变速箱液压系统振动与噪声分析

变速箱液压系统振动与噪声分析
变速箱液压系统振动与噪声分析

汽车变速器的振动与噪声测试方法探讨

面?分类?数据库三成功登录的用户点击不同的分类即可跳转到不同的列表界面三 (3)新闻查看功能,录用户通过点击新闻列表界面的列表项三程序页面名称为newstext.xml三登录用户通过点击新闻列表的列表项即可跳转到详细信息查看界面,在该界面显示所选中的新闻的详细信息三 (4)图片查看,功能为实现详细新闻显示界面图片的查看三 登录用户在查看新闻的详细信息时,若该新闻有图片则可以点击图片可以调用系统的图片查看软件,进行图片的查看三(5)附件下载:详细新闻显示界面附件的下载三 5系统界面设计 系统用户界面是指用于和用户交流的外观二部件和程序等等三系统界面的设计,既要从外观上进行创意以到达吸引眼球的目的,还要结合图形和版面设计的相关原理,从而使得系统的设计变成了一门独特的艺术三通常应遵循以下几个基本原则: 5.1用户向导 设计用户界面首先要明确到底谁是使用者,要站在用户的观点和立场上来考虑设计软件三要作到这一点,必须要和用户来沟通,了解他们的需求二目标二期望和偏好等三设计者要清楚,用户之间差别很大,他们的能力各有不同三 5.2简单原则 简洁和易于操作是界面设计的最重要的原则三毕竟,软件建设出来是用于用户来查阅信息和使用服务三不需要在界面上设置过多的操作,堆集上很多复杂和花哨的图片三该原则一般的要求,是操作设计尽量简单,并且有明确的操作提示;软件所有的内容和服务都在显眼处向用户予以说明等三 5.3和谐与一致性 通过对系统中的各种元素使用一定的规格,使得设计良好的界面看起来应该是和谐的三或者说其应该看起来像一个整体三一致的结构设计,可以让浏览者对软件的形象有深刻的记忆;一致的导航设计,可以让浏览者迅速而又有效的进入在软件中自己所需要的部分;一致的操作设计,可以让浏览者快速学会在整个软件的各种功能操作三破坏这一原则,会误导浏览者,并且让整个软件显的杂乱无章,给人留下不良的印象三当然,一致性的设计并不意味着刻板和一成不变,在不同栏目下使用不同的风格,或者随着时间的推移不断的改版升级,会给浏览者带来新鲜的感觉三 6总结 智能建筑信息发布管理系统依据上述总体设计原则进行设计,在终端上实现智能建筑物信息管理中新闻二通知等沟通事务以及部分无纸化办公三大大提高了智能化服务的效率,避免了因沟通延误而造成的用户损失三 收稿日期:2015-2-19 作者简介:李明君(1981-),男,黑龙江牡丹江人,讲师,本科,研究方向为智能建筑三 汽车变速器的振动与噪声测试方法探讨张博强(郑州宇通客车股份有限公司,河南郑州450016) 【摘要】在我国经济发展中,汽车制造产业占据至关重要的地位。而消费者最为关心的是汽车性能的好坏和质量的优劣。作为一辆汽车的重要组成部分之一,汽车变速器的好坏尤为关键,它对汽车减震和汽车噪音的减小作用十分明显。本文从分析汽车变速器的震动与噪声的主要因素开始,并深入探讨减少这些因素对汽车性能影响的主要办法。 【关键词】汽车;变速器;振动;噪声 【中图分类号】U643【文献标识码】A【文章编号】1006-4222(2015)06-0235-02 由于汽车变速器对汽车减震和降低噪声的效果十分明显,所以对汽车变速器的深入研究十分重要三然而由于汽车变速器结构的复杂性,以及变速器与汽车各部分之间的配合效果与兼容性问题,对变速器性能的研究并不是一个简单的问题,想要提出一种行而有效的解决办法也不是一件容易的事情三以下是影响汽车变速器的振动和噪声主要因素,并对汽车变速器的振动与噪声测试方法进行了探究三 1影响汽车变速器的振动和噪声主要因素汽车的变速器结构较为复杂,它主要由齿轮二轴承以及箱体等组成三研究汽车变速器的振动与噪声问题,首先就要对变速器的这三个重要部位进行研究三由于在汽车运动过程中,变速器持续工作,就会因为不同的原因产生各种各样的振动和噪声三同时,由于变速器在装配过程中的各种偏差,受到的压力也不一样,因此变速器的振动和噪声的原因十分复杂,接下来本文将从轴承二齿轮和箱体三个方面来分析影响汽车变速器的振动和噪声的主要因素三 1.1汽车变速器轴承故障 汽车变速器轴承的优劣对汽车振动的影响十分明显,而振动的剧烈又会造成巨大的噪声,同时还可能引起汽车硬件的损坏三因此汽车变速器轴承的质量问题是汽车技术研究者和汽车制造商深入研究的一个问题,对汽车变速器轴承故障的检测也尤为重要三目前国内外许多汽车技术研究者都采用了专门的仪器来检测汽车变速器轴承故障三然而这些仪器对使用环境的要求十分苛刻,同时价格昂贵,并不适用于大多数情况,只能在实验室进行汽车试验等少数情况下使用三当汽车的变速器的轴承发生故障时,轴承旋转就会给汽车带来较大的振动,从而产生很大的噪声,同时,由于轴承的故障会压迫到齿轮的旋转,齿轮会因此产生严重的磨损,甚至会断齿三因此,有效地诊断出汽车变速器的轴承故障对汽车的减振和降噪十分重要三

齿轮传动噪声产生原因及控制

齿轮传动噪声产生原因及控制 摘要:结合多年的实际工作经验,分析齿轮传动噪音的产生的原因,同时,就如何控制和减少噪音,提出了一些比较实用的方法,仅供相关人士参考。 关键词:齿轮传动、噪音、消除、共振、渐开线 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,频率越高,产生的噪音越大。 1.6 润滑的影响 对啮合齿轮齿面润滑良好可以减少齿轮的振动力,它与润滑的方法有关。据有关资料介绍,齿轮箱中企图增加润滑油的数量,提高润滑油面的高度或用润滑粘度较高的润滑油来减少齿轮箱的振动和噪音其收效甚少。若采用齿轮啮合面上充分注入润滑的方法进行强制性润

液压系统是产生噪声及解决办法

液压系统是产生噪声及解决办法—摘至天涯农机网 1、空气侵入液压系统是产生噪声的主要原因。因为液压系统侵入空气时,在低压区其体积较大,当流到高压区时受压缩,体积突然缩小,而当它流入低压区时,体积突然增大,这种气泡体积的突然改变,产生“爆炸”现象,因而产生噪声,此现象通常称为“空穴”。针对这个原因,常常在液压缸上设置排气装置,以便排气。另外在开车后,使执行件以快速全行程往复几次排气,也是常用的方法; 2、液压泵或液压马达质量不好,通常是液压传动中产生噪声的主要部分。液压泵的制造质量不好,精度不符合技术要求,压力与流量波动大,困油现象未能很好消除,密封不好,以及轴承质量差等都是造成噪声的主要原因。在使用中,由于液压泵零件磨损,间隙过大,流量不足,压力易波动,同样也会引起噪声。面对上述原因,一是选择质量好的液压泵或液压马达,二是加强维修和保养,例如若齿轮的齿形精度低,则应对研齿轮,满足接触面要求;若叶片泵有困油现象,则应修正配油盘的三角槽,消除困油;若液压泵轴向间隙过大而输油量不足,则应修理,使轴向间隙在允许范围内;若液压泵选用不对,则应更换; 3、溢流阀不稳定,如由于滑阀与阀孔配合不当或锥阀与阀座接触处被污物卡住、阻尼孔堵塞、弹簧歪斜或失效等使阀芯卡住或在阀孔内移动不灵,引起系统压力波动和噪声。对

此,应注意清洗、疏通阴尼孔;对溢流阀进行检查,如发现有损坏,或因磨损超过规定,则应及时修理或更换; 4、换向阀调整不当,使换向阀阀芯移动太快,造成换向冲击,因而产生噪声与振动。在这种情况下,若换向阀是液压换向阀,则应调整控制油路中的节流元件,使换向平稳无冲击。在工作时,液压阀的阀芯支持在弹簧上,当其频率与液压泵输油率的脉动频率或与其它振源频率相近时,会引起振动,产生噪声。这时,通过改变管路系统的固有频率,变动控制阀的位置或适当地加蓄能器,则能防振降噪。 5、机械振动,如油管细长,弯头多而未加固定,在油流通过时,特别是当流速较高时,容易引起管子抖动;电动机和液压泵的旋转部分不平衡,或在安装时对中不好,或联轴节松动等,均能产生振动和噪声。对此应采取的措施有:较长油管应彼此分开,并与机床壁隔开,适当加设支承管夹;调整电动机和液压泵的安装精度;重新安装联轴节,保证同轴度小于0. 1MM等。 液压换向回路 (1)用三位四通换向阀换向的回路 换向阀在左位和右位时,活塞分别向右和向左运动,换向阀在中位时,活塞停止不动,液压泵卸荷。也可以用其他滑阀机能的换向阀,使回路具有其他功能。本回路中换向阀回油口接一个背压阀,作用是保持电液换向阀所需的控制其液动阀的压力。 (2)用二位四通换向阀换向的回路 用二位换向阀换向,一般来说,液压缸活塞只能停在行程的两端位置。当采用电磁阀时,换向时间短,对于多缸系统易于实现自动循环。当运动部件惯量较大,速度较快时,换向时容易产生冲击。

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

齿轮异响分析

工艺

主持人:陈晓玉/ 工艺 、F b 、±F px 等几个评定指标控制;4)齿轮副侧隙,由 箱体中心距和齿厚减薄量控制。 对每一对齿轮都必须有上述4项基本要求,而且根据使用工作条件不同,这4项要求也各不相同。当然,这几个方面也并非单一条件起作用,它们之间既有一定联系,又有主次之分。就摩托车发动机而言,传动平稳性要求和齿轮幅侧隙要求应明显高于其它2个公差组的要求。2.1齿形的影响 用同一台发动机,在检测初级驱动齿轮完全合格的情况下,更换初级从动齿轮,在转速相同的条件下,判定噪声出现程度,分为无、轻微、中等、严重4级。 其结果为: 1)齿形误差影响最明显;2)齿形误差比齿向误差影响明显; 3)齿形误差比基节极限偏差影响明显。齿形参数对噪声的影响如表2所示。 表2 齿形、齿向、基节对噪声的影响组别 件号 f f F 对齿厚的影响:△E S =2△f a tg ?a?a3Y??3YD??? 2.6齿面粗糙度的影响 笔者在试验中还发现,个别齿轮在检测中虽各项检测参数均合格,齿形、齿向的检测曲线也在公差范围内,但曲线波动大,可见齿面粗糙度和磕碰、毛刺也是产生噪声异响的一个重要方面。 3解决措施 由于齿轮轮齿存在制造和安装误差、齿轮弹性变形、扭转变形、热变形等,均会使齿轮在啮合过程中产生冲击、振动和偏载,而靠提高齿轮制造和安装精度来改善齿轮的运转质量,又会增加齿轮的制造成本。过去人们总是力求使齿轮的精度尽可能地接近理论齿形,通过实践,采用齿顶和齿根修缘、齿向修形后,能有效地改善轮齿的啮合性能,提高运转平稳性及承载能力,降低噪声和振动,延长使用寿命。3.1从齿形方面入手3.1.1齿形的优化设计 齿形修形的基本原则:a )根据齿轮的材料、模数、负载大小及精度等,选取适当的修形量,一般在0.007~0.03mm 范围内[2]。修形量小,齿轮的制造误差大于齿形修形量,达不到目的;修形量大,重合度系数下降,适得其反。

液压系统中噪声产生原因及解决措施

液压系统中噪声产生原因及解决措施 1、空气侵入液压系统是产生噪声的主要原因 因为液压系统侵入空气时,在低压区其体积较大,当流到高压区时受压缩,体积突然缩小,而当它流入低压区时,体积突然增大,这种气泡体积的突然改变,产生“爆炸”现象,因而产生噪声,此现象通常称为“空穴”。针对这个原因,常常在液压缸上设置排气装置,以便排气。另外在开车后,使执行件以快速全行程往复几次排气,也是常用的方法。 2、液压泵或液压马达质量不好,通常是液压传动中产生噪声的主要部分 液压泵的制造质量不好,精度不符合技术要求,压力与流量波动大,困油现象未能很好消除,密封不好,以及轴承质量差等都是造成噪声的主要原因。在使用中,由于液压泵零件磨损,间隙过大,流量不足,压力易波动,同样也会引起噪声。面对上述原因,一是选择质量好的液压泵或液压马达,二是加强维修和保养,例如若齿轮的齿形精度低,则应对研齿轮,满足接触面要求;若叶片泵有困油现象,则应修正配油盘的三角槽,消除困油;若液压泵轴向间隙过大而输油量不足,则应修理,使轴向间隙在允许范围内;若液压泵选用不对,则应更换。 3、溢流阀不稳定,引起系统压力波动和噪声 如由于滑阀与阀孔配合不当或锥阀与阀座接触处被污物卡住、阻尼孔堵塞、弹簧歪斜或失效等使阀芯卡住或在阀孔内移动不灵,对此,应注意清洗、疏通阴尼孔;对溢流阀进行检查,如发现有损坏,或因磨损超过规定,则应及时修理或更换。 4、换向阀调整不当,使换向阀阀芯移动太快,造成换向冲击,因而产生噪声与振动 在这种情况下,若换向阀是液压换向阀,则应调整控制油路中的节流元件,使换向平稳无冲击。在工作时,液压阀的阀芯支持在弹簧上,当其频率与液压泵输油率的脉动频率或与其它振源频率相近时,会引起振动,产生噪声。这时,通过改变管路系统的固有频率,变动控制阀的位置或适当地加蓄能器,则能防振降噪。 5、机械振动,产生振动和噪声 如油管细长,弯头多而未加固定,在油流通过时,特别是当流速较高时,容易引起管子抖动;电动机和液压泵的旋转部分不平衡,或在安装时对中不好,或联轴节松动等,对此应采取的措施有:较长油管应彼此分开,并与机床壁隔开,适当加设支承管夹;调整电动机和液压泵的安装精度;重新安装联轴节,保证同轴度小于0.1MM等。

液压系统噪声分析与排除

液压系统噪声分析与排除 样本:贵矿 WLY100型液压挖掘机 一、A8V系列柱塞泵的故障噪声 (1)、吸空现象是造成液压泵噪声过高的主要原因之一。当油液中混入过量空气,就易在高压区形成气穴现象,并以压力波的形式传播出去,造成油液振荡,导致系统产生气蚀噪声。造成液压泵吸空的原因有:1)液压泵的滤油器、进油管堵塞或油液粘度过高,造成液压泵进油口处真空度过高,使空气渗入。2)液压泵、先导泵轴端油封损坏或进油管密封不良造成空气进入。3)油箱油位过低,液压泵进油管直接吸空。当液压泵工作中出现较高噪声时,应首先对上述部位进行检查,发现问题及时处理。 (2)、液压泵内部元件过度磨损,如柱塞泵上的缸与配油盘、柱塞与柱塞孔等配合件磨损、拉伤,从而造成液压泵内泄漏严重,这样会在液压泵输出高压、小流量油液时产生流量脉动,引发较高噪声。此时可适当加大先导系统变量机构的偏角,以改善内泄漏对泵输出流量的影响。液压泵的伺服阀阀芯、控制流量的活塞也会因局部磨损、拉伤,使活塞在移动过程中脉动,造成液压泵输出流量和压力的波动,从而在泵出口处产生较大振动和噪声。此时可对磨损、拉伤严重的元件进行刷镀研配或更换处理。 (3)、液压泵的配油盘也是易引发噪声的重要部件之一。配油盘在使用中,因表面磨损或油泥沉积在卸荷槽开启处,都将使卸荷槽变短,因改变了卸荷位置而产生困油现象,引发较高噪声。在正常修配过程中,经平磨修复的配油盘也会出现卸荷槽变短的后果,此时如不适当修长,也将产生较大噪声。在装配过程中,配油盘的大卸荷槽一定要装在泵的高压腔,并且其尖角方向与液压缸的旋向相对,否则也将给系统带来较大噪声。 二、溢流阀的故障噪声 由溢流阀产生的噪声一般多为刺耳的啸叫声,属高频噪声。主要是由于先导阀性能不稳定而产生的,即为先导阀的前腔压力高频振荡引起空气振动而产生的噪声。引发的原因主要有:1)油液中混入过量空气,在先导阀前腔内形成气穴现象,以致引发高频噪声。此时应及时排尽已进入的空气,并防止外界空气重新进入。2)针阀在使用过程中,因频繁开启而过度磨损,使针阀锥面与阀座不密合,造成先导流量不稳定,产生压力波动而引发噪声,此时应及时对针阀进行研磨修复或更换。3)先导阀弹簧因疲劳变形造成调压功能不稳定,因压力波动大而引发噪声。此时应将损坏的弹簧进行更换。 三、柱塞马达产生的故障噪声 柱塞马达产生噪声的原因与柱塞泵相似,可按柱塞泵的故障噪声分析过程进行检查、排除。一般首先检查进油管是否破损或松动,然后检查内部零件是否过度磨损,卸荷槽位置是否变化等。 四、液压缸的故障噪声 造成液压缸产生故障噪声的原因主要有:1)油液中混有空气或液压缸中空气未完全排尽,在高压作用下产生气穴现象而引发较大噪声。此时应尽量减少空气进入和完全排尽已进入的空气。2)缸头油封过紧或活塞杆弯曲,在运动过程中也会因别劲产生噪声,此时只须及时更换油封或校直活塞杆即可。 五、管路产生的噪声 管路死弯过多或固定卡子松脱也能产生振动和噪声。因此在管路布置上应尽量避免死弯,对松脱的卡子需及时拧紧。

外啮合齿轮泵的振动和噪声

外啮合齿轮泵振动和噪声研究 液压技术发展的趋势为高压、大流量、小型化和集成化,而振动和噪声是液压技术向高压、高速发展的主要障碍。实际调查发现,在液压装置中产生噪声的液压元件和传递噪声的液压元件是不同的。 液压泵产生噪声的名次居第一位,传递噪声的名次居第二位。两者是液压系统主要的噪声源,大约有70%的振动和噪声起源于泵。而振动和噪声降低了齿轮泵工作的平稳性和寿命,对齿轮的工作性能、寿命和强度都是有害的。因此研究和分析液压泵振动和噪声的产生机理,对减小与降低振动和噪声,并改善液压系统的性能,有着积极而深远的意义。 1外啮合齿轮泵振动和噪声国内外研究发展情况 近年来,一般工业机械的噪声,已作为工业公害而引起了人们的注意。低噪声是在选泵中很重要的因素之一。国际标准化组织(ISO)已经提出了噪声标准,液压传动中的噪声级别一般规定不超过70~80dB。对于振动和噪声的控制与研究,除了通过减振的方法来降低噪声外,还在研究如何控制油压泵的脉动和减少控制阀的非线性特性。而且为了降低空穴对噪声和振动的影响,正在积极研究空穴现象。十年来,各国进行了大量的研究,而且已经有了相当的发展。 近年来,国外出现一种新型的非渐开线圆弧齿廓的齿轮泵,与渐开线齿轮相比较,它具有齿数少、体积小、无根切、无脉动、噪声小和传动平稳等特点,被认为是当前最佳的齿形。由于克服了困油造成的

轴承附加载荷,减少了机件的磨损、振动和噪声。日本岛津制造所和我国均已采用这种齿轮,其噪声可降低13dB(A),而且其他性能也很优越。 我国的噪声研究工作,是在20世纪50年代末期开始的,到了70、80年代,噪声研究工作才蓬勃发展,并取得了不少成果。马大猷、李沛兹等提出的微穿孔吸声结构和小孔喷注噪声理论等是这方面的代表。一般控制噪声的手段,如吸声、隔声、减振、隔声罩、护耳器等已普遍使用。 2外啮合齿轮泵噪声的产生机理 外啮合齿轮泵产生噪声的主要原因如下: 2·1压力脉动和流量脉动产生噪声 液压泵的流量脉动是泵的固有特性。泵在工作时,不管是吸油腔还是压油腔的体积都会产生周期性的变化,泵的流量也将发生周期性变化,引起油液的压力脉动,从而产生液体的振动和噪声。这种脉动的幅度和频率取决于液压泵的转速、流量和工作腔数(齿数、叶片数、柱塞数)。同时,由于泵的制造质量不高,压油腔的油液向吸油腔泄漏,也会产生压力脉动及噪声。 2·2困油现象产生的噪声 为了保证齿轮泵的齿轮平稳的啮合运转,必须使齿轮的重叠系数略大于1,即在前一对齿轮尚未脱离啮合之前,后一对齿轮进入啮合。当两对齿轮同时啮合时,由于齿轮的端面间隙很小,因此这两对齿之间的油液与泵的吸、排油腔均不相通,从而形成一个封闭容积。齿轮转动

变速器振动信号的测量与分析方法

变速器是机械设备的重要零部件,与机械的平稳运行密切相关,因此,设备拥有者会十分注重变速器的正常运行。为了监控变速器的状态,学者们也提出了不少针对变速器产生振动信号的测量与分析方法。 为了保证变速器试验台能够安全正常可靠的运行,往往都会采用一些监测手段,连续的对变速器进行状态监测,并且用高速自动化的数据采集系统采集测量信号并处理:运行状态的监控是故障诊断的基础。在变速器的状态监控中最常见的有振动监测、噪声监测、温度监测、油液分析监测,振动信号能更迅速、更真实、更全面的反映出变速器的运行状态,能够很好的反映出齿轮、轴系、轴承的故障性质,采用振动监测作为状态监控与故障诊断的手段。变速器振动信号中携带着大量的运行状态信息,当变速器出现故障时,振动信号的一般就会出现能量分布以及频率成分发生变化的现象,通过这些变化来判断变速器运行状态及其故障性质与故障部位:以振动信号为手段进行状态监控,首先要采用正确合理的方式来拾取振动信号,例如对象的选择、传感器及其布置位置的选择等等,传感器拾取的振动信号通常是杂乱无章的,要对其进行预处理去除干扰,之后选取合适

的分析方法对振动信号进行变换处理,获得最敏感最有用的特征参数,以此为监控指标,对变速器进行状态监控。 变速器容易产生故障失效,因此,在使用过程中需要经常对其进行检测,但是变速器的测试过程比较繁琐,如果专门派人做变速器检测,将耗费大量人力,不如购置一台专业的变速器测试系统,将专业的工作交给专业的人去做,既节约人力又提升效率。四川志方科技有限公司研发的减速器测试系统采用模块化设计,依据国内外最新测试标准,结合用户测试需求,可完成各种精密减速器的生产出厂、性能测试及科研、教学演示。

Manatee振动噪声分析

Manatee软件电磁振动噪声分析 北京天源博通科技有限公司 褚占宇

利用Manatee软件分析丰田Prius2004电机电磁及振动噪声 Manatee软件是由法国EOMYS公司研发的,可以计算电机的电磁振动噪声的软件。北京天源博通科技有限公司是该软件在中国的代理商。 本文主要是利用Manatee软件分析丰田Prius2004款电机的电磁及振动噪声。 表1是丰田Prius2004电机的主要尺寸参数。 表1电机主要的参数 名称数据 定子外径/mm269.24 定子内径/mm161.9 气隙长度/mm0.75 铁心长度/mm83.82 转轴外径/mm110.64 极数/槽数8/48 1建模流程 首先打开Manatee软件。如下图所示。 选择电机类型,点击New Machine按钮,选择要编辑的电机类型。

在电机类型里面选择BPMSM,为内置式的永磁电机类型。P中输入极对数为4(注意这里是极对数不是极数)。 接着设置Machine Dimensions选项,在这里设置电机的定子外半径为134.62mm,定子内半径为80.95mm,转子外半径80.2mm,转子内半径为55.32mm。

计算出气隙长度为0.75mm。 设置定子轴向长度,定子硅钢片轴向长度为83.82,硅钢片的叠压系数设置为0.95。没有径向通风道和轴向通风口。 设置定子槽型,软件提供了多种槽型,选择相应的槽型进行设置。在这里选择槽型11,以下为具体的槽型尺寸参数。

当设置好后,可以点击Preview按钮,生成如下图所示。

定子绕组设置,Prius2004为3相双层,分布短距,绕线间距为5,并绕根数13,并联之路数1,每线圈的串联匝数9。 点击next按钮,选择3相双层,绕组跨距为5。 点击Preview按钮,生成如下图所示。 点击next按钮,设置并联之路数1,每线圈的串联匝数9。

液压系统的振动、噪声诊断与排除

液压系统的振动、噪声诊断与排除 倪元喜马洪茹李学良 摘要:该文主要以液压元件的结构及液压系统的各组成要素为要点分析了液压系统的振动及噪声的产生原因,从原理及实际故障现象等多角度地阐述了该现象的成形,并提 出了部分改善措施。 关键词:噪声、振动、气蚀、液压冲击、判断、处理 一、前言 液压系统是以液体为工作介质进行能量的传递以实现力、位移、速度等机械量的输出,它由液压动力源、各种控制阀、执行机构及其他辅助元件等组成。液压系统在运行中会发出和谐有节奏的声音,而振动、噪声一旦超过了正常状态,则表明系统存在异常。振动、噪声不仅对人的身心健康有害,而且影响系统的工作性能和液压元件的寿命,应及时消除。随着液压设备的高压、高速、大功率化,降低振动和噪声已成为目前液压技术的重大课题之一。 二、振动与噪声的来源 噪声按照表现形式可分为两种:其一是连续不断地发出嗡嗡声,有时还伴随其他杂音;另一种是断续十分刺耳的吱嗡声。按形成原因又可分为机械振动噪声和流体振动噪声。 1、机械振动噪声 由于机械部件的运动或相互间的作用,产生振动而激发的噪声,称为机械噪声。机械振动噪声主要是由于零件之间发生接触、冲击和振动引起的。 ⑴、回转体不平衡。电动机、液压泵、液压马达等高速回转体,如果转动部分不平衡则会产生周期性的不平衡离心力,从而引起转轴的弯曲振动,因而产生噪声。 ⑵、联轴节不同轴。电动机与液压泵不同轴致使联轴器偏斜也会产生振动和噪声。实验证明,当两者同轴度为0.02mm时,就会产生振动,超过0.08mm时,振动噪声较大。 ⑶、电动机噪声。电动机除机械噪声外,还会产生通风噪声(如冷却风扇声和风声)和电磁噪声(电动机通电后的电磁噪声和蝉鸣声)。 ⑷、轴承噪声。轴承在工作过程中也会发出噪声,滑动轴承噪声低于滚动轴承。同一类型的轴承,其内径越大,引起的噪声就越大,内径每增加5mm,其振动级增大1~2dB(分贝)。

液压噪声分析

液压设备在给人们带来诸多方便同时,液压系统的泄漏,振动和噪声,不易维修等缺点,也为液压系统的应用造成了障碍。尤其在现今随着技术水平不断提高,液压系统的噪声和振动也随之加剧,已经成为了限制液压传动技术发展的重要因数,因此,研究液压系统的噪声和振动有着积极的意义。 1,振动和噪声的危害 液压系统中的振动和噪声是两种并存的有害现像,从本质上说,它们是同一个物理现象的两个方面,两者互相依存,共同作用。随着液压传动的运动速度不断增加和压力不断提高,振动和噪声也势必加剧,振动容易破坏液压元件,损害机械的工作性能,影响到设备的使用寿命,而噪声则可能影响操作者的健康和情绪,增加操作者的疲劳度。 2,振动和噪声的来源 造成液压系统中的振动和噪声来源很多,大致有机械系统,液压泵,液压阀及管路等几方面。 机械系统的振动和噪声 机械系统的振动和噪声,主要是由驱动液压泵的机械传动系统引起的,主要有以下几方面。 1,回转体的不平衡在实际应用中,电机大都通过联轴节驱动液压泵工作,要使这些回转体做到完全的动平衡是非常困难的,如果不平衡力太大,就会在回转时产生较大的转轴的弯曲振动而产生噪声。 2,安装不当液压系统常因安装上存在问题,而引起振动和噪声。如系统管道支承不良及基础的缺陷或液压泵与电机轴不同心,以及联轴节松动,这些都会引起较大的振动和噪声。 2.2液压泵(液压马达)通常是整个液压系统中产生振动和噪声的最主要的液压元件. 液压泵产生振动和噪声的原因,一方面是由于机械的振动,另一方面是由于液体压力流量积聚变化引起的. 1,液压泵压力和流量的周期变化 液压泵的齿轮,叶片及拄塞在吸油,压油的过程中,使相应的工作产生周期性的流量和压力的过程中,使相应的工作腔产生周期的流量和压力的变化,进而引起泵的流量和压力脉动,造成液压泵的构件产生振动,而构件的振动又引起了与其相接触的空气产生疏密变化的振动,进而产生噪声的声压波传播出去. 2,液压泵的空穴现象液压泵在工作时,如果液压油吸入管道的阻力过大,此时,液压油来不及充满泵的吸油腔,造成吸油腔内局部真空,形成负压.如果这个压力恰好达到了油的空气分离

2011005646_噪音振动分析系统在变速器校验台上的应用

噪音振动分析在变速器校验台上的应用 摘要:传统的变速器校验台使用声级计测量变速器的噪音并通过校验人员人工判别变速器校验是否合格,由于环境噪音的客观存在和操作人员的主观因素导致校验结果可靠性不高。在江铃变速器校验台使用噪音振动分析系统,此系统通过加速度传感器将变速器表面的振动信号通过一系列数学变换转换为噪音能量,并使用阶次分析和频谱图直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。噪音振动分析系统的引入大幅提高了变速器校验的科学性和可靠性。 关键词:噪音振动系统阶次分析频谱图变速器校验 1.概述 现代工程信号处理技术的高速发展,使得采用信号分析在变速器乃至汽车整车NVH(振动、噪音及舒适性)测试方面的应用也越来越广泛,其中频谱分析便是其中最常用的方法之一。频谱分析的数学基础是离散傅里叶变换(DFT)。该方法的一般过程是通过传感器以固定的采样频率采集时域信号,然后通过傅里叶变换得到频域信号,或者说频谱。由于平稳旋转机械中相关部件如齿轮、电动机等它们的工作频率(即特征频率)相对稳定,因此在频谱图可以很直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。然而,当旋转机械的转速不平稳时则难以在频谱上判断出各运动部件的状态。例如在变速器总成加载校验中,就存在加载的过程同时转速也在不断变化的校验过程,这就需要新的处理方法。阶次分析就是近些年发展起来的,针对非稳态旋转机械状态检测和故障分析有效方法之一。 在江铃变速器校验台上使用的是德国Discom公司的Rotas噪音振动分析系统,通过加速度传感器将变速器的振动信号通过一系列数学变换转换为噪音能量并使用阶次分析将变速器输入轴、中间轴、输出轴的噪音信号分离,便于变速器的诊断。 2.阶次分析的基本原理 2.1.阶次的概念 阶次概念的提出,是为区别于传统频谱分析概念。阶次分析的本质上是基于参考轴转速的频率分析。 阶次O、频率f与参考轴转速n1之间的关系为: O =f/ n1 (1) 齿轮啮合频率的计算公式为:

振动噪声分析论文

汽车噪声主动及被动控制方法简述1前言 随着汽车工业的发展,汽车给人类的出行带来极大的便利,但同时也带来了噪声污染等社会问题。汽车噪声过大会影响汽车的舒适性、语言清晰度,甚至影响驾驶员和乘客的心理、生理健康,如果驾驶员长期处于噪声环境中容易引起疲劳造成交通事故和生命危险;同时,汽车噪声过大也会影响路人的身心健康,人们长时间接触噪音,会耳鸣、多梦、心慌及烦躁,或直接引起听力下降甚至失聪,其中由车辆噪音间接引发的交通事故,也并不鲜见。因此对汽车噪声进行控制就显得非常必要了。 为了治理汽车噪声污染,各国均制定有关标准,我国国家环境保护总局和国家质量监督检验检疫总局于2002年1月4 日联合发布了GB 1495—2002《汽车加速行驶车外噪声限值及测量方法》强制性标准,代替GB 1495—1979,并于2002年10 月1日实施。 表1 国内外车辆行驶噪声限值标准的比较(单位:dBA) 新标准是在参考ECE RS1《关于在噪声方面汽车(至少有4个车轮)型式认证的统一规定》基础上制定的。新标准的出台,改变了过去标准不科学、测试项目不完整的局面,为治理汽车噪声污染提供了有效的控制手段,对完善我国的汽车

噪声标准体系将起到积极的推动作用。 2汽车噪声来源 汽车是一个包括各种不同性质噪声的综合噪声源,按噪声产生的部位,主要分为与发动机有关的噪声和与排气系统有关的噪声以及与传动系统和轮胎有关的噪声。 (1)发动机发动机噪声包括燃烧、机械、进气、排气、冷却风扇及其他部件发出的噪声。在发动机各类噪声中,发动机燃烧噪声和机械噪声占主要成分。燃烧噪声产生于四冲程发动机工作循环中进气、压缩、做功和排气四个行程,快速燃烧冲击和燃烧压力振荡构成了气缸内压力谱的中高频分量。燃烧噪声是具有一定带宽的连续频率成份,在总噪声的中高频段占有相当比重。 表2 发动机机械噪声类型 机械噪声是指发动机工作时,各零件相对运动引起的撞击,以及机件内部周期性变化的机械作用力在零部件上产生的弹性变形所导致的表面振动而引起的噪声,包括活塞敲击声、气门机构声、正时齿轮声。燃烧噪声和机械噪声都是有发动机本体发出的,并且随着发动机转速的增加,噪声也增加。一般情况下,低转速时燃烧噪声占主导地位,高转速时机械噪声占主导地位。空气动力噪声是指汽车行驶中,由于气体扰动以及气体和其他物体相互作用而产生的噪声。在发动机中,它包括进气噪声、排气噪声和风扇噪声。实践表明,减少振动是降低噪声的根本措施。增加发动机结构的刚度和阻尼,是减少表面振动的办法,从而达到

起重机械液压系统噪声的危害及预防(新编版)

起重机械液压系统噪声的危害及预防(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0086

起重机械液压系统噪声的危害及预防(新 编版) 1.液压泵 液压泵流量脉动引起泵出口及管路的压力脉动,产生流体噪声;困油区的压力冲击及柱塞泵的倒流都会产生噪声,如斜盘式轴向柱塞泵(零开口对称配流盘)的缸体旋转过程中,位于上死点(下死点也有冲击)柱塞腔内的压力油在与排油腔接通的瞬间,从吸油状态突然变为排油状态,会产生很大的压力冲击,排油腔液体向柱塞腔倒流,使原有的流量脉动更加剧烈,发出噪声;在大气压下溶解于油液的空气,当其压力降到空气分离压力时,空气将从油液中分离出来,形成气泡,带有气泡的油液进入泵的高压腔时,气泡被击破,形成局部的高频压力冲击,从而产生噪声;压力、排量和转速的变化均会引发噪声。

降噪措施是:合理设计配流盘困油区;提高液压泵的自吸性能, 采用直径较大的吸油管;采用大容量的吸油滤油器,防止液压泵吸空,在保证所需功率和流量的前提下,尽量选用较低转速的液压泵;减少泄漏;在泵的出口安装消声器等。 2.控制阀 最常见的是因气穴现象而产生的“嘘嘘”高速喷流声。油液通过阀口节流将产生200Hz以上的噪声;在喷流状态下,油液流速不均匀形成涡流或因液流被剪切产生噪声。 解决办法是,提高节流口的下游背压,使其高于空气分离压力的临界值,一般可用二级或三级减压的办法,以防产生气穴现象。 液压泵的压力脉动会使阀产生共振(阀开口很小时发生),增大 总的噪声;阀芯拍击阀座也会产生很响的蜂鸣声。 解决办法:用一个小规格的阀来替换。 突然开、关控制阀,会造成液压冲击,引起振动和噪声。 解决办法:设置缓冲机构,或采用分级卸荷的办法。 因控制阀工作部分的缺陷或磨损而发出“哨声”或尖叫声时,应

汽车变速器振动与噪声分析及控制方法研究

汽车变速器振动与噪声分析及控制方法研究 摘要:汽车变速器噪声是汽车的主噪声源之一。在人们对于车辆乘坐舒适性提出更高要求背景下,减振降噪就成为整个汽车行业的重要课题。研究变速器振动噪声产生的原因,针对变速器故障提出相应的优化设计方案,从而达到减振降噪的目的,具有一定的学术价值和重要的实际应用价值。文章分析了汽车变速器产生振动与噪声的主要因素,并对各影响因素的传导机理进行了具体的分析。阐明了通过增大轴的刚性、优化壳体的结构设计、合理设计齿轮等措施,可有效降低变速器噪声。关键词:变速器;振动;噪声;降低噪声 Analysis of Automotive Transmission Vibration and Noise and Control Methods Study Abstract: Many facts show that the noise of gearbox is one of the main sources of the automobiles’ noise. With the People’s requirement for more comfort of riding, vibration decreasing and noise absorption have been an important task of automobile industry. Study on the reasons that result in the gearbox’s vibration and noise, furthermore bringing forward an optimizing design for gearbox has some academic and practical value. The dominating factor of the vibration and noise of the transmission is analyzed, and the analysis on the transmission mechanism of the influencing factor is also carried through. What could effectively reduce transmission noise was explained, including increasing rigidity of the shaft, optimizing the structure of the shell, and rational designing of gear. Key words: transmission; vibration; noise; noise reduction 引言 机械式手动汽车变速器因结构简单,传动效率高,制造成本低和工作可靠等优点,在 不同形式的汽车上得到广泛的应用[1]。机械式手动变速器在今后相当长的时间里,依然会在我国中、重型汽车传动系统中占据着主导地位。变速器总成是汽车传动系统中重要总成部件,汽车变速器的动力学行为和工作性能对整车有重要的影响。许多实验结果表明,汽车 变速器噪声是汽车的主噪声源之一。当前,随着人民生活水平的提高,人们对汽车乘坐舒 适性提出了更高的要求,汽车变速器的振动噪声问题就成为当前汽车行业急待解决的问题 之一。首先,变速器振动常常会诱发与其相连接的部件的振动,从而影响整车的工作性能: 其次,齿轮噪声的频率一般处于200Hz~5000Hz的范围内,对这一频率范围的噪声人耳尤为 敏感:此外,由于变速器载荷和速度的提高,由此产生的齿轮噪声,比其它声源的噪声更突出。因此,从某种程度上说,控制了汽车变速器齿轮振动噪声也就大大提高汽车乘坐舒适性,解决汽车变速器的振动噪声问题,比以往显得更迫切[2]。 1 变速器噪声振动产生的机理 齿轮在机械传动中应用极为广泛,这是由于齿轮传动有很多优点,传动比稳定,速比 范围大,圆周速度高,传递功率大,效率高,工作可靠,寿命长。但是齿轮传动易产生噪声,尤其是在高速运转情况下更为突出,一般齿轮传动的噪声频率在20~20000Hz,这正是人的听觉最易感受的频率范围。噪声会使人疲劳,有碍人体健康,并会降低齿轮的使用寿命。因此,我们应尽可能地认识齿轮噪声的产生机理并采取相应的措施。汽车变速器是个 较复杂的齿轮机构,主要包含齿轮、传动轴、轴承和箱体等。变速器结构图如图1-1所示,汽车变速器的振动也是一个极为复杂的随机振动过程。据统计,在变速器的异常振动噪声中,90%以上是由齿轮、传动轴或滚动轴承引起的[3]。

液压系统的噪音和振动及排除方法

3.为了降低排杂含棉率,增加了二道排杂刀用顺棉板,减少了有效纤维的流失。 4.在排杂刀前侧设计了安全照明灯,以方便用户工作及观察落杂情况。 五、速度继电器的改进 皮清机原先使用的机械式速度继电器不易调整,反应不灵敏,故障率较高,改进后采用了单片机控制的数字式电子速度继电器,这种速度继电器能精确控制给棉传动轴的转速,当转速低于设定值时,电子速度继电器的触点断开,控制电路将给棉电机的电源切断,同时轧花机开箱。电子速度继电器在临沭棉麻公司等用户单位投入运行后,有效地保护了给棉板,深受用户好评。因为继电器是单片机控制的,所以具有很高的精度和灵敏度,是机械式速度继电器和模拟电子速度继电器无法相比的。 液压系统的噪音和振动及排除方法 启东供销机械厂 葛静珍 棉花加工厂大都使用液压打包机将棉纤维打包成型。打包机上的液压系统可能出现的故障是多种多样的。一种故障的产生,其原因也不尽相同,可能是由于一种原因引起,也可能是几种原因的综合结果。因此,出现故障时,必须仔细检查、分析,找出其主要原因,然后加以排除。实践经验表明,噪音是液压系统中最常见的故障之一,有时还伴随着出现振动。产生噪音的原因和排除方法为: 一、液压系统中混入空气而产生噪音 空气进入液压系统的原因,大致有三个方面: 1.大气压下液压油中一般溶解了体积为5%~6%的空气,而且气体在油液中的溶解度与压力成正比。 2.从油箱中进入液压系统:当油箱中油位过低、吸油管浸入油中太短,在吸油口附近形成旋涡使空气吸入油泵;吸油管和回油管在油箱中没有用隔板隔开或相距太近,回油飞溅、搅成泡沫使空气吸入油泵;回油管没有浸入最低油面以下,回油冲击在油面工箱壁上,在油面上产生大量气泡,使空气与油一起吸入系统。 3.由于密封不严、配管接头不严,在系统中低于大气压的部位吸入系统;如油泵的吸油腔、吸油管、压油管中流速高(压力低)的局部区域,停车以后回油腔的油经回油管返回油箱时形成局部真空的地方。 为了防止以上几种现象,应采取以下几种措施: (1)油箱设计要合理,容积要足够大,可采用设有隔板的长油箱,分成回油箱和吸油箱。 (2)油箱中的油液要加到规定的高度,吸油管一定入油池3 5深度。 (3)液压油的规格应符合说明书的要求。各接头要严格密封,防止泵内短时吸进空气。各有关设置要定期清洗,以防堵塞。 二、液压泵也是一个主要噪音源 电网电压发生变化、负载发生变化、本身的压力波动和流量脉动等均能引发液压泵的噪音和振动。电网电压波动将引起液压泵的流量脉动,致使泵的出口及管路压力波动,这是外因引起的流量与压力波动所产生的流体的噪音。 因油区的压力冲击,液压泵也可产生流体噪音。如斜盘式轴向柱塞泵,其缸体在旋转过程中位于上死点时,柱塞腔内的液体压力在与排油腔接通的瞬间,吸油压力突然上升到排油压力,产生较大的压力冲击。同理,在位于下死点时,也产生压力冲击,它们是液压泵的另一个主要噪音源。 要使液压泵的噪音最低,电网容量要足够大;在选择液压泵时,在保证所需的功率和流量的前提下,尽量选转速低的液压泵;也可选用复合泵,提高溢流阀的灵敏度,增设卸荷回路等来降低噪音。 三、控制阀是另一个噪音源 ? 8 1 ?《中国棉花加工》2000年第3期

相关文档
最新文档