midas梁格模型梁格的划分应综合考虑的因素

midas梁格模型梁格的划分应综合考虑的因素
midas梁格模型梁格的划分应综合考虑的因素

1)梁格的纵向杆件形心高度位置应尽量与箱梁截面的形心高度相一致,纵横杆件的中心与原结构梁肋的中心线相重合,使腹板剪力直接由所在位置的梁格构件承受。

(2)为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。

(3)纵梁抗扭刚度的计算按整体箱型断面自由扭转刚度平摊到各纵梁上。

(4)预应力钢筋在梁肋中的布置应特别引起注意。对于整个箱梁截面而

言,预应力钢筋是对称配置的。由于梁格划分后边肋几何形状的非对称性,此时按设计位置布置预应力钢束,在边肋中将产生较大的平面外弯矩,这显然与实际受力

情况不符,在计算结果的分析中应扣除平面外弯矩产生的效应。建立梁格力学模型

(1)梁格模型节点的平面坐标

各截面处各工型的形心的平面坐标,或者说是水平形心主轴与各腹板中线交点的平面坐标,就是梁格纵向主梁节点的平面坐标。这样一来,实际上等宽度的桥梁,由于它的腹板在中墩附近向箱内加厚,对应的梁格模型,就不会是等宽度的了,在中墩附近变窄。

(2)梁格模型的形心

在梁格模型里,纵向主梁单元是沿着它的形心走的。变高度梁的形心也是变高度的。即使是等高度梁,

由于底板加厚、考虑翼板有效宽度,形心高度也有变化。这两种情况下的的形心位置,都是跨间高、墩台附近低,象拱一样。所以梁格模型不应当是平面的。对于刚

构体系的梁桥,如果能建立变高度的梁格模型,"拱"的效应就可以计算出来。对与连续梁,采用平面梁格应当足够了。(3)梁格力学模型支点截面位置

既然在梁格模型的纵向主梁单元是沿着它的形心走的,那么在支点截面,形心是在支点上方一定高度,

梁格模型不应当直接摆放在支点,而应当通过竖向刚臂与支点联系,象个有腿的长条板凳一样。板凳腿的高度还值得讨论。按照经典的弹性薄壁杆理论,弯曲变形是

绕着形心发生的,扭转变形是绕着剪力中心发生的。所以,在计算弯曲效应时,板凳腿取形心高度,在计算扭转效应时,板凳腿取剪力中心高度。但弯曲和扭转是同

时发生的,板凳腿有两种高度,会不会把变形"卡死"?不会,因为在这里我们只是做了个数字游戏,并没有在同一位置上安装一长一短两个刚臂。

(5)计算车辆荷载效应及内力组合

这项计算取决于所用的软件能否计算梁格模型的内力影响面,和对影响面动态布载。如果没有这功能,麻烦就大了,只能对确定

的荷载进行复核性计算了。顺便说明,与影响面方法对应的,还有一种叫做内力横向分配理论的方法,从理论上说,两种方法的结果,都覆盖了曲线梁桥所有部位的最大最小内力,数值虽然有差别,都是安全的。影响面方法更精确一些,但缺点是它不能计算全桥扭矩包络图,而内力横向分配方法可以。扭矩包络图对曲线梁桥设计计算非常重要。许多曲线梁桥发生支座脱空、侧翻、爬移事故,它们在设计时用的软件,不可谓不高级,但共同特点是都不能输出扭矩包络图,它们的中墩偏心设置,全是盲目的。(6)计算预应力

对曲线梁桥进行预应力计算,必须计算横截面的剪力中心。对于目前广泛应用结构/桥梁分析软件,发现:只有ANSYS的Beam24 属弹性薄壁杆单元,可以计算单室薄壁杆截面的剪力中心。单箱双室截面,只要左右对称,可以把中腹板略去后按单室截面计算。除此之外的截面,ANSYS也没办法了。预应力钢索要用等效的空间力代替。钢索等效空间力是:竖向分力、水平分力、轴向压力、轴向压力绕主形心轴

U(大致水平)的力矩、水平分力绕剪力中心轴的力矩,共5项。因为钢索分别归属于各主梁,它们的空间力也相应地作用于各主梁,所以轴向压力绕主形心轴V

(大致垂直)的力矩、竖向分力绕剪力中心轴的力矩就不需要考虑了。钢索化为等效空间力之前,要扣除各项应力损失。摩擦损

失、回缩损失、松弛损失尚可手算,徐变应力损失只能在梁格的徐变计算中同步得到,或者利用近似公式计算。

MIDAS梁格法学习小结及疑问

MIDAS梁格法学习小结及疑问 最近在做一个半径80米,曲线弧长90米,采取3跨30米布置的连续曲梁桥。经过计算我的圆心角为32度,必须得当作曲梁模拟。 首先我采用的是单箱梁模拟,但是经过师兄提醒,感觉到这样考虑十分不妥,因为曲梁桥弯扭藕合作用明显。横桥向扭矩的分析对桥梁最后结果有着很大的影响。即需要做横向分析。 因此特来论坛淘梁格法计算的资料,这一搜索不得了,让我有种醍醐灌顶的感觉。尤其是bridgedlut兄的见解,让我受益颇深。同时还有有很多前辈表述了自己做时曲梁碰到的问题及自己的见解。我老老实实的坐了一个多小时,十分耐心细致的看完了所有相关帖子。自己感觉到本来对梁格法停留在概念程度上的我已经对梁格法有了进一步的了解,并且对我现在正在做的工程有着很大的帮助,再次对各位表示谢谢了。谢谢各位斑竹辛苦的工作。谢谢kaisi论坛给我提供了一个很好的学习平台。 先谈谈自己看后的一些基本认识: 1.符拉索夫的三个方程经典的描述出了弯扭藕合作用对曲梁的重要影响,需进一步复习加深理解。 2.梁格体系涉及到纵向单元的划分:纵向单元划分当然是越细越好,但是原则上每跨分成8段以上比较理想,其中:截面变化处,关键部位等必须划分,并且连续弯梁桥的中间支座附近因内力变化剧烈,因此需加密网格。 3.横向虚梁的截面模拟。总体原则:每个等效划分梁格的纵向中性轴必须与远箱粱截面在同一高度。 4.通常都把箱梁腹板处化做梁肋。这样腹板处就被化做单元,可以直接查看其内力。 几点补充: 1.梁格法模拟的关键是横截面几何参数的等效化,我这方面的知识比较欠缺。请问能否提供一个比较详细的算例,我想bridgedlut 兄是一定有的,哈哈,或者介绍基本相关的书籍,以便查阅。 2.我这座连续曲梁桥,有两个桥墩,三跨布置,中跨布置两道横隔板,边跨设置边横隔板。请问梁格法在横隔梁处的处理是不是也只把这部分当做实心的截面来看就可以,是否横隔梁处也得沿着全跨分为几个梁格?也就是横隔梁处的计算通常是怎么处理的,针对梁格法? 特此对有关梁格法的相关好贴做了一个小小的总结,一来方便大家查阅,二来自己后续学习查看也更加方便些。 梁格法计算问题

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

必看最经典梁格——midas空心板梁桥梁桥法工程实例

空心板梁桥工程实例 1几何尺寸 空心板梁几何尺寸见图4.1.1至图4.1.3。 图4.1.2 边板截面(cm)图4.1.3 中板截面(cm) 2主要技术指标 (1) 结构形式:装配式先张法预应力混凝土简支空心板梁 (2) 计算跨径:16m (3) 斜交角度:0度 (4) 汽车荷载:公路-Ⅱ级 (5) 结构重要性系数:1.0 3 计算原则 (1) 执行《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

(2) 6厘米厚现浇C50混凝土不参与结构受力,仅作为恒载施加。 (3) 温度效应,均匀温升降均按20摄氏度考虑;温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条的规定取值。 (4) 按A 类部分预应力混凝土构件设计。 (5) 边界条件:圆形板式橡胶支座约束用弹性支承进行模拟,弹簧系数SDx=SDy=1890 KN/m;SDz=9.212E+05KN/m;SRx=078E+09KN.m/rad; 4主要材料及配筋说明 (1) 空心板选用C50混凝土 (2) 预应力钢绞线公称直径mm s 2.15φ,1根钢绞线截面积2 139mm A p =,抗拉强度标准值Mpa f pk 1860=,锚具变形总变形值为12mm。横截面预应力筋和普通钢筋布置见图4.4.1和图4.4.2。预应力筋有效长度见表4.4.1 图4.4.1边板钢筋钢绞线布置图(cm) 图4.4.2 中板钢筋钢绞线布置图(cm) 图中N9筋(实心黑点)为普通钢筋,其余为钢绞线。 表4.4.1 16米空心板预应力筋有效长度表

MIDAS梁格法建模

MIDAS梁格法建模 2021-4-2612:14MIDAS梁格法建模使用该软件,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢wentao8401全文结束》》-4-2614:29前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys的子结构分析也可以。谈谈我对梁格的几点认识: 1、它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3、梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)

4、梁格需要注意的几个方面:第一、关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。第二、截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。以上主要是总结一下自己学习的一些体会,难免有不正确的地方,望高手进一步指点。附上自己认为比较好的一些资料跟模型供大家查阅。希望多多交流。lingboms

迈达斯Midascivil梁格法建模实例

迈达斯M i d a s c i v i l梁格法建模实例 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

迈达斯midas梁桥专题—梁格.pdf

Integrated Solution System for Bridge and Civil Strucutres

目录 一、剪力-柔性梁格理论 1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5) 三、采用梁格建模助手生成梁格模型 二、单梁、梁格模型多支座反力与实体模型结果比较 1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24) 四、结合规范进行PSC 设计

midas梁格分析

梁格分析

梁格分析


梁格分析 ·················································································································································· 2 概述 ······················································································································································ 2 1、工程概况········································································································································· 2 2、40M预应力混凝土简支T梁 ············································································································ 3?
一、纵梁截面情况············································································································································ 3 二、横梁截面 ··················································································································································· 5 三、移动荷载定义············································································································································ 6 四、边界条件 ··················································································································································11 五、结果处理 ··················································································································································13?
3、单箱双室连续弯桥 ······················································································································· 13?
一、纵梁截面 ··················································································································································13 二、横梁截面 ··················································································································································16 三、移动荷载及自重处理 ·······························································································································17 四、边界条件 ··················································································································································17 五、结果处理 ··················································································································································18?
结语 ···················································································································································· 19?
1

MIDAS梁格法建模

查看完整版本: MIDAS梁格法建模 tomatogarden 2007-4-26 12:14 MIDAS梁格法建模 使用该软件十,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢 wentao8401 2007-4-26 14:29 前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys 的子结构分析也可以。 谈谈我对梁格的几点认识: 1.它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。 适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3.梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效) 4.梁格需要注意的几个方面: 第一.关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很

迈达斯Midascivil梁格法建模实例

术有限公司

目录 概要............................................................... 设置操作环境....................................................... 定义材料和截面..................................................... 建立结构模型....................................................... PSC截面钢筋输入.................................................... 输入荷载........................................................... 定义施工阶段....................................................... 输入移动荷载数据................................................... 输入支座沉降....................................................... 运行结构分析....................................................... 查看分析结果....................................................... PSC设计............................................................

迈达斯梁格法讨论

迈达斯梁格法讨论

1.在用桥博进行梁格法计算时,在单元的截面信息中输入的自定义抗扭惯性矩是整个纵向构件单元截面的抗扭惯性矩,还是如【桥梁上部构造性能】中所提,不包括腹板在内的仅由顶、底板构成的抗扭惯性矩? 答:我曾经对同一座简支弯桥分别用桥博单梁、梁格和MIDAS单梁、梁格建模计算进行比较分析。结果表明:1、仅考虑恒载的情况;对于梁格法,无论是桥博还是MIDAS,内力而言,四种模型计算结果弯矩结果一致(我所说的一致指误差在5%以内),程序无法提供腹板剪力流产生的扭矩,在手动计算并组合后,两种程序梁格法计算的扭矩结果一致,且均较单梁计算的扭矩略偏大,约10%左右(这应该是由于刚度模拟误差产生的),由此可以得出汉勃利对于梁格法力学理论的阐述是正确的,因此,对于梁格法,我个人的观点,其可以考虑弯扭耦合而得出较精确的弯矩并指导整体受力配筋是没有疑问的,问题在于,梁格法扭矩需修正的适用性,我们可以通过手动计入两侧腹板剪力流产生的扭矩来得到较为正确的扭矩并无异议,但对于很多情况这并不利于直接指导我们设计,比如我们需要观察扭矩

包络图来判断弯桥偏心的设置时,会发现我们直接用单梁模型可以更为节省时间和精力(至少无需你去修正组合)而得到可以直接应用的数据,单梁的缺陷在于不能正确考虑各片梁实际受力的差异,但这并不影响整体的设计,比如偏心的设计,整体抗扭性能的评估,而在细节上的处理,我们需要用梁格法的计算去确保安全。 2、关于活载的情况,梁格法而言,出于分析对比,我也用桥博和MIDAS分别计算了活载下的关键截面扭矩对比,在这里就不说弯矩了,因为结果比较吻合(8%的差别)。MIDAS自定义车道比较方便,可以同时考虑多种工况,这比桥博方便许多,但需要注意的是,对于同一工况,如果你用不同的梁来做偏心实现的话,产生的内力差别很大,且用哪片梁直接导致这片梁内力变大,我用的是V6.71,不知道 MIDAS2006是否没有这样的问题,为了解决这一问题,我在活载偏载于哪片梁时,采取该片梁去定义车道偏心,结果表明,两种程序计算结果比较吻合。在用单梁模型计算时,两种程序计算结果完全一致,同上面恒载的情况,单梁结果要比梁格小,这也是因为刚度的模拟误差产生的。综上所述,两点结论:1、在做整体设计时(比如设置预偏心),个人感觉用单梁模型可以较为

迈达斯T梁梁格分析

T梁梁格分析 北京迈达斯技术有限公司 2007年8月

目录 1. 综论 (1) 2. 梁格法基本原理 (1) 3. T梁格理论要点 (1) 4. 模型实例 (2) 4.1 结构概述 (2) 4.2 计算参数 (2) 5. 建模内容及重点关注 (3) 5.1 定义材料和截面 (3) 5.2 定义主梁、盖梁和桥墩混凝土的收缩徐变 (4) 5.3 边界条件 (4) 5.4 静力荷载 (5) 5.5 定义钢束 (5) 5.6 移动荷载 (5) 5.7 施工阶段 (6) 6. 程序后处理及结果查看 (6)

1. 综论 中国的桥梁建设已步入全新的阶段,桥梁设计、施工、检测技术水平也随着时间推移不断提高,以往多采用的平面程序在实际使用中将逐渐为三维空间程序所取代,通过三维的分析可以不用像二维程序那样计算横向分布系数,建模及后处理更加直观。T形梁在实际工程中广泛采用,现存数量巨大,T梁格单元划分简单,基本概念清晰,受力明确,较易为初学梁格法者掌握,对进一步将复杂结构离散为力学模型及应用力学原理解决问题很有帮助。2. 梁格法基本原理 用等效梁格代替桥梁上部结构,将分散在板、梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格内。理想的刚度等效原则是:当原型实际结构和对应的等效梁格承受相同的荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,但对一般的设计,梁格法的计算精度是足够的。 3. T梁格理论要点 Ⅰ、T梁计算前应先对有效宽度进行计算,结构翼板拟定尺寸时尽量控制在有效宽度范围内。――有效宽度计算参考规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》P16,4.2.2条。 Ⅱ、对于非密排的T梁,可取单个T梁为一个纵向梁格。若T梁未设横隔板则纵向弯曲由T形截面承受,横向视为通过翼板连接的板条。一般来说,纵横方向上结构的部分刚度可以假定为相似横截面的梁一样。 Ⅲ、梁格网格的划分以最能反映上部结构的结构性能为好。没有跨中横隔板的横向梁格,其间距可以任意选择,一般约取有效跨径的1/4~1/8;如有横隔板则必须在横隔板处设横向梁格。 Ⅳ、当横向构件仅代表薄板,由板内横向扭矩引起纵向构件弯矩的不连续性是微小的,设计弯矩取节点两侧弯矩的平均值;若横向构件代表具有足够抗扭刚度的横格梁,则纵向弯矩的不连续性是较大的,设计弯矩应该取节点两侧的不同值。

midas梁格模型梁格的划分应综合考虑的因素

1)梁格的纵向杆件形心高度位置应尽量与箱梁截面的形心高度相一致,纵横杆件的中心与原结构梁肋的中心线相重合,使腹板剪力直接由所在位置的梁格构件承受。 (2)为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。 (3)纵梁抗扭刚度的计算按整体箱型断面自由扭转刚度平摊到各纵梁上。 (4)预应力钢筋在梁肋中的布置应特别引起注意。对于整个箱梁截面而 言,预应力钢筋是对称配置的。由于梁格划分后边肋几何形状的非对称性,此时按设计位置布置预应力钢束,在边肋中将产生较大的平面外弯矩,这显然与实际受力 情况不符,在计算结果的分析中应扣除平面外弯矩产生的效应。建立梁格力学模型 (1)梁格模型节点的平面坐标 各截面处各工型的形心的平面坐标,或者说是水平形心主轴与各腹板中线交点的平面坐标,就是梁格纵向主梁节点的平面坐标。这样一来,实际上等宽度的桥梁,由于它的腹板在中墩附近向箱内加厚,对应的梁格模型,就不会是等宽度的了,在中墩附近变窄。 (2)梁格模型的形心

在梁格模型里,纵向主梁单元是沿着它的形心走的。变高度梁的形心也是变高度的。即使是等高度梁, 由于底板加厚、考虑翼板有效宽度,形心高度也有变化。这两种情况下的的形心位置,都是跨间高、墩台附近低,象拱一样。所以梁格模型不应当是平面的。对于刚 构体系的梁桥,如果能建立变高度的梁格模型,"拱"的效应就可以计算出来。对与连续梁,采用平面梁格应当足够了。(3)梁格力学模型支点截面位置 既然在梁格模型的纵向主梁单元是沿着它的形心走的,那么在支点截面,形心是在支点上方一定高度, 梁格模型不应当直接摆放在支点,而应当通过竖向刚臂与支点联系,象个有腿的长条板凳一样。板凳腿的高度还值得讨论。按照经典的弹性薄壁杆理论,弯曲变形是 绕着形心发生的,扭转变形是绕着剪力中心发生的。所以,在计算弯曲效应时,板凳腿取形心高度,在计算扭转效应时,板凳腿取剪力中心高度。但弯曲和扭转是同 时发生的,板凳腿有两种高度,会不会把变形"卡死"?不会,因为在这里我们只是做了个数字游戏,并没有在同一位置上安装一长一短两个刚臂。 (5)计算车辆荷载效应及内力组合 这项计算取决于所用的软件能否计算梁格模型的内力影响面,和对影响面动态布载。如果没有这功能,麻烦就大了,只能对确定

[整理]Midas建模技巧总结

《Midas建模技巧总结》- 如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接? 可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。此类问题关键在于横向虚拟梁的刚度取值。可参考有关书籍,推荐E.C.Hambly写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。 3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可否自己编辑截面形式 可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。您也可以从CAD 中导入截面(比如单线条的箱型截面,然后在截面特性值计算器中赋予线宽代表板宽)。 4、如果截面形式在软件提供里找不到,自己可否编辑再插入变截面,如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法 目前MIDAS中的变截面组支持二次方程以下的小数点形式的变截面方程,如1.5次等。您可以先在SPC 中定义控制位置的两个变截面,然后用变截面组的方式定义方程。然后再细分变截面组。我们将尽快按您的要求,在变截面组中让用户可以输入方程的各系数。谢谢您的支持!>如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法 5.弯桥支座如何模拟?用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。目前国内有个软件就具有这个功能,建模很方便,也很实用,对精确分析斜弯坡桥梁就很方便,避免采用梁格法的繁琐模拟。FCM虽然生成的是梁单元,但可以进行抗扭计算。假如有双支座,您可以修改为两个支座(在支座位置建立两个节点,并将其沿Z轴复制,连接节点建立弹簧)。MIDAS软件中的梁单元可以计算扭矩和横梁的横向弯矩。将梁单元的截面建成面单元(也可从DXF文件导入),然后用单元扩展的功能生成实体块单元即可。谢谢您的支持!> 用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?> 采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?> 提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。目前国内有个软件就具有这个功能,建模很方便,也很实用,对精确分析斜弯坡桥梁就很方便,避免采用梁格法的繁琐模拟。 6、曲线桥的设计。 第一种方法:直接导入曲线。 第二种方法:直接在表格中输入节点建模。 第三种方法:使用单元扩展功能,可方便地建立弯桥的梁单元模型、板单元模型、实体单元模型。梁单元弯桥:先建立一个点,然后在模型>单元>扩展命令中选择由点生成直线,并选择旋转。然后输入半径中心位置和分割数(或分割间距)。点击适用即可。板单元弯桥:先建立一条直线,然后在模型>单元>扩展命令中选择由线生成面,其余同上。建成后可再细分板单元。实体单元弯桥:先建立一个截面(板单元模型),然后在模型>单元>扩展命令中选择由面生成块,其余同上。建成后可再细分块单元。 7、弯矩My是绕y轴的弯矩,这个没有问题。只是弯曲应力的问题,正如你所说,弯曲应力Sbz是My 引起的应力,同样,弯曲应力Sby是Mz引起的应力,刚好和习惯相反。另外,在组合应力中,也是类似

midas梁格法的讨论

midas梁格法的讨论 1.在用桥博进行梁格法计算时,在单元的截面信息中输入的自定义抗扭惯性矩是整个纵向构件单元截面的抗扭惯性矩,还是如【桥梁上部构造性能】中所提,不包括腹板在内的仅由顶、底板构成的抗扭惯性矩? 答: hinricih 我曾经对同一座简支弯桥分别用桥博单梁、梁格和MIDAS单梁、梁格建模计算进行比较分析。结果表明: 1,仅考虑恒载的情况;对于梁格法,无论是桥博还是MIDAS,内力而言,四种模型计算结果弯矩结果一致(我所说的一致指误差在5%以内),程序无法提供腹板剪力流产生的扭矩,在手动计算并组合后,两种程序梁格法计算的扭矩结果一致,且均较单梁计算的扭矩略偏大,约10%左右(这应该是由于刚度模拟误差产生的),由此可以得出汉勃利对于梁格法力学理论的阐述是正确的,因此,对于梁格法,我个人的观点,其可以考虑弯扭耦合而得出较精确的弯矩并指导整体受力配筋是没有疑问的,问题在于,梁格法扭矩需修正的适用性,我们可以通过手动计入两侧腹板剪力流产生的扭矩来得到较为正确的扭矩并无异议,但对于很多情况这并不利于直接指导我们设计,比如我们需要观察扭矩包络图来判断弯桥偏心的设置时,会发现我们直接用单梁模型可以更为节省时间和精力(至少无需你去修正组合)而得到可以直接应用的数据,单梁的缺陷在于不能正确考虑各片梁实际受力的差异,但这并不影响整体的设计,比如偏心的设计,整体抗扭性能的评估,而在细节上的处理,我们需要用梁格法的计算去确保安全。 2.关于活载的情况,梁格法而言,出于分析对比,我也用桥博和MIDAS分别计算了活载下的关键截面扭矩对比,在这里就不说弯矩了,因为结果比较吻合(8%的差别)。MIDAS 自定义车道比较方便,可以同时考虑多种工况,这比桥博方便许多,但需要注意的是,对于同一工况,如果你用不同的梁来做偏心实现的话,产生的内力差别很大,且用哪片梁直接导致这片梁内力变大,我用的是V6.71,不知道MIDAS2006是否没有这样的问题,为了解决这一问题,我在活载偏载于哪片梁时,采取该片梁去定义车道偏心,结果表明,两种程序计算结果比较吻合。在用单梁模型计算时,两种程序计算结果完全一致,同上面恒载的情

相关主题
相关文档
最新文档