材料力学-第十三章 能量方法

材料力学-第十三章 能量方法
材料力学-第十三章 能量方法

班级学号姓名

1图示桁架各杆的材料相同,截面面积相等。试求在F力作用下,桁架的应变能。

2计算图示各杆的应变能。

班级学号姓名

3用互等定理求解题。试求图示各梁的截面B的挠度和转角,EI为常数。

4图示刚架的各杆的EI皆相等,试求截面A,B的位移和截面C的转角。

班级学号姓名

5图示桁架各杆的材料相同,截面面积相等。在载荷F作用下,试求节点B与D间的相对位移。

6图示桁架各杆的材料相同,截面面积相等。试求节点C处的水平位移和垂直位移。

班级学号姓名

7刚架各部分的EI相等,试求在图示一对F力作用下,A,B两点之间的相对位移,A,B两截面的相对转角。

班级学号姓名

8等截面曲杆如图所示。试求截面B的垂直位移和水平位移以及截面B的转角。

9等截面曲杆BC的轴线为四分之三的圆周。若AB杆可视为刚性杆,试求在F力作用下,截面B的水平位移及垂直位移。

班级学号姓名

10在图示曲拐的端点C上作用集中力F。设曲拐两段材料相同且均为同一直径的圆截面杆,试求C点的垂直位移。

11正方形刚架各部分的EI相等,GIt也相等。E处有一切口。在一对垂直于刚架平面的水平力F作用下,试求切口两侧的相对水平位移δ。

班级学号姓名

12轴线为水平平面内四分之一圆周的曲杆如图所示,在自由端B作用垂直载荷F。设EI和GIp已知,试求截面B在垂直方向的位移。

13平均半径为R的细圆环,截面为圆形,其直径为d。F力垂直于圆环中线所在的平面。试求两个F力作用点的相对线位移。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学习题册答案-第13章能量法

第十三章能量法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其(A )。 M A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; 2 M M C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。—_a—一i—_a—一 (图1) 2?图2所示悬臂梁,当单独作用力F时,截面B的转角为θ,若先加力偶M,后加F,则在加F的过程中,力偶M ( C )。 A 不做功; B 做正功; 1 C 做负功,其值为Md ; D 做负功,其值为一Mr。 2 3 ?图2所示悬臂梁,加载次序有下述三种方式:第一种为F、M同时按比例施加;第二种 为先加F ,后加M;第三种为先加M ,后加F。在线弹性范围内,它们的变形能应为(D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F作用。若已知杆的拉压刚度为 μFl EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为,I为杆件长 EA 度。(提示:在杆的轴向施加另一组拉力F。) A0 ; 卩Fb C EA F l M I *] A B C4 (图2) Fb EA D 无法确定。 b:

、计算题 1.图示静定桁架,各杆的拉压刚度均为 EA 相等。试求节点 C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与 P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 L 2 — 2 Pa 2 Pa 2 ” 2 P ] i 一 2 a 2 EA 2 EA 2 EA 可得出:厶C =2 '2 1 Pa EA 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所杆 N i N i I i N i N t J i AB P 1 a Pa BC P 1 a Pa CD 0 0 a 0 BD -Λ∕2P -√2^ √2a 2、''2Pa AD a (2丁2 +2)Pa EA 则C 点水平位移为: 札 J 2 IPa EA EA ,抗弯刚度均为 El 。试求A 截面的铅直位移。 1 P iC 2 2 ?图示刚架,已知各段的拉压刚度均为

工程力学试题库材料力学

材料力学基本知识 复习要点 1. 材料力学的任务 材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。 2. 变形固体及其基本假设 连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。 均匀性假设:认为物体内各处的力学性能完全相同。 各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。 小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。 3. 外力与内力的概念 外力:施加在结构上的外部荷载及支座反力。 内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。内力成对出现,等值、反向,分别作用在构件的两部分上。 4. 应力、正应力与切应力 应力:截面上任一点内力的集度。 正应力:垂直于截面的应力分量。 切应力:和截面相切的应力分量。 5. 截面法 分二留一,内力代替。可概括为四个字:截、弃、代、平。即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。 6. 变形与线应变切应变 变形:变形固体形状的改变。 线应变:单位长度的伸缩量。 练习题 一. 单选题 1、工程构件要正常安全的工作,必须满足一定的条件。下列除()项,

其他各项是必须满足的条件。 A、强度条件 B、刚度条件 C、稳定性条件 D、硬度条件 2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称 为() A.弹性B.塑性C.刚性D.稳定性 3、结构的超静定次数等于()。 A.未知力的数目B.未知力数目与独立平衡方程数目的差数 C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数 4、各向同性假设认为,材料内部各点的()是相同的。 A.力学性质 B.外力 C.变形 D.位移 5、根据小变形条件,可以认为() A.构件不变形 B.结构不变形 C.构件仅发生弹性变形 D.构件变形远小于其原始尺寸 6、构件的强度、刚度和稳定性() A.只与材料的力学性质有关 B.只与构件的形状尺寸有关 C.与二者都有关 D. 与二者都无关7、 在下列各工程材料中,()不可应用各向同性假设。 A.铸铁 B.玻璃 C.松木 D.铸铜 二. 填空题 1. 变形固体的变形可分为和。 2. 构件安全工作的基本要求是:构件必须具有、和足够 的稳定性。(同:材料在使用过程中提出三方面的性能要求,即、、。) 3. 材料力学中杆件变形的基本形式有 。 4. 材料力学中,对变形固体做了 四个基本假设。 、、和、、、

材料力学课后答案范钦珊

材料力学课后答案范钦珊 普通高等院校基础力学系列教材包括“理论力学”、“材料力学”、“结构力学”、“工程力学静力学材料力学”以及“工程流体力学”。目前出版的是前面的3种“工程力学静力学材料力学”将在以后出版。这套教材是根据我国高等教育改革的形势和教学第一线的实际需求由清华大学出版社组织编写的。从2002年秋季学期开始全国普通高等学校新一轮培养计划进入实施阶段新一轮培养计划的特点是加强素质教育、培养创新精神。根据新一轮培养计划课程的教学总学时数大幅度减少为学生自主学习留出了较大的空间。相应地课程的教学时数都要压缩基础力学课程也不例外。怎样在有限的教学时数内使学生既能掌握力学的基本知识又能了解一些力学的最新进展既能培养学生的力学素质又能加强工程概念。这是很多力学教育工作者所共同关心的问题。现有的基础教材大部分都是根据在比较多的学时内进行教学而编写的因而篇幅都比较大。教学第一线迫切需要适用于学时压缩后教学要求的小篇幅的教材。根据“有所为、有所不为”的原则这套教材更注重基本概念而不追求冗长的理论推导与繁琐的数字运算。这样做不仅可以满足一些专业对于力学基础知识的要求而且可以切实保证教育部颁布的基础力学课程教学基本要求的教学质量。为了让学生更快地掌握最基本的知识本套教材在概念、原理的叙述方面作了一些改进。一方面从提出问题、分析问题和解决问题等方面作了比较详尽的论述与讨论另一方面通过较多的例题分析特别是新增加了关于一些重要概念的例题分析著者相信这将有助于读者加深对于基本内容的了解和掌握。此外为了帮助学生学习和加深理解以及方便教师备课和授课与每门课材料力学教师用书lⅣ程主教材配套出版了学习指导、教师用书习题详细解答和供课堂教学使用的电子教案。本套教材内容的选取以教育部颁布的相关课程的“教学基本要求”为依据同时根据各院校的具体情况作了灵活的安排绝大部分为必修内容少部分为选修内容。每门课程所需学时一般不超过60。范钦珊2004年7月于清华大学前言为了减轻教学第一线老师不必要的重复劳动同时也为了给刚刚走上材料力学教学岗位的青年教师提供教学参考资料我们将“材料力学”教材中全部习题作了详细解答编写成册定名为“材料力学教师用书”。全书包括教材中的全部11章内容的习题解答即:材料力学概述轴向载荷作用下杆件的材料力学问题轴向载荷作用下材料的力学性能圆轴扭转时的强度与刚度计算梁的强度问题梁的变形分析与刚度问题应力状态与强度理论及其工程应用压杆的稳定问题材料力学中的能量方法动载荷与疲劳强度概述以及新材料的材料力学概述。 1

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

工程力学材料力学答案

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kN m,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成角,求固定端的约束力。 解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒? 解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系); (2) 选F点为矩心,列出平衡方程; (3) 不翻倒的条件; 4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。 解:(1):研究整体,受力分析,画出受力图(平面平行力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究AB,受力分析,画出受力图(平面任意力系); (4) 选A点为矩心,列出平衡方程; 4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少? 解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系); (2) 选x轴为投影轴,列出平衡方程; (3) 研究杠杆AB,受力分析,画出受力图(平面任意力系); (4) 选C点为矩心,列出平衡方程; 4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kN m,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。 解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy,列出平衡方程;

最新工程力学(静力学与材料力学)第四版习题答案

静力学部分 第一章基本概念受力图

2-1 解:由解析法, 23cos 80RX F X P P N θ==+=∑ 12sin 140RY F Y P P N θ==+=∑ 故: 22161.2R RX RY F F F N =+= 1(,)arccos 2944RY R R F F P F '∠==

2-2 解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有 123cos45cos453RX F X P P P KN ==++=∑ 13sin 45sin 450 RY F Y P P ==-=∑ 故: 223R RX RY F F F KN =+= 方向沿OB 。 2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。 (a ) 由平衡方程有: 0X =∑ sin 300 AC AB F F -= 0Y =∑ cos300 AC F W -= 0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:

0X =∑ cos 700 AC AB F F -= 0Y =∑ sin 700 AB F W -= 1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有: 0X =∑ cos 60cos300 AC AB F F -= 0Y =∑ sin 30sin 600 AB AC F F W +-= 0.5AB F W = (拉力) 0.866AC F W =(压力) (d ) 由平衡方程有: 0X =∑ sin 30sin 300 AB AC F F -= 0Y =∑ cos30cos300 AB AC F F W +-= 0.577AB F W = (拉力) 0.577AC F W = (拉力)

材料力学习题册答案-第13章_能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为 θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作用。若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为EA Fl μ,l 为杆件长度。(提示:在杆的轴向施加另一组拉力F 。) A 0; B EA Fb ; C EA Fb μ; D 无法确定。 (图2) (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为EA 相等。试求节点C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )() EA a P EA Pa EA Pa P C 22222212 2 2 2++=? 可得出:() EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 则C 点水平位移为:() EA Pa C 122+= ? 2.图示刚架,已知各段的拉压刚度均为EA ,抗弯刚度均为EI 。试求A 截面的铅直位移。

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案

第六章 习题 6—1 用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。已知抗弯刚度EI为常数。 6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。已知抗弯刚度EI为常数。

6-3、用叠加法求图示各梁中指定截面的挠度和转角。已知梁的抗弯刚读EI为常数。 6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。用积分法求B端的转角以及挠度。 6-5一齿轮轴受力如图所示。已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]

=0.005rad。近似的设全轴的直径均为d=60mm,试校核轴的刚度。 回答: 6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。设材料的许用应力[]=160Ma,梁的许 用挠度[]=。试选择槽钢的号码,并校核其刚度。梁的自重忽略不计。 6-7两端简支的输气管道,外径D=114mm。壁厚=4mm,单位长度重量q=106N/m,材料的弹性模量E=210Gpa。设管道的许用挠度 试确定管道的最大跨度。 6-8 45a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。若梁的最大挠度不得超过,求梁所能承受的布满全梁的

最大均布载荷q。 6-9一直角拐如图所示,AB段横截面为圆形,BC 段为矩形,A段固定,B段为滑动轴承。C端作用一集中力P=60N。有关尺寸如 图所示。材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。试求C端的挠度。 提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受 集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。最后,可得 C端的挠度 6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知, 梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。试问当百分表F指针转动一小格(1/100mm)时,载荷P增加多少?

工程力学(材料力学部分)

工程力学作业(材料力学) 班级 学号 姓名

第一、二章 拉伸、压缩与剪切 一、填空题 1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于 引起的。 2、a 、b 、c 三种材料的应力-应变曲线如图所示。其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。 3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。结构的许可载荷[ P ]是根据P 作用于 点处确定的。 O σ ε a b c

4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。若各杆均为小变形,则A 、B 两点的相对位移?AB = 。 5、图示结构中。若1、2两杆的EA 相同,则节点A 的竖向位移?Ay = ,水平位移为?Ax = 。 6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。 P / 2 P / 2

二、选择题 1、当低碳钢试件的试验应力σ = σs 时,试件将: (A) 完全失去承载能力; (B) 破断; (C) 发生局部颈缩现象; (D) 产生很大的塑性变形。 正确答案是 。 2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs 为: (A )b h ; (B )b h tan α ; (C )b h / cos α ; (D )b h /(cos α sin α)。 正确答案是 。 3、图示铆钉联接,铆钉的挤压应力为: (A )2 P / ( π d 2 ); (B )P / (2 d t ); (C )P / (2 b t ); (D )4 P / ( π d 2 )。 正确答案是 。 4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上

材料力学习题册答案-第13章-能量法

材料力学习题册答案-第13章-能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其 ( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端 扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面 B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式: 第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 a 2M M a M

A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方 向相反的力F 作用。若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理 可知,该杆的轴向变形为EA Fl μ,l 为杆件长度。 (提示:在杆的轴向施加另一组拉力F 。) A 0; B EA Fb ; C EA Fb μ; D 无法确 定。 F M A B C b F F (图2 ) (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为EA 相 等。试求节点C 的水平位移。 a a P C B A D 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )()EA a P EA Pa EA Pa P C 22222212 2 2 2++=? 可得出:( )EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所示。 1

最新工程力学材料力学部分作业题

材料力学作业题 第二章轴向拉伸和压缩 1、试画出下图所示各杆的轴力图。 2、如图所示圆截面杆,已知载荷F1=200 kN,F2=100 kN,AB 段的直径d1=40 mm,如 欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。 3、图示桁架,杆1 与杆2 的横截面均为圆形,直径分别为d1=30 mm 与d2=20 mm,两杆 材料相同,许用应力[σ]=160 MPa。该桁架在节点A 处承受铅直方向的载荷F=80 kN 作用,试校核桁架的强度。 4、图示桁架,杆1 为圆截面钢杆,杆2 为方截面木杆,在节点A 处承受铅直方向的载荷F 作用,试确定钢杆的直径d 与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力[σS] =160 MPa,木的许用应力[σW] =10 MPa。

5、题3 所述桁架,试确定载荷F 的许用值[F]。 第三章扭转 1、试画下列所示各轴的扭矩图。 2、某传动轴,转速n=300 r/min(转/分),轮1 为主动轮,输入的功率P1=50 kW,轮2、轮3 与轮4 为从动轮,输出功率分别为P2=10 kW,P3=P4=20 kW。 (1) 试画轴的扭矩图,并求轴的最大扭矩。 (2) 若将轮1 与论3 的位置对调,轴的最大扭矩变为何值,对轴的受力是否有利。 3、如图所述轴,若扭力偶矩M=1 kNm,许用切应力[τ] =80 MPa,单位长度的许用扭 转角[θ]=0.5 0/m,切变模量G=80 GPa,试确定轴径。 第四周弯曲应力 1、试计算图示各梁指定截面(标有细线者)的剪力与弯矩。

2、试建立图示各梁的剪力与弯矩方程,并画剪力与弯矩图。 3、图示简支梁,载荷F 可按四种方式作用于梁上,试分别画弯矩图,并从强度方面考虑,指出何种加载方式最好。 4、图示各梁,试利用剪力、弯矩与载荷集度的关系画剪力与弯矩图。

(整理)材料力学第七章能量方法部分word

材料力学第七章能量方法部分 教案重点内容: 1. 以脆性断裂为标志的强度理论 1.1最大拉应力理论(第一强度理论)认为材料的破坏原因是由于最大拉应力的作用,其强度条件为: 11[]r σσσ=≤ 1.2最大线应变理论(第二强度理论)认为材料的破坏原因是由于最大伸长线应变.其强度条件为: 2123()[]r σσμσσσ=--≤ 2. 以塑性屈服为标志的强度理论 2.1最大剪应力理论(第三强度理论)认为材料的破坏原因是由于最大剪应力的作用,其强度条件为: 313[]r σσσσ=-≤ 2.2最大形状改变比能理论(第四强度理论)认为材料的破坏原因是由于最大形状改变比能的作用.其强度条件为: []σ≤ 3. 强度理论的选用 一般情况下,脆性材料选用关乎脆性断裂的强度理论(第一、二强度理沦),塑性材料选用关于屈服的强度理论(第三、四强度理论)。但事实亡材料的危险状态不仅与材料有关,还与所处的应力状态、温度等因素有关。如低碳钢这样的高塑性材料,在三向拉伸应力条件下(图7—2(a)所示带有尖锐环形深切口的圆柱形试件承受轴向拉仲)会发生脆断, 反之,通常所谓脆性材料,在三向压应力作用下,也会表现出明显的塑性,如大理石柱形试件在轴向压缩和径向均匀压力(σσ>径轴)作用下,图7—2(b)).会出现明显 的塑性变形而使试件成为鼓形。因此,对于此类情况,必须强调材料处于脆性状态或

塑性状态的概念,应先确定材料所处的状态,再选取相应的强度理论。但在工程常见情况下.一般可按脆性或塑性材料选用相应的强度理论。 难点: 摩尔强度理论 课程要求: 了解四个强度理论的基本观点、相应的强度条件及其应用范围。能正确应用强度理论进行强度计算。对摩尔强度理论有先行了解。 8.10强度理论概述 由固体材料制作的杆件或零件的强度问题.是材料力学研究的最基本问题之一。所谓杆件的强度,就是指杆件抵抗破坏的能力。工程中当杆件承载达到一定程度时,其材料就会在杆件危险截面上的危险点处首先发生屈服或裂开而进入危险状态。因此,为了保证杆件能够正常工作,必须找出杆件材料进人危险状态的原因,并由此建立相应的强度条件。在本章以前,对于各种杆件的强度计算,总是先计算出其横截面上的最大正应力和最大切应力,然后从这两个方面建立其强度条件,即最大正应力小于其许用正应力,最大切应力小于其许用切应力。而许用正应力(切应力),分别由单向应力状态试验(纯剪切试验)在试件破坏时测得的极限应力 (屈服极限或强度极限)除以适当的安全系数n ,得到的。这种强度条件并没有考虑材料的破坏是由什么因素(或主要原因)引起的,因此,对于不考虑材料的破坏是由什么因素引起,而直接根据试验结果建立强度条件的方法,只对危险截面上危险点处是单向应力状态或纯剪应力状态这类特殊情况才适用。在工程实际中,结构及其杆件的危险点并不一定是处于单向应力状态或纯剪切应力状态,而是处于任意二向应力状态或三向应力状态,即复杂应力状态,此时又如何建立强度条件?仍通过直接试验求出极限应力是不可能的。因为在复杂应力状态下,三个主应力1σ,2σ,3σ之间的比例可能有无限多种,要在每一种比例下都通过对材料的直接试验来确定其极限应力值,不仅是十分繁冗的,而且也是难以 a

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学 (北京科技大学与东北大学) 第一章轴向拉伸和压缩 1-1:用截面法求下列各杆指定截面的内力 解:

(a):N1=0,N2=N3=P (b):N1=N2=2kN (c):N1=P,N2=2P,N3= -P (d):N1=-2P,N2=P (e):N1= -50N,N2= -90N

(f):N1=0.896P,N2=-0.732P 注(轴向拉伸为正,压缩为负) 1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内 径d=175mm。以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。 解:σ1= 2 1 1 850 4 P kN S d π = =35.3Mpa σ2= 2 2 2 850 4 P kN S d π = =30.4MPa ∴σmax=35.3Mpa 1-3:试计算图a所示钢水包吊杆的最大应力。以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。 解:

下端螺孔截面:σ1=1 90 20.065*0.045P S =15.4Mpa 上端单螺孔截面:σ2=2 P S =8.72MPa 上端双螺孔截面:σ3= 3 P S =9.15Mpa ∴σmax =15.4Mpa

1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。已知起重量 P=2000N,试计算起重机杆和钢丝绳的应力。 解:受力分析得: F1*sin15=F2*sin45 F1*cos15=P+F2*sin45 ∴σAB= 1 1 F S =-47.7MPa σBC= 2 2 F S =103.5 MPa 1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又 两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.

材料力学(清华大学)-学习笔记

第一章 1.工程上将承受拉伸的杆件统称为拉杆,简称杆rods;受压杆件称为压杆或柱column; 承受扭转或主要承受扭转的杆件统称为轴shaft;承受弯曲的杆件统称为梁beam。 2.材料力学中对材料的基本假定: a)各向同性假定isotropy assumption b)各向同性材料的均匀连续性假定homogenization and continuity assumption 3.弹性体受力与变形特征: a)弹性体由变形引起的内力不能是任意的 b)弹性体受力后发生的变形也不是任意的,而必须满足协调compatibility一致的要求 c)弹性体受力后发生的变形与物性有关,这表明受力与变形之间存在确定的关系,称 为物性关系 4.刚体和弹性体都是工程构件在确定条件下的简化力学模型 第二章 1.绘制轴力图diagram of normal forces的方法与步骤如下: a)确定作用在杆件上的外载荷和约束力 b)根据杆件上作用的载荷以及约束力,确定轴力图的分段点:在有集中力作用处即为 轴力图的分段点; c)应用截面法,用假象截面从控制面处将杆件截开,在截开的截面上,画出未知轴力, 并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生 拉伸变形的轴力为正,产生压缩变形的轴力为负; d)建立F N-x坐标系,将所求得的轴力值标在坐标系中,画出轴力图。 2.强度设计strength design 是指将杆件中的最大应力限制在允许的范围内,以保证杆件正 常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为轴向载荷作用下杆件 的强度设计准则criterion for strength design,又称强度条件。其中称为许用应力allowable stress,与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式 确定:,式中为材料的极限应力或危险应力critical stress,n为安全因数, 对于不同的机器或结构,在相应的设计规范中都有不同的规定。 3.应用强度设计准则,可以解决3类强度问题: a)强度校核 b)尺寸设计 c)确定杆件或结构所能承受的许用载荷allowable load 4.Q235槽钢、等边角钢用于吊车时,其许用应力 5.弹性范围内杆件承受轴向载荷时力与变形的关系:,即胡克定律Hooke law。 EA称为杆件的拉伸(或压缩)刚度tensile or compression rigidity。

6工程力学材料力学答案

6-9 已知物体重W =100 N ,斜面倾角为30o (题6-9图a ,tan30o =0.577),物块与斜面间摩擦 因数为f s =0.38,f ’s =0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F 至少应为多大? 解:(1) (2) (3) (4) 6-10 重500 N 的物体A B 上如题图所示。已知 f AB =0.3,f BC =0.230o 的力力逐渐加大时,是A 先动呢?还是A 、B 200 N 解:(1) 确定A 、B 和B 、(2) 当A 、B (3) 当B 、C (4) 比较F 1和F 2; 物体A 先滑动; (4) 如果W B =200 N 物体A 和B 6-11 均质梯长为l ,重为数f sA ,求平衡时θ= 解:(1) 研究AB 示); F R (2) 找出θmin 和? f (3) 得出θ6-13 如图所示,欲转动一置于V M =1500 N ?cm ,已知棒料重G =400 N ,直径D =25 cm f s 。 解:(1) 用全约束力表示); (2) (3) 取O (4) π/4)-?f

6-15 砖夹的宽度为25 cm,曲杆AGB与GCED在G点铰接。砖的重量为W,提砖的合力F 作用在砖对称中心线上,尺寸如图所示。如砖夹与砖之间的摩擦因数f s=0.5,试问b应为多大才能把砖夹起(b是G点到砖块上所受正压力作用线的垂直距离)。 解:(1) (2) (2) (3) 列y (4) 研究 (5) 取G 6-18 解:(a) (1) 将T (2) (3) (4) T (b) (1) 将L (3) (4) L 6-19 解:(a) (1) (2) (3) (4) (b) (1) (2) (3) (4)

材料力学第七章能量方法部分

材料力学第七章能量方法部分 教案 重点内容: 1. 以脆性断裂为标志的强度理论 1.1最大拉应力理论(第一强度理论)认为材料的破坏原因是由于最大拉应力的作用,其强度条件为: 11[]r σσσ=≤ 1.2最大线应变理论(第二强度理论)认为材料的破坏原因是由于最大伸长线应变.其强度条件为: 2123()[]r σσμσσσ=--≤ 2. 以塑性屈服为标志的强度理论 2.1最大剪应力理论(第三强度理论)认为材料的破坏原因是由于最大剪应力的作用,其强度条件为: 313[]r σσσσ=-≤ 2.2最大形状改变比能理论(第四强度理论)认为材料的破坏原因是由于最大形状改变比能的作用.其强度条件为: []σ 3. 强度理论的选用 一般情况下,脆性材料选用关乎脆性断裂的强度理论(第一、二强度理沦),塑性材料选用关于屈服的强度理论(第三、四强度理论)。但事实亡材料的危险状态不仅与材料有关,还与所处的应力状态、温度等因素有关。如低碳钢这样的高塑性材料,在三向拉伸应力条件下(图7—2(a)所示带有尖锐环形深切口的圆柱形试件承受轴向拉仲)会发生脆断, 反之,通常所谓脆性材料,在三向压应力作用下,也会表现出明显的塑性,如大理石柱形试件在轴向压缩和径向均匀压力(σσ>径轴)作用下,图7—2(b)).会出现明显 的塑性变形而使试件成为鼓形。因此,对于此类情况,必须强调材料处于脆性状态或塑性状态的概念,应先确定材料所处的状态,再选取相应的强度理论。但在工程常见情况下.一般可按脆性或塑性材料选用相应的强度理论。

难点: 摩尔强度理论 课程要求: 了解四个强度理论的基本观点、相应的强度条件及其应用范围。能正确应用强度理论进行强度计算。对摩尔强度理论有先行了解。 8.10强度理论概述 由固体材料制作的杆件或零件的强度问题.是材料力学研究的最基本问题之一。所谓杆件的强度,就是指杆件抵抗破坏的能力。工程中当杆件承载达到一定程度时,其材料就会在杆件危险截面上的危险点处首先发生屈服或裂开而进入危险状态。因此,为了保证杆件能够正常工作,必须找出杆件材料进人危险状态的原因,并由此建立相应的强度条件。在本章以前,对于各种杆件的强度计算,总是先计算出其横截面上的最大正应力和最大切应力,然后从这两个方面建立其强度条件,即最大正应力小于其许用正应力,最大切应力小于其许用切应力。而许用正应力(切应力),分别由单向应力状态试验(纯剪切试验)在试件破坏时测得的极限应力 (屈服极限或强度极限)除以适当的安全系数n ,得到的。这种强度条件并没有考虑材料的破坏是由什么因素(或主要原因)引起的,因此,对于不考虑材料的破坏是由什么因素引起,而直接根据试验结果建立强度条件的方法,只对危险截面上危险点处是单向应力状态或纯剪应力状态这类特殊情况才适用。在工程实际中,结构及其杆件的危险点并不一定是处于单向应力状态或纯剪切应力状态,而是处于任意二向应力状态或三向应力状态,即复杂应力状态,此时又如何建立强度条件?仍通过直接试验求出极限应力是不可能的。因为在复杂应力状态下,三个主应力1σ,2σ,3σ之间的比例可能有无限多种,要在每一种比例下都通过对材料的直接试验来确定其极限应力值,不仅是十分繁冗的,而且也是难以做到的。因此,必须找到某种方法,以便能够利用单向应力状态和纯剪切应力状态下试验获得的极限应力数据,来建立复杂应力状态下的强度条件。 实践表明,杆件的危险点无论在单向应力状态下,还是在复杂应力状态下,其破坏的形式大体可以分为两类:一类是脆性断裂,另一类是塑性屈服(或塑性流动)。各种材 a

工程力学材料力学答案模板

11-6 图示悬臂梁, 横截面为矩形, 承受载荷F 1与F 2作用, 且 F 1=2F 2=5 kN, 试计算梁内的最大弯曲正应力, 及该应力所在截面上K 点处的弯曲正应力。 解: (1) 画梁的弯矩图 (2) 最大弯矩( 位于固定端) : max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁, 由No22槽钢制成, 弯矩M =80 N.m, 并位于纵向对称 面( 即x-y 平面) 内。试求梁内的最大弯曲拉应力与最大弯曲 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 337.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z

压应力。 解: (1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力( 发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610 x M b y MPa I σ -+-?-?-?===? (3) 最大弯曲压应力( 发生在上边缘点处) 30max 8 8020.3100.92 17610x M y MPa I σ ---???===? 11-8 图示简支梁, 由No28工字钢制成, 在集度为q 的均布载荷作 用下, 测得横截面C 底边的纵向正应变ε=3.0×10-4, 试计算梁内的最大弯曲正应力, 已知钢的弹性模量E =200 Gpa, a =1 m 。 解: (1) 求支反力 31 44 A B R qa R qa == (2) 画内力图 M y z x F M

相关文档
最新文档