各国科学家十几年的研究,在碳纳米管的物理、化学、导电性能、热学性能、电子学等方面的研究和应用领域都取得了重要进展。举导电性的特性而言,其独特的导电性使碳纳米管可用于大规模集成电路,超导线材。也可用于电池电极和半导体器件。因此,对碳纳米管的导电特性的进一步研究具有及其重大的科学与商业价值。

在对碳纳米管的试验中,我们发现不同结构的碳纳米管会具有不同的导电性能。如果该碳纳米管是由石墨面卷曲而成,碳纳米管上碳原子的P电子形成大范围的离域π键,4个价电子中3个形成共价键,每个碳贡献一个电子形成金属键性质的离域键,由于共轭效应显著则,因此,圆柱形碳纳米管轴向具有良好的导电性,其导电性甚至能达到铜的1万倍;而对于螺旋形、线圈形、鱼骨形碳纳米管,当层面发生弯曲或不连续时,导电性中断。碳纳米管有导体和半导体两类碳纳米管的导电性与其直径和结构有关,而二者又由手性矢量(m,n)决定(n,m是整数),当n—m为3的整数倍时,单层碳纳米管呈金属性,否则为半导体性。当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。

随着研究的不断深入,产品对碳纳米管的需求越来越高。目前,科研人员已经能够根据需要大量制备碳纳米管。实验中制备碳纳米管通常采用化学办法,然而碳管间范德瓦尔斯力的作用,导致生成的碳管聚集成束。要从中分离出单个在碳管,仍然一项重要却十分复杂的过程,阻碍了进一步的研究和应用。研究者采用了许多不同的方法来分离碳纳米管,如超声波电泳分离法、色析层离法,等等。

最近,日本科学家发明了一种方法。首先在双氧水中对金属性单层碳纳米管和半导体性单层碳纳米管混合而成的单层碳纳米管进行热处理,利用半导体性单层碳纳米管先于金属性单层碳纳米管发生氧化和燃料的原理,成功地将金属性碳纳米管的含量浓缩到了80%。金属性单层碳纳米管有望作为透明电极材料取代导电玻璃。另外,由于有望能够对单层碳纳米管结构进行有选择地控制,因此将来通过有选择地提取半导体性单层碳纳米管,极有希望实现透明薄膜晶体管。单层碳纳米管在结构上就像是把苯环相连而成的六元环片卷成了卷一样。根据不同的卷法,单层碳纳米管就会变成金属或半导体。刚刚合成之后的单层碳纳米管就是金属性与半导体性单层碳纳米管的混合体,金属性单层碳纳米管与半导体性单层碳纳米管的比例为36:67。分离工艺只是将这种单层碳纳米管进行47分钟的热处理之后,有99%分解掉了。对剩余的1%单层碳纳米管进行分析的结果,金属性单层碳纳米管的比例提高到了80%左右。这表明半导体性单层碳纳米管的反应特性比金属性单层碳纳米管高,利用二者不同的

反应特性,可进行有选择的分离。过去普遍认为金属性单层碳纳米管的反应特性比半导体性单层碳纳米管高,但此次的结果却完全相反。

但是这些化学方法需要多步物理和化学过程,而且很可能掺杂入其它杂质原子而改变了其固有的物理化学性质。另外,超声波等方法的冲击可能会破坏碳管的结构,即使生成完整的碳管,其长度也不理想,只有约200nm 左右,更容易在溶液中聚集成团,因此有必要研究一种简单高效的分离碳纳米管束的方法。

这就不得不谈到“库伦爆炸法”,在进行实验的时候,科学家们意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。这种全新的碳纳米管物理分离方法被命名为库仑爆炸法。库仑爆炸现象可以理解为:当一个金属球充电以后,电荷与电荷之间的相互排斥作用导致系统的能量升高,当电荷量超过了临界值(称为瑞利不稳定极限,1882 年瑞利在理论研究带电液滴的稳定性时发现,不可压缩带电液滴的稳定临界条件为排斥库仑力等于结合力。)时,金属球会发生爆炸而分裂成几个小球,并以此来降低系统的库仑排斥能。如果将碳管束中各个带电的碳管间的库仑排斥力和范德瓦尔斯力与上述相对照,则这种电致分离的现象应该归于“库仑爆炸”,则其临界点条件为碳管带电荷的库仑排斥力。通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。不过,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。

最近在最近出版的《自然》杂志上,美国杜邦公司和理海大学科学家组成的研究小组表示,他们在生产碳纳米管方面取得了突破性的进展,成功开发出以DNA为基底的可从多种碳纳米管的混合物中分拣出特殊类型的碳纳米管的方法。他们确认了20多个能识别碳纳米管类型的DNA短序列,这些DNA短序列能够从各种碳纳米管的混合物中分拣出所需的特殊类型的碳纳米管。研究人员说,新的方法借助专门的DNA序列,可从碳纳米管混合物中分拣出所有12种主要的单空间螺旋特征的半导体碳纳米管,其分拣能力能够满足基础研究和应用开发的需求.。贾古塔表示,如果选择的DNA序列正确,那么它能识别某种特殊类型的碳纳米管,同时帮助人们将该碳纳米管从多种碳纳米管中分拣出来。,这种具有实用性的成果进一步增大了人们开发出大规模生产碳纳米管的可能性。至于DNA序列是如何识别和分拣不同的碳纳米管的,这同DNA自身的某种能力相关,该能力致使DNA可通过包裹碳纳米管,形成与其本身常见的双螺旋有所不同的结构。贾古塔介绍说,碳纳米管的圆筒形结构对于DNA而言是陌生的。但是,研究人员却能让DNA吸附到不同结构的表面。如果表面为类似于碳纳米管的圆筒形,那么人们获得的则是被称为贝塔管桶的变形体。虽然目前研究人员还没有充分的证据用以证明他们的推测,但他们认为,间接的证据在极大程度上支持了他们的观点。他们相信,DNA能形成完美的有序结构,同时识别特殊的碳纳米管,正如同生物分子能够通过结构相互识别那样。新的研究成果在生物医学分支中具有特殊的意义。

结束语:以上几种方法只是目前比较为人们所熟知的三种,各地的科学家可能已经发现了更好的方法来分解两种性质的碳纳米管。相信再过不久,人们队分解技术的掌握与运用将会把纳米管的应用带上更高的层次与更广大的范围。碳纳米管作为最重要的纳米材料之一其研究越来越得到人们的高度重视有理由相信碳纳米管在工业领域里大规模应用将在未来几年中出现碳纳米管的研究也将对纳米技术的未来产生重大影响。

中文版FM认证标准洁净室材料

洁净室材料可燃性测试方案 分类号 4910 2009 年 6 月 ?2009 FM Approvals LLC 版权所有

目录 1 引言 (1) 1.1 目的 (1) 1.2 范围 (1) 1.3 关于要求的说明 (1) 1.4 关于技术参数测试的说明 (1) 1.5 关于保有列名的说明 (2) 1.6 生效日期 (2) 1.7 单位制 (2) 1.8 参考文献 (2) 1.9 定义 (3) 2 一般说明 (3) 2.1 产品信息 (3) 2.2 技术参数测试应用要求 (4) 2.3 检验样品要求 (4) 3 性能要求 (5) 3.1 测试判据 (5) 3.2 校准 (5) 3.3 材料的再次测试 (5) 4 测试方案 (6) 4.1 试样要求 (6) 4.2 试样制备以及在火蔓延装置中的放置方法 (6) 4.3 FPI 和 SDI 的测试条件和限制 (8) 4.4 厚度小于 6 毫米(0.25 英寸)的试样以及 FPI 值范围不确定时的解决方法 (11) 5 可燃性数据计算程序 (14) 5.1 引燃测试数据计算 (14) 5.2 火蔓延测试数据计算 (14) 5.3 燃烧测试数据计算 (15) 5.4 烟尘损害指数 (SDI) (15) 5.5 经技术参数测试的产品所列材料的 FPI 和 SDI (15) 6 操作要求 (16) 6.1 已核实的质量控制程序 (16) 6.2 工厂及程序审核 (F&PA) (17) 6.3 安装检查 (17) 6.4 制造商的责任 (17) 6.5 制造和生产测试 (17) 附录 A:度量单位 (18)

1 引言 1.1 目的 1.1.1 本测试标准针对主要用于洁净室场所材料、但不仅限于半导体行业材料,规定了的 FM Approvals 测试要求和程序。采用两个参数评估材料的火蔓延行为以及潜在的烟尘损害:火蔓延指数 (FPI) 和烟尘损害指数 (SDI)。 1.1.2 仅根据本标准的测试结果不能使产品获得认证,因为产品的最终用途将决定适用的认证标 准要求,如果存在这些要求,为了获得认证,也必须达到这些要求。 1.1.3 认证依据可以包括,但不限于,性能要求、标志要求、工厂审查、质量保证程序审核以及 跟进计划。 1.2 范围 1.2.1 本测试标准阐述了拟用于洁净室设施的材料的最低性能要求。本标准评估各组件限制火蔓 延和烟尘损害的能力。可用于洁净室的材料必须符合本标准的所有要求。 1.2.2 本标准旨在检验上述产品是否符合规定的最低性能、安全和质量条件,可用于确定这些产 品对最终使用条件的潜在适合性。 1.3 关于要求的说明 1.3.1 本测试标准中各项要求的提出基于经验、研究与测试和 / 或其他组织的标准。同时,本标 准借鉴了制造商、使用者、贸易协会、主管部门和 / 或损失控制专家的建议。 1.3.2 仅符合这些要求不能使产品获得认证。认证标准根据产品的最终用途规定了其他认证测试 和要求。 1.4 关于技术参数测试的说明 1.4.1 生产样品的检查和测试,目的是评估: ? 产品的适用性; ? 实际条件下,制造商声明的及 FM Approvals 认证要求的产品性能; ? 产品的耐用性与可靠性。 1.4.2 对制造商的生产设施进行检验以及对质量控制程序进行审核,目的是评估制造商是否具有 以一致的方式生产受检测产品的能力,以及用于识别产品的标志程序。这些评估和检测可能被重复,作为 FM Approvals 认证产品跟进计划的一部分。

碳纳米管的应用领域—陶瓷

引言 纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。碳纳米管的发现是碳团簇领域的又一重大科研成果。在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的 应用前景。可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。 原子形成的石墨烯片卷成的无缝、中空的管体。碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。

1、CNTs陶瓷复合材料着重的研究工作: 1.1 CNTs在基体中的均匀分散技术 只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。球磨混合、超声混合、使用表面活性剂、原位合成是目前报道的提高分散均匀性的方法。其中,原位合成可以制备出分散均匀且体积含量高的CNTs陶瓷复合材料,值得深入研究; 1.2 CNTs陶瓷复合材料的致密化技术。 足够的致密度是获得高力学性能CNTs陶瓷复合材料的前提,目前报道的致密化技术大都是高温高压烧结技术,它不仅会破坏CNTs的结构,减少CNTs的数量,而且当CNTs体积含量较高,分散均匀性较差时,高温高压烧结技术很难获得高致密度,从而严重削弱CNTs的增强效果和功能特性。虽然已有利用SPS技术制备出高致密度CNTs陶瓷复合材料的报道,但开发低温无压致密化技术的需求依然迫切; 1.3 CNTs基体界面结构设计与控制。 CNTs是一种纳米尺度的增强相,具有独特的表面特性和非常大的比表面积,这就决定了CNTs与基体的接触面积很大,界面结构也与众不同。因此,界面结构对CNTs陶瓷复合材料性能有着非常大的影响,当CNTs体积含量较高时,这种影响程度就更大了。从这个意义上说,从原子尺度上研究CNTs与基体之间的界面结构及其对复合材料性能的影响,以及通过CNTs表面处理等手段进行界面结构设计与控制将是今后工作的重点; 1.4 CNTs陶瓷复合材料微观结构研究。 从目前研究情况看,往往只单纯考虑CNTs含量与复合材料性能的关系,而没有从CNTs和基体相互协同的角度考虑问题,忽略了基体结构以及CNTs结构对性能的影响,从而引起一些错误结论。今后应注意研究CNTs 结构在制备过程中的变化以及由于CNTs引入而引起的基体结构的变化;

碳纳米管作为一维纳米材料

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能……碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。 碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善 ( 氢气被很多人视为未来的清洁能源。但是氢气本身密度低,压缩成液体储存又十分不方便。碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。 在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。有些碳纳米管本身还可以作为纳米尺度的导线。这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。 利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。

半导体物理期末试卷含部分答案

一、填空题 1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

碳纳米管的表面改性 [兼容模式]

碳纳米管的表面改性

1、碳纳米管的简单介绍 碳纳米管是由碳六边形的石墨烯片同轴排列、两端被像富勒烯结构的端帽封口而形成一个微小的管,直径从几个埃到十几个纳米,长度可以到达几个厘米。碳纳米管有单壁碳纳米管和多壁碳纳米管两种主要类型 单壁碳纳米管多壁碳纳米管

CNT的优良性能 ?独特的分子结构:具有显著的电子特性,是构建下一代电子器件和网络颇具吸引力的材料 ?非凡的抗张强度:可用于制造CNT加强纤维和用作聚合物添加剂 ?在分析化学领域的应用包括制作各种特定用途的生物/化学传感器及纳米探针(例如,用作原子力显微镜探针尖,在体检测的生物探针等) 高的比表面积和极强的吸附性碳纳米管作为储?高的比表面积和极强的吸附性:碳纳米管作为储氢、储能材料

CNT 的局限性 ?在电子线路的微型化方面,因为CNT 是极端疏水的,并形成不溶的集合体,很难组装成有用的结构 ?由于CNT 的化学惰性,连接纳米簇之前要首先对其表面进行活化和分散。 ?制备、处理或操作这种纳米工程组分或共聚物时 制备、处理或操作这种纳米程组分或共聚物时,需要先分散和溶解CNT,但CNT 在一般有机溶剂和水中是不溶的。? CNT 的许多潜在应用都需要了解它的光激发态的性能,但CNT 在溶剂中的不溶性限制了对其的定量研究。

2、碳纳米管的表面改性 ?共价功能化:一般采用的手段是用浓酸氧化开口,截成短管,使末端或(和)侧壁的缺陷位 点带上羧基,然后再进行修饰 1)端口功能化 Chen等[1]利用氧化开口的SWNT与SOCl2反应,再与十八胺反应,将长的脂肪链连接到CNT上,实现了CNT在有机溶剂中的溶解。溶解的CNT与卡宾试剂进行溶液反应,实现了管壁卡宾功能化,开辟了碳管管壁的液相化学 Liu等[2]同样是利用氧化开口的SWNT,通过酰化胺化反应将NH2(CH2)11SH接到碳管的端口,进一步实现了金纳米颗粒的固定; 进步实现了金纳米颗粒的固定 Nguyen等[ 3 ]构置垂直排列的CNT阵列纳米电极平台,采用在CNT间隙填充旋压玻璃( spin on glass, SOG)的方法,进行端口选择性氧化、继而采用碳化二亚胺辅助活(spin on glass SOG)进行端口选择性氧化继而采用碳化二亚胺辅助活 化法,实现了CNT阵列的端口核酸功能化

半导体物理试卷a答案

一、名词解释(本大题共5题每题4分,共20分) 1. 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级。正常情况下,此能级为空穴所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。 2. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 3. 空穴:当满带顶附近产生P0个空态时,其余大量电子在外电场作用下所产生的电流,可等效为P0个具有正电荷q和正有效质量m p,速度为v(k)的准经典粒子所产生的电流,这样的准经典粒子称为空穴。 4. 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n0和空穴 △p=p-p0称为过剩载流子。 5.费米能级、化学势 答:费米能级与化学势:费米能级表示等系统处于热平衡状态,也不对外做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势。处于热平衡的系统有统一的化学势。这时的化学势等于系统的费米能级。费米能级和温度、材料的导电类型杂质含量、能级零点选取有关。费米能级标志了电子填充能级水平。费米能级位置越高,说明较多的能量较高的量子态上有电子。随之温度升高,电子占据能量小于费米能级的量子态的几率下降,而电子占据能量大于费米能级的量子态的几率增大。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3 室温下,这些样品的电阻率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙3.有效复合中心的能级必靠近( A ) 禁带中部 B.导带 C.价带 D.费米能级4.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿

碳纳米管的改性

1. 碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层;碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和Ho ()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化 过的碳纳米管在10 g / i o SnCl: ? 2Ho O十40 g /1,Hcl溶液中进行敏化处理40 min ; 3)用敏化后的碳纳米管在0,5 g /i,PdC[z+0. 25 mI。HC溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2. 碳纳米管因其优异的力学、物理性能, 是一种理想的复合材料增强体,但其与基体金属的润湿性较差. 通 过对镀钴前碳纳米管的微波、氧化、敏化和活化处理, 改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点, 成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与金属基体的界面结合力.并用XRD TEM寸镀钻后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别 用4mol/L的NaOl溶液、浓HCI和浓HNO<,3进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步 提高碳纳米管的纯度。浓HNO<,3处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)羧基(一COOH等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处 理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质 都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCI<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了 一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOl溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7. 通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOl对碳纳米管进 行预处理,通过SEM DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03勺混酸处理法与HN0馳理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HIR的对比分析,后者对碳纳米管的改性效果好于前者。TG TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT)值径I0nm或40nm)置于1:3混合的HNO3/H2SC溶液 中,60 C下超声3h o倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22卩m聚碳酸酯微孔滤 膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COO粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V) 对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1) 将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2) 将酰氯基团与乙二胺进行酰胺化反应,制得了表面多胺基官能化的碳纳米管,这种碳纳米管能作为环氧树脂的共固化剂来使用; (3) 将酰氯基团与聚乙二醇进行酯化反应,得到了聚乙二醇接枝的碳纳米管,在有机溶剂中具有很好的分散性能;

2011东南大学半导体物理试卷

共 10 页 第 1 页 东 南 大 学 考 试 卷(卷) 课程名称 半导体物理 考试学期 11-12-2 得分 适用专业 电子科学与技术 考试形式 闭卷 考试时间长度 120分钟 室温下,硅的相关系数:10300.026, 1.510,i k T eV n cm -==? 1932.810c N cm -=? 1931.110v N cm -=?,电子电量191.610e C -=?。 一、 填空题(每空1分,共35分) 1. 半导体中的载流子主要受到两种散射,对于较纯净的半导体 散射起主要作 用,对于杂质含量较多的半导体,温度很低时,______________散射起主要作用。 2.非平衡载流子的复合率 ,t N 代表__________,t E 代表__________,当2i np n -为___________时,半导体存在净复合,当2i np n -_______时,半导体处于热平衡状态。杂质能级位于___________位置时,为最有效复合中心,此杂质称为____________杂质。 3.纯净的硅半导体掺入浓度为17 3 10/cm 的磷,当杂质电离时能产生导电________,此时杂质为_________杂质,相应的半导体为________型。如果再掺入浓度为16 3 10/cm 的硼,半导体是_______型。假定有掺入浓度为15 3 10/cm 的金,则金原子带电状态为__________。 4.当PN 结施加反向偏压,并增到某一数值时,反向电流密度突然__________开始的现象称为击穿,击穿分为___________和___________。温度升高时,________击穿的击穿电压阈值变大。 5. 当半导体中载流子浓度存在_________时,载流子将做扩散运动,扩散流密度与_______成正比,比例系数称为_________;半导体存在电势差时,载流子将做 运动,其运动速度正比于 ,比例系数称为 。 6. GaAs 样品两端加电压使内部产生电场,在某一个电场强度区域,电流密度随电场强度的增大而减小,这区域称为________________,这是由GaAs 的_____________结构决定的。 20() 2t i t i i N C np n U E E n p n ch k T -= ?? -++ ? ??

半导体洁净室的节能对策与分析

半導體廠房的潔淨室建造成本極為昂貴,建造一座8吋晶圓廠(不含製程機台)動輒三、四十億元。除此之外,潔淨室的運轉成本也相當昂貴,光是運轉所需的電費一年就可高達2億元甚或更高。如此高的運轉成本是否都能有效利用?是否有節能的空間?這方面的討論長久以來就是廠務人員與空調界相當重視的課題。尤其在半導體產業獲利率不再居高不下時,如何將能源有效運用而達到cost reduction之目的,就成為不得不做且相當重要的工作了。 潔淨室的特性是溼、度設定點低,而且溫、溼度需要控制在精準規格內,再加上外氣補充量與循環氣量非常龐大,這都是造成潔淨室空調巨額耗能的原因。另外,在潔淨室設計階段對於熱負荷並無法準確估計,又同時考量潔淨室是24小時運轉,空調設備必須有足夠的備載容量才能應付偶發的意外,因此設計上的安全係數都會取得比較寬裕。這些都造成了潔淨室在剛蓋好運轉時,通常都不會是在最佳與最省能的運轉條件,必須日後針對潔淨室運轉狀況發展出適合的節能方案,進一步的執行節能措施與追蹤分析。 潔淨室的耗能分布與節約能源策略的訂定 圖一的半導體廠耗能比例圖是根據胡石政教授針對九家半導體廠耗能調查所做的統計(1),平均而言廠務系統的耗能佔了整廠號能的56.6%,而空調系統約佔了全部耗能的40%是最大的部分。空調系統中又以冰水主機的耗能佔了全廠的27.2%最為可觀,這顯示外氣除濕與潔淨室循環氣流的冷卻是最耗能的部分。圖二是本廠對各系統耗能統計所做的耗能分配圖,大致上與圖一的分布狀況相近,唯製程機台用電的比例較高。 [圖一、半導體廠各系統用電分布狀況(9廠統計)]

各系統用電分布統計圖 [圖二、UMC 8E廠各系統用電分布狀況] 既然空調系統是全廠耗能的最主要來源,因此也是進行節約能源最有潛力的部分,值得對空調系統作進一步的分析與探討,進而找出可以節能的環節,對這些地方擬定相對應的節約能源措施來改善高耗能的狀況。 在前人的文獻中曾探討在潔淨室建造時的節能考量,例如使用FFU系統、變頻器的使用、熱回收冰水主機、高效率pump與低壓損濾網的使用等等(2,3,4,5),這些都是對節能相當有助益的設計,也是最容易達成目標的方法。然而目前園區建廠時通常已經將這些都納入考慮了,FFU與變頻器、高效率冰機與pump都是建廠的首選配備,熱回收冰水主機也都已佔有一定比例;本文的重點將放在建廠完成後,如何調整各系統的運轉模式以達成節約能源之目的,這也是目前廠務人員所追求的目標。此外,在工廠的運轉上,節約能源也就是降低生產成本,本文也將就本廠所推動的一些節能方案及其成效,與各讀者分享與討論。 潔淨室熱負荷的計算 在潔淨室的空調設計中,對於熱負荷的計算是設計潔淨室所需冷凍能力的一個重要考量,也是在進行節能考量時所需要的基本數據。潔淨室的熱負荷主要來自設備機台的發熱,如機台本體、真空pump、電盤等,另外,送風機與FFU的運轉發熱甚或氣流的摩擦壓損等也都是熱負荷的來源。由於其來源複雜,機台的facility data中的耗電量又無法直接與熱負荷畫上等號,以往通常是根據經驗值或以其他類似廠區的資料來作推估。在實際運轉的fab 中,計算出潔淨室的實際熱負荷是管理與節約能源的首要步驟。以下為計算fab實際熱負荷的方法,由此也可推論出fab所需dry coil的冷凍能力,依此步驟求出的潔淨室實際熱負荷,可當成潔淨室運轉參數檢討與節能方案擬定的依據。

碳纳米管的改性

1.碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层; 碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO。和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和H。()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化过的碳纳米管在10 g/i。SnCl:·2H。O十40 g/I,Hcl溶液中进行敏化处理40 min;3)用敏化后的碳纳米管在0,5 g/i,PdC[z+0.25 mI。HCI溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2.碳纳米管因其优异的力学、物理性能,是一种理想的复合材料增强体,但其与基体金属的润湿性较差.通过对镀钴前碳纳米管的微波、氧化、敏化和活化处理,改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点,成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与 金属基体的界面结合力.并用XRD、TEM对镀钴后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别用4mol/L的NaOH溶液、浓HCl和浓HNO<,3>进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步提高碳纳米管的纯度。浓HNO<,3>处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)、羧基(—COOH)等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCl<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOH溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7.通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOH对碳纳米管进 行预处理,通过SEM、DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03的混酸处理法与HN03处理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HlR的对比分析,后者对碳纳米管的改性效果好于前者。TG、TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT) (直径l0nm或40nm)置于1:3混合的HNO3/H2SO4溶液中,60℃下超声3h。倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22μm聚碳酸酯微孔滤膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COOH)粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V)对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1)将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2)将酰氯基团与乙二胺

碳纳米管功能化的途径、机理和表面特征

第43卷第8期 当 代 化 工 Vol.43,No.8 2014年8月 Contemporary Chemical Industry August,2014 收稿日期: 2014-01-16 作者简介: 江盛玲,女,硕士,讲师,研究方向:高分子物理和分析测试。 通讯作者: 吕亚非(1955-),男,研究员,博士,研究方向:功能高分子及其复合材料。E-mail:ylu623@https://www.360docs.net/doc/c34335615.html,。 碳纳米管功能化的途径、机理和表面特征 江盛玲1,齐士成1,员荣平2 ,张孝阿1,李 娟3,吕亚非1 (1. 碳纤维与功能高分子教育部重点实验室,北京化工大学,北京 100029; 2. 北京化工大学高新技术研究院, 北京 100029; 3. 盐城工学院材料工程学院,江苏 盐城 224300) 摘 要:由碳纳米管的功能化有共价键和非共价键两种方法。共价键功能化的机理是通过氧化或还原反应在碳纳米管表面生成极性或反应性基团(表面基团化),继而通过化学反应使碳纳米管表面有机化或聚合物化。非共价键功能化的机理是基于碳纳米管表面的π体系和疏水性可与含π电子的芳烯化合物发生π-π相互作用或与含疏水链的表面活性剂发生物理吸附。本文综述碳纳米管功能化的研究进展,完善了Kim 等提出的碳纳米管功能化表面的代数表示:表面基团化的为1G,表面有机化的为2G,表面聚合物化的为3G。 关 键 词:碳纳米管;共价键功能化;非共价键功能化;表面特征 中图分类号:TQ 127.1 文献标识码: A 文章编号: 1671-0460(2014)08-1425-04 Functionalization Approaches, Mechanisms and Surface Features of Functionalized Carbon Nanotubes JIANG Sheng-ling 1, QI Shi-cheng 1, YUN Rong-ping 2, ZHANG Xiao-a 2, LI Juan 3, LV Y a-fei 1 (1. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029,China; 2. High-Tech Research Institute, Beijing University of Chemical Technology, Beijing 100029,China; 3. College of Materials Engineering, Yancheng Institute of Technology, Jiangsu Yancheng 224300,China) Abstract : Two approaches for surface modification of carbon nanotubes (CNT) are covalent functionalization and non-covalent functionalization. The mechanism of covalent approach is to attach the reactive groups to the surface of CNT by oxidative or reduced reactions firstly, then transforming the groups to organic moieties, or to polymeric chains by grafting from or click reactions. The mechanism of non-covalent functionalization of carbon nanotubes involves the π-π interactions between π- system of carbon nanotubes and π-containing organic moieties or polymers and adsorption of surfactants on surface of carbon nanotubes. The surface features of functionalized carbon nanotubes suggested by Kim et al. can be expressed as the surface containing reactive groups is the 1st generation (1G), the attachment of organic moieties on CNT is 2G and the surface linked with polymeric chains is 3G . Key words : carbon nanotubes (CNT); covalent functionalization; non-covalent functionalization; surface features 1991年Iijima 发现了碳纳米管(CNT )。碳纳米 管包括单壁(MWCNT)和多壁碳纳米管(SWCNT) 是第一个具有管状形态(1维)、直径为纳米尺度的 碳材料(图1)[1]。碳纳米管具有优异电、光、磁等 功能和极高力学性能,在纳米电子学、纳米生物学 和纳米材料学等领域有广泛应用,在纳米材料与技 术发展史中占有重要地位[2,3]。但碳纳米管还具有表 面化学惰性和在范德瓦尔力作用下易团聚的特征, 在制备各种功能和高性能纳米复合材料时需要功能 化(表面改性),以解决基体的界面粘合性和分散性 差的问题。对碳纳米管功能化的研究证明功能化有 利于碳纳米管在聚合物基体中的分散,有利于碳纳 米管在复合材料中起增强和增韧作用。碳纳米管功 能化主要有两种方法[4]: (1)共价键功能化包括氧化、还原等多种化学反应、单体接枝聚合和聚合物接枝反应以及点击化学反应;(2)非共价键功能化包括π-π相互作用和物理吸附。 图1 扫描通道显微镜观察的单壁碳纳米管表面形貌 Fig.1 Morphology of SWNT observed by STM

半导体物理试卷b答案

半导体物理试卷b答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n 和空穴 称为过剩载流子。 △p=p-p 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在III- V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3室温下,这些样品的电子迁移率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙

半导体器件封装的可靠性研究

无锡工艺职业技术学院电子信息工程系 毕业设计论文 半导体器件封装的可靠性研究 专业名称应用电子技术 学生姓名 学号 指导教师鲍小谷 毕业设计时间2010年2月20日~6月12日

半导体器件是经过衬底制备、外延、氧化、光刻、掺杂、封装等工序做出来的。但要保证做出的产品在正式生产后可以让顾客使用,且安全可靠、经久耐用,就必须在研究发展期间就将可靠度设计于产品质量中,因此试验的工作是不可少的。 试验是评估系统可靠度的一种方法,就是将成品或组件仿真实际使用环境或过应力的情况下予以试验,利用过程中失效之左证数据来评估可靠度。当然佐证资料越多,对所估计的可靠度信心也越大,可是人们又不希望采用大量样本来进行试验。若不做试验或做某种程度的试验,就根本不知道产品可靠的程度。 本文主要介绍了可靠性试验在半导体器件封装中是怎样使用的,从而来突出可靠性试验在封装中起着很重要的作用。 关键词:半导体器件;封装类型;可靠性;试验 Abstract Semiconductor substrate after the preparation, epitaxy, oxidation, lithography, doping, packaging and other processes done. However, to ensure that products made after the official production for customers to use, and safe, reliable, and durable, it is necessary to research and development in reliability during the design will be in product quality, and therefore the work of test is indispensable. Trial is to assess the system reliability of the method is that simulation will be finished products or components of the actual use of the environment or the circumstances have to be stress test, using the process of failure data to assess the reliability of proof. Of course, the more supporting information, the reliability of the estimate the greater the confidence, but people do not want to adopt a large number of samples tested. Do not test or do some degree of testing, simply do not know the extent of product reliability. This paper introduces the reliability test in semiconductor devices is how to use the package, and thus to highlight the reliability test in the package plays a very important role. Key words: Semiconductor devices; Package type; Reliability; Trial

相关文档
最新文档