《嵌入式操作系统》实验报告材料

《嵌入式操作系统》实验报告材料
《嵌入式操作系统》实验报告材料

《嵌入式操作系统》实验报告

班级计算机

学号

姓名

指导教师庄旭菲

内蒙古工业大学信息工程学院计算机系

2018年6月

实验一 Linux内核移植与编译实验

1. 实验目的

?了解Linux 内核相关知识与内核结构

?了解Linux 内核在ARM 设备上移植的基本步骤和方法

?掌握Linux 内核裁剪与定制的基本方法

2. 实验内容

?分析Linux 内核的基本结构,了解Linux 内核在ARM 设备上移植的一些基本步骤及

常识。

?学习Linux 内核裁剪定制的基本配置方法,利用UP-Magic210 型设备配套Linux 内核

进行自定义功能(如helloworld 显示)的添加,并重新编译内核源码,生成内核压缩文件zImage,下载到UP-Magic210 型设备中测试。

3. 实验步骤

实验目录:/UP-Magic210/SRC/kernel/linux-2.6.35.7/

编译内核:在宿主机端为UP-Magic210 设备的Linux 2.6.35.7 内核编写简单的测试驱动(内核)程序helloworld.c 并修改内核目录中相关文件,添加对测试驱动程序的支持。(1)、使用vim 编辑器手动编写实验代码helloworld.c

helloworld.c 内如如下:

#include

#include

MODULE_LICENSE("Dual BSD/GPL");

//驱动程序入口函数

static int hello_init(void)

{

printk(KERN_ALERT "##############Hello, world############\n");

return 0;

}

//驱动程序出口函数

static void hello_exit(void)

{

printk(KERN_ALERT "###############Goodbye, world#########\n");

}

module_init(hello_init);

module_exit(hello_exit);

有关驱动程序的编写规范,请参考课程教材,本实验只在编写简单的驱动(内核)程序并加入到Linux内核目录树中,使用户熟悉编译内核的过程。该驱动程序是向终端输出相关程序信息。编写好helloworld.c 后将其拷贝到内核源码树的drivers/char/目录下。

[root@localhost /]# cp helloworld.c /UP-Magic210/SRC/kernel/linux-2.6.35.7/drivers/char/ (2)、进入实验内核源码目录修改driver/char/目录下的Kconfig 文件,按照Kconfig 语法添加helloworld 程序的菜单支持

[root@localhost /]# cd UP-Magic210/SRC/kernel/linux-2.6.35.7/

[root@localhost linux-2.6.35.7]# vi drivers/char/Kconfig

例如:在Kconfig 文件中的source“driver/char/hw_random/Kconfig”下面添加如下:source“driver/char/hw_random/Kconfig”

config HELLO_MODULE

bool "Hello World Test"

depends on CPU_S5PV210

help

This is a demo to test kernel experiment On UP-Magic210.

(3)、进入实验内核源码目录修改driver/char/目录下的Makefile 文件,按照内核中Makefile 语法添加helloworld程序的编译支持

[root@localhost linux-2.6.35.7]# vi drivers/char/Makefile

在Makefile 中(大约在91 行)添加如下一行

obj-$(CONFIG_TOSHIBA) += toshiba.o

obj-$(CONFIG_I8K) += i8k.o

obj-$(CONFIG_DS1620) += ds1620.o

obj-$(CONFIG_HW_RANDOM) += hw_random/

obj-$(CONFIG_HELLO_MODULE) += helloworld.o

obj-$(CONFIG_PPDEV) += ppdev.o

(4)、运行make menuconfig 配置内核对helloworld 程序的支持:

[root@localhost linux-2.6.35.7]# make distclean

[root@localhost linux-2.6.35.7]# make menuconfig

先加载内核配置单,如图:

然后进入到Device Drivers --->菜单中如图:

进入到Character devices--->如图:

进入该菜单会发现[ ] Hello World Test 选项,按下空格将其静态编译进内核

退出保存内核配置

(5)、重新编译内核

在内核源码的顶层目录下编译内核

[root@localhost linux-2.6.35.7]# make

scripts/kconfig/conf -s arch/arm/Kconfig

CHK include/linux/version.h

CHK include/generated/utsrelease.h

make[1]:“include/generated/mach-types.h”是最新的。

CALL scripts/checksyscalls.sh

CHK include/generated/compile.h

CC drivers/char/helloworld.o

LD drivers/char/built-in.o

LD drivers/built-in.o

LD vmlinux.o

MODPOST vmlinux.o

初次编译内核源码,由内核代码庞大,所需较长时间(大约几分钟至10 几分钟不等)。编译成功后会在内核源码目录的arch/arm/boot/目录下生成内核压缩文件zImage。

[root@localhost linux-2.6.35.7]# ls arch/arm/boot/zImage

arch/arm/boot/zImage

[root@localhost linux-2.6.35.7]#

(6)、将新生成的内核镜像文件zImage 烧写到UP-Magic210 型设备中,这里不在赘述(烧写步骤可以参考文档“UP-Magic210出厂程序烧写手册(LINUX)V1.0.pdf”第23页)。新内核烧写成功后启动UP-Magic210 型系统,可以在串口终端中查看到Linux 内核在启动过程中打印出来的如下信息:

S3C_LCD clock got enabled :: 133.000 Mhz

Window[0]- FB1 : map_video_memory: clear ff600000:00096000

FB1 : map_video_memory: dma=57100000 cpu=ff600000 size=00096000

Console: switching to colour frame buffer device 80x30

fb-1069494052: frame buffer device

lp: driver loaded but no devices found

###################Hello, world###################

ppdev: user-space parallel port driver

s3c-uart.0: ttySAC0 at MMIO 0x7f005000 (irq = 37) is a S3C

s3c-uart.1: ttySAC1 at MMIO 0x7f005400 (irq = 38) is a S3C

s3c-uart.2: ttySAC2 at MMIO 0x7f005800 (irq = 39) is a S3C

RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize

loop: loaded (max 8 devices)

nbd: registered device at major 43

dm9000 Ethernet Driver

eth0: dm9000 at c7866000,c7866002 IRQ 78 MAC: 00:22:12:34:56:90

S3C IrDA driver, (c) 2006 Samsung Electronics

Linux video capture interface: v2.00

可以看到在终端上打印出###################Hello, world###################信息。同样进入ARM 系统后也可以通过dmesg 命令查看内核启动信息。

[root@UP-TECH yaffs]# dmesg

S3C_LCD clock got enabled :: 133.000 Mhz

Window[0]- FB1 : map_video_memory: clear ff600000:00096000

FB1 : map_video_memory: dma=57100000 cpu=ff600000 size=00096000

Console: switching to colour frame buffer device 80x30

fb-1069494052: frame buffer device

lp: driver loaded but no devices found

###################Hello, world################### ppdev: user-space parallel port driver

s3c-uart.0: ttySAC0 at MMIO 0x7f005000 (irq = 37) is a S3C

s3c-uart.1: ttySAC1 at MMIO 0x7f005400 (irq = 38) is a S3C

s3c-uart.2: ttySAC2 at MMIO 0x7f005800 (irq = 39) is a S3C RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize 4.实验结果

思考:如何能在Linux系统启动时,输出显示自定义的文本信息,请修改Linux内核启动代码,完成此功能。

5. 实验中遇到的问题及解决方法

在实验中遇到一些问题,例如在复制的时候我记得原来用cp–a/tmp/linux-2.4.18-br.tar.gz就可以了,可这次不行必须要用cp–a/tmp/linux-2.4.18-br.tar.gz./到自己的目录下。不过最后都顺利解决了问题,在编译复习了make menuconfig的编译配置。

实验二根文件系统实验

1. 实验目的

?了解UP-Magic210 魔法师实验套件Linux 系统下根文件系统结构

?掌握根文件系统的搭建过程

?掌握busybox、mkcramfs 等工具的使用方法

2. 实验内容

?使用busybox 生成文件系统中的命令部分,使用mkcramfs 工具制作CRAMFS 格式的

根文件系统。

?分析根文件系统etc 目录下重要配置文件的格式及语法,熟悉根文件系统的启动过程3.实验步骤

实验目录:/UP-Magic210/SRC/kernel/linux-2.6.35.7/

/UP-Magic210/SRC/rootfs/

一、在内核中添加文件系统类型支持

(1)、进入宿主机中UP-Magic210 型光盘内核目录:

[root@localhost ~]# cd /UP-Magic210/SRC/kernel/linux-2.6.35.7/

(2)、运行make menuconfig 命令配置内核文件系统相关支持

添加对CRAMFS 根文件以及YAFFS2 文件系统系统支持

进入File systems --->菜单

进入Miscellaneous filesystems --->菜单

选择<*> Compressed ROM file system support (cramfs) 支持,如图:

选择<*> YAFFS2 file system support 支持,配置如下图

退出保存内核配置

运行make编译内核,重新烧写内核。

二、根文件系统的实现

(1)、制作BUSYBOX 工具集

进入本次实验目录

[root@localhost rootfs]# cd /UP-Magic210/SRC/rootfs/

[root@localhost rootfs]# ls

bash-4.0.tar.bz2 busybox-1.19.3.tar.bz2 rootfs

解压busybox-1.19.3.tar.bz2 压缩包

[root@localhost rootfs]# tar xjvf busybox-1.19.3.tar.bz2

产生busybox-1.19.3 目录

[root@localhost rootfs]# ls

bash-4.0.tar.bz2 busybox-1.19.3 busybox-1.19.3.tar.bz2 rootfs

进入busybox-1.19.3 目录进行busybox 的修改及配置

修改此目录的Makefile 文件,更改ARCH ?和CROSS_COMPILE ?=宏定义,如下:CROSS_COMPILE ?= arm-none-linux-gnueabi-

ARCH ?= arm

退出保存。

运行make menuconfig 对工具集进行定制

[root@localhost busybox-1.19.3]# make menuconfig

进入Busybox Settings --->选项

进入Busybox Library Tuning --->选项

选中[*]Fancy shell prompts 支持

进入Miscellaneous Utilities --->选项

去除[ ] inotifyd 选项

接下来的配置可以根据具体情况来设置或裁剪相关工具。

退出保存设置。

编译busybox

[root@localhost busybox-1.19.3]# make

安装busybox

[root@localhost busybox-1.19.3]# make install

成功后会在当前目录下生成_install 目录,编译的工具也都集成在该安装目录下。

[root@localhost busybox-1.19.3]# cd _install/

[root@localhost _install]# ls

bin linuxrc sbin usr

[root@localhost _install]#

可以看到_install 目录下生成了根文件系统常用的命令及工具,接下来的工作,用户可以根据需要将_install目录下生成的命令拷贝到根文件系统相应目录下。

例如:将从busybox 生成的which 命令拷贝到根文件系统目录的usr/bin 目录下,这样,我们的根文件系统就支持which 命令了。

(2)、制作CRAMFS 根文件系统镜像

实验中已经提供了mkcramfs 制作工具以及mkrootfs.sh 脚本文件,用户只需执行

mkrootfs.sh 脚本文件来使用mkcramfs 制作根文件系统镜像即可。

当然也可以手动的执行命令:./mkcramfs rootfs_up210 rootfs_up210.cramfs

[root@localhost rootfs]# ./mkrootfs.sh

此时在当前目录下生成根文件系统镜像文件rootfs_up210.cramfs

[root@localhost rootfs]# ls

mkcramfs mkrootfs.sh rootfs_up210 rootfs_up210.cramfs

三、烧写根文件系统

将新生成的根文件系统镜像文件rootfs_up210.cramfs烧写到UP-Magic210 型设备中进行测试,这里不在赘述(烧写步骤可以参考文档“UP-Magic210出厂程序烧写手册(LINUX)V1.0.pdf”第24页)。如果用户新添加了相关命令或工具(例如which 命令)启动系统后可以验证用户添加入的新命令或工具。

4.实验结果

5. 实验中遇到的问题及解决方法

make 编译有错误,进行源代码的修改。之后再make menuconfig中将这个宏对应的东西配置成没有就好了,如果没有这个宏,那么就直接用出错的那个文件的名字找就行了,找到后给它去掉,将来make的时候就不会编译这个文件了,在次进行make 编译后,编译出来了busybox这个东西,就在证明编译通过了。

实验三模块方式驱动实验

1. 实验目的

?学习在LINUX 下进行驱动设计的原理

?掌握使用模块方式进行驱动开发调试的过程

2. 实验内容

?在PC 机上编写简单的虚拟硬件驱动程序并进行调试,实验驱动的各个接口函数的实现,

分析并理解驱动与应用程序的交互过程。

?在ARM 设备上创建设备驱动节点,编写用户空间应用程序,对驱动程序进行测试。

3. 实验步骤

(1)、编译驱动程序/UP-Magic210/SRC/exp/driver/01_demo /demo.c,手工加载驱动程序,通过设备号建立驱动设备节点,执行应用程序测试该驱动及设备,分析驱动程序demo.c。

进入实验目录编译源程序

[root@localhost /]# cd /UP-Magic210/SRC/exp/driver/01_demo/

清除中间代码,重新编译

[root@localhost 01_demo]# make clean

[root@localhost 01_demo]# make

当前目录下生成驱动程序demo.ko和应用测试程序test_demo。

启动UP-Magic210 实验系统,连好网线、串口线。通过串口终端挂载宿主机实验目录(注意:虚拟机IP地址需要设置为:192.168.12.157)。

[root@UP-TECH yaffs]# mount -t nfs -o nolock 192.168.12.157:/UP-Magic210 /mnt/nfs

进入串口终端的NFS 共享实验目录

[root@UP-TECH yaffs]# cd /mnt/nfs/SRC/exp/driver/01_demo/

手动加载驱动程序demo.ko

[root@UP-TECH 01_demo]# insmod demo.ko

通过设备号建立驱动设备节点

[root@UP_210 01_demo]# mknod /dev/demo c 251 0

执行应用程序测试该驱动及设备,分析应用程序测试结果。

[root@UP-TECH 01_demo]# ./test_demo

(2)、请参考驱动程序demo.c,编写一个虚拟字符设备驱动程序并进行调试,该虚拟字符

设备驱动程序完成如下功能:

◆在内核模块初始化函数中,实现动态申请设备号并注册该设备,动态建立设备文件

节点;

◆在内核模块的退出函数中,实现设备注销,删除该设备文件节点;

◆实现file_operations设备驱动文件结构体中的open、read、write、ioctl和release

函数功能,其中:

?open函数:设置一个计数器count,每调用一次open函数,计数器count加1。

?read函数:读取用户写入的字符串数据的排列结果。

?write函数:实现将用户写入的字符串数据,按照每个字符的ASCII值逆序或升序排序(根据开关值asc排序:asc=0,逆序排序;asc=1,升序排序;)。

?ioctl函数:设置排序方式开关值asc。

?release函数:每调用一次release函数,计数器count减1。

4.实验结果

5. 实验中遇到的问题及解决方法。

没有修改makefile文件直接进行编译导致出错。实验前没有认真阅读实验原理,看懂实验代码,所以在使用make命令以后无法实现。最后在同学的帮助下找到了原因。忽略了自己使用的是gcc编译而不是交叉编译,因而没有设置节点。尝试了很多次以后才发现了问题,期间以为是test_demo文件的问题,但是导入导出很多次都没有解决,问了同学才找到了问题。

实验四 LED 驱动及控制实验

1. 实验目的

?了解ARM 设备外围电路结构与接口原理

?熟悉Linux 系统下硬件驱动编程

?编程实现对嵌入式设备上LED 灯的控制

2. 实验内容

?阅读UP-Magic210 平台硬件文档,熟悉ARM 处理硬件外围接口电路

?编程实现UP-Magic210 平台设备上LED 驱动及应用测试程序

3. 实验步骤

编写UP-Magic210 平台设备上LED 驱动及应用测试程序并进行调试,该LED驱动程序完成如下功能:

◆在内核模块初始化函数中,实现动态申请设备号并注册该设备,动态建立设备文件

节点;

◆在内核模块的退出函数中,实现设备注销,删除该设备文件节点;

◆实现file_operations设备驱动文件结构体中的ioctl函数,完成如下功能:

?一次调用控制所有的LED亮或灭;

?控制单个LED亮或灭;

?实现流水灯显示,流水灯显示效果自行定义,流水灯循环显示次数由用户应用程序传入。

程序:

驱动程序分析:

#include

#include

#include

#include

#include

#include

#include

#include

#include

MODULE_LICENSE("GPL");

#define DEVICE_NAME "leds" //驱动名称

#define DEVICE_MAJOR 231 //驱动主设备号

#define DEVICE_MINOR 0 //驱动次设备号

//声明字符设备类结构

struct cdev *mycdev;

struct class *myclass;

dev_t devno;

// LED GPIO 列表

static unsigned long led_table [] = {

S3C_GPQ2,

S3C_GPQ3,

S3C_GPQ4,

S3C_GPQ5,

S3C_GPQ6,

};

// LED GPIO 输出类型配置列表

static unsigned int led_cfg_table [] = {

S3C_GPQ2_OUTP,

S3C_GPQ3_OUTP,

S3C_GPQ4_OUTP,

S3C_GPQ5_OUTP,

S3C_GPQ6_OUTP,

};

// LED IOCTRL 处理函数,主要完成从用户空间传递数据进行 GPIO 引脚设置功能

static int uptech_leds_ioctl(struct inode *inode,struct file *file,unsigned int cmd,unsigned long arg)

{

switch(cmd) {

case 0:

case 1:

if (arg > 6) {

return -EINVAL;

}

// LED GPIO 设置函数接口

s3c_gpio_setpin(led_table[arg], !cmd);

return 0;

default:

return -EINVAL;

}

}

// 驱动层 file_operations 接口函数初始化

static struct file_operations uptech_leds_fops = {

.owner = THIS_MODULE,

.ioctl = uptech_leds_ioctl,

};

//驱动程序入口初始化函数,设置 LED GPIO、向内核注册设备。static int __init uptech_leds_init(void)

{

int ret;

int i;

// 注册 LED 设备

devno = MKDEV(DEVICE_MAJOR, DEVICE_MINOR);//获取设备号mycdev = cdev_alloc();

cdev_init(mycdev, &uptech_leds_fops);//初始化字符设备

err = cdev_add(mycdev, devno, 1);//向系统添加 LED 设备

if (err != 0)

printk("s3c leds device register failed!\n");

myclass = class_create(THIS_MODULE, "leds");

if(IS_ERR(myclass)) {

printk("Err: failed in creating class.\n");

return -1;

}

//建立 LED 设备节点

class_device_create(myclass,NULL, MKDEV(DEVICE_MAJOR,DEVICE_MINOR), NULL, DEVICE_NAME,DEVICE_MINOR);

// LED GPIO 配置初始化

for (i = 0; i < 5; i++) {

s3c_gpio_cfgpin(led_table[i], led_cfg_table[i]);

s3c_gpio_setpin(led_table[i], 1);

}

printk(DEVICE_NAME " initialized\n");

return 0;

}

// 驱动卸载函数

static void __exit uptech_leds_exit(void)

{

// 注销 LED 驱动设备

unregister_chrdev(LED_MAJOR, DEVICE_NAME);

}

// 声明驱动程序入口函数

module_init(uptech_leds_init);

// 声明驱动程序出口函数

module_exit(uptech_leds_exit);

?应用程序分析:

#include

#include

#include

#include

材料力学实验报告标准规定答案解析

力学实验报告标准答案

长安大学力学实验教学中心 目录 、拉伸实验? 、压缩实验? 三、拉压弹性模量E测定实验? 四、低碳钢剪切弹性模量G测定实验? 五、扭转破坏实验-10

六、纯弯曲梁正应力实验? 12 七、弯扭组合变形时的主应力测定实验? 15 八、压杆稳定实验"8

、拉伸实验报告标准答案实验目的: 见教材 实验仪器 见教材实验结果及数据处理:例:(一)低碳钢试件

服应力 (T s = P s /A _273.8 _MP a 屈度极限 (T b = P b /A _411.3 MP a 强试验前 试验后 最小平均直径d= 10.16 mm 最小直径d= 10.15 mm 截面面积A= 81.03 mm 2 截面面积A1= 80.91 mm 2 计算长度L= 100 mm 计算长度L 忤 100 mm 试验前草图 试验后草图 1 ' 1 ''1 1 最大载荷P b =__14.4 KN P s =_22.1 KN P b =_33.2 ____ KN 塑性指标: 伸长率 厘100% L 68.40 % 33.24 % A A 1 面积收缩率 - 100% A 低碳钢拉伸图:

强度极限c b= P b / A = _ 177.7 — M P a 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件 延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有45 0的剪切唇, 断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织

材料成型及控制工程专业综合实验报告

目录 1 实验课题 (1) 2 实验目标 (1) 3 实验原理 (1) 3.1 轧制实验原理 (1) 3.1.1 轧制原理 (1) 3.1.2 轧制力测定原理 (1) 3.2 拉伸实验原理 (2) 4 实验参数设定 (3) 4.1 轧制实验参数的确定 (3) 4.1.1 试样参数的设定 (3) 4.1.2 轧制参数的设定 (3) 4.2 拉伸实验参数的确定 (3) 5 实验内容 (4) 5.1 轧制实验 (4) 5.1.1实验仪器及材料 (4) 5.1.2实验步骤 (4) 5.2 拉伸实验 (4) 5.2.1 实验仪器及材料 (4) 5.2.2实验步骤 (4) 6 实验结果与分析 (5) 6.1 轧制实验结果 (5) 6.2 分析与讨论 (8) 6.2.1 轧制实验 (8) 6.2 拉伸实验结果 (10) 7 实验小结 (15)

综合实验 1 实验课题 变形程度对金属板材冷轧变形力和机械性能的影响。 2 实验目标 通过改变压下量h ?,即改变变形程度h ε(H h H h H h //)(?=-=ε)实验参数分别进行冷轧和拉伸试验,以此来研究铝板在进行同步冷轧时轧制力随变形程度的变化规律,以及在不同压下量时钢板的机械性能(主要为屈服强度s σ和抗拉强度b σ)的影响。 3 实验原理 3.1 轧制实验原理 3.1.1 轧制原理 同步轧制是指上下两轧辊直径相等,转速相同,且均为主动辊、轧制过程对两个轧辊完全对称、轧辊为刚性、轧件除受轧辊作用外,不受其它任何外力作用、轧件在入辊处和出辊处速度均匀、轧件的机械性质均匀的轧制。在轧制过程中,同步轧制变形区金属在前滑区,后滑区上下表面摩擦力都是指向中性面,中性面附近单位下力增强,使平均单位轧制增大。同步轧制时单位轧制压力沿变形区长度方向的类似抛物线形状分布。 3.1.2 轧制力测定原理 目前测量轧制力的方法有两种:应力测量法和传感器法。而传感器测量法又有电容式、 柱作为弹性元件。圆柱体在轧制力作用下产生形变使得应变片的电阻发生变化,将这些应变片按一定的方式连接起来,在接入电桥,就可得到一个与轧制力成比例关系的输出电压,从而将力参数转变成电信号,其原理图如图2所示。

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

《工程材料》热处理实验报告

工程材料综合实验 车辆工程10-1 班 实验者: 陈秀全学号:10047101冯云乾学号:10047103高万强学号:10047105

一实验目的 1区别和研究铁碳合金在平衡状态下的显微组织; 2分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之 间的相互关系; 3、 了解碳钢的热处理操作; 4、 研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、 观察热处理后钢的组织及其变化; 6、 了解常用硬度计的原理,初步掌握硬度计的使用。 二实验设备及材料 1、 显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、 金相砂纸、水砂纸、抛光布、研磨膏等; 3、 三个形状尺寸基本相同的碳钢试样(低碳钢 20#、中碳钢45#、高碳钢 T10) 三实验内容 三个形状尺寸基本相同的试样分别是低碳钢、 中碳钢和高碳钢,均为退火状 态,不慎混在一起,请用硬度法和金相法区分开。 6、 热处理前后的金相组织观察、硬度的测定。 、 分析碳钢成分一组织一性能之间的关系。 四实验步骤: &观察平衡组织并测硬度: (1) 制备金相试样(包括磨制、抛光和腐蚀); (2) 观察并绘制显微组织;

(3)测试硬度。 9、进行热处理。 10、观察热处理后的组织并测硬度: (1)制备金相试样(包括磨制、抛光和腐蚀); (2)观察并绘制显微组织。 五实验报告: 、总结出碳钢成分一组织一性能一应用之间的关系

图1工业纯铁图2工业纯铁图3亚共析钢 图6过共析钢图5共析钢调质处理

图8共晶白口铸铁 图7 亚共晶白口铸铁 图10 20#正火(加热到860C +空冷)图9过共晶白口铸铁 图11 45#调质处理图12 T10正火处理

塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 篇一:材料加工实验报告(注塑成型CAE分析实验) 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机

软件:UG软件、Moldflow软件 四、实验方法与步聚 1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器; 10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤); 13、得出结论 五、前置处理相关数据 1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题; 3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果:

建筑材料实验报告

专业 姓名 学号 组别 华侨大学土木工程学院

实验一建筑材料基本性质 试验原始记录 试验时间2013.03.29 温度干:22℃湿20℃相对湿度 82% 一、水泥石的表观密度 二。水泥石的密度 指导老师签名:

实验一建筑材料基本性质 试验报告 一、实验目的 本实验的主要任务就是通过对固体材料密度、表观密度、堆积密度、吸水率检测方法的练习,掌握材料基本物理参数的获取方法,并利用所测得物理状态参数来计算材料的孔隙率及空隙率等构造参数,从而推断其对材料其他性质的影响。 二、实验仪器 游标卡尺、直尺、天平、 李氏瓶、试样筛、量筒、天平。温度计、漏斗 三、实验内容和步骤 A、表观密度测量 1、用天平称量出试件的质量m(kg) 2、用游标卡尺测量试样尺寸(长,宽,厚),并计算试样的体积V。(m3) B、密度试验 1、往李氏瓶注入与试样不发生反应的液体至凸颈下部,记下刻度(V 1 ) 2、称取60~90g试样,用小勺和漏斗将试样徐徐送入李氏瓶中 3、微倾并转动李氏瓶,用瓶内的液体将粘附在瓶颈和瓶壁的试样冲入瓶内液体 中,待液体中(V 2 ) 4、取剩余试样的质量,计算出装入瓶中的试样质量m 5、计算瓶中试样所排开水的体积:V=V 2- V 1

四、实验结果计算 (一)水泥石的表观密度 (二)水泥粉的密度 (三)水泥石孔隙率的计算 %100 )/1(01?-=ρρP =(1-1.663/2.255)×100%=26.6% %100)/1(02?-=ρρP =(1-1.355/2.255)×100%=39.9% 五、实验结果分析(比较两组水泥石的性质差异) 由P 1

《材料力学》实验报告

材料力学 实验报告 对应课程 学号 学生 专业 班级 指导教师 成绩总评 学年第学期

目录 1.低碳钢及铸铁拉伸破坏实验???????????????(3 ) 2.低碳钢及铸铁压缩破坏实验???????????????(8 ) 3.引伸计法测定材料的弹性模量??????????????( 12 ) 4.低碳钢及铸铁扭转破坏实验???????????????(15) 5.载荷识别实验?????????????????????( 19) 成绩总评定 : 拉伸压缩测E扭转载荷识别

低碳钢及铸铁拉伸破坏实验 实验日期: 同组成员: 一、实验目的及原理 二、实验设备和仪器 1、试验机名称及型号: 吨位: 精度: 2、量具名称: 精度: 三、实验步骤 (一)、低碳钢、铸铁拉伸实验步骤:

四、试样简图 低碳钢试样 实验前实验后试 样 简 图 铸铁试样 实验前实验后试 样 简 图

五、实验数据及计算 低碳钢拉伸试验 (一)试件尺寸 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 断后标断口直径 d 1 ( mm )距 L1 12平均( mm )断口(颈缩处)最小横截面面 积 A1 ( mm2 ) 屈服极限:强度极限:断后延伸率: F s s (MPa) A0 F b b (MPa) A0 ( L 1 L O ) 100% L0

A0 A1100% 断面收缩率: A0 铸铁拉伸试验 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 F b 强度极限:b(MPa ) (二)绘出低碳钢的“力—位移、及铸铁的“ 力-位移”曲线低碳钢铸铁

【实验报告】塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机 软件:UG软件、Moldflow软件 四、实验方法与步聚

1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器;10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤);13、得出结论 五、前置处理相关数据1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题;3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗 可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果: 理论最佳浇口在深蓝色区,但实际选浇口位置还需根据模具结构设计等综合因素考虑。在方案任务视窗里双击第三项,弹出选择分析系列窗口,选择浇口分析,最后选择如图位置。

建筑材料实验报告模板

建筑材料实验报告 XXXXX学院 土木工程系 班级 姓名 学号

水泥性能测试试验报告 试验日期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 所选水泥样品产地、厂名 水泥品种:出厂标号:

1.水泥细度测定(干筛法) 结论: 根据国家标准GB 该水泥细度为 2.水泥标准稠度用水量测试 室温:℃;相对湿度: % (1)试件成型日期年月日 成型三条试件所需材料用量 (2)测试日期年月日;龄期:天 (3)抗折强度测定 (4)抗压强度测定

4.确定水泥强度等级(只按试验一个龄期的强度评定) 根据国家标准 该水泥强度等级为 混凝土用骨料性能试验报告 试验日 期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 1.砂的筛分析试验 筛孔尺寸(mm)105 2.5 1.250.630.3150.16筛底筛余质量(g) 分计筛余量a(%) 累计筛余量A(%)

砂样细度模数Mx Mx= Mx= 结论:按M X 该砂样属于砂,级配属于区;级配情况。2.砂的泥含量测试 编号冲洗前的烘干试样 质量G1(g) 冲洗后的烘干试样 质量G2(g) 泥含量(%) 测定值 (%) 平均值 (%) 3.砂的视密度测试 试样名称:水温:℃ 编号试样质量 G12(g) 瓶+砂+满水 质量G13(g) 瓶+满水 质量G14(g) 砂样在水中所占 的总体积V(cm3) 视密度 ρ0(g/cm3) 平均值 (g/cm3) 编号 容量筒容积 V(L) 容量筒质量 G1(kg) 容量筒+砂 质量 G2(kg) 砂质量 G(kg) 堆积密度 (kg/L) 平均值 (kg/L) 级配连续粒级 筛孔尺寸 分计筛余(g)(%) 累计筛余(%) 石子筛分析测试结果评定: (1)最大粒径: mm

材料力学实验报告答案

篇一:材料力学实验报告答案 材料力学实验报告 评分标准拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(p-δl曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度 0.02 mm 三、实验数据(2分) 四、实验结果处理(4分) ?s??b? psa0pba0 =300mpa 左右=420mpa 左右 =20~30%左右=60~75%左右 ?? l1?l0 ?100% l0a0?a1 ?100% a0 ?= 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么?相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备(1分) 机器型号名称电子万能试验机(0.5分) 测量尺寸的量具名称游标卡尺精度 0.02 mm (0.5分) 三、实验数据(1分)四、实验结果处理(2分) ?b? pb =740mpaa0 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。略 2. 绘出两种材料的压缩曲线。略 3. 为什么在压缩实验时要加球形承垫?

工程材料及材料成型基础实验报告

实验一金属材料硬度的测定实验 一、实验目的 1、了解布氏硬度和洛氏硬度的测定方法。 2、掌握布氏、洛氏硬度试验计的基本构造和操作方法。 二、实验内容及步骤 1、布氏硬度的测定 布氏硬度的测定在HB-3000型布氏硬度机上进行。 (1)实验原理 布氏硬度数值通过布氏硬度试验测定。布氏硬度试验是指用一定直径的球体(钢球或硬质合金球)以相应的试验力压入被测材料或零件表面,经规定保持时间后卸除试验力,通过测量表面压痕直径来计算硬度的一种压痕硬度试验方法。 布氏硬度值是试验力除以压痕球形表面积所得的商。使用淬火钢球压头时用符号HBS,使用硬质合金球压头时用符号HBW,计算公式如下: HBS(HBW)=0.102 式中:F—试验力(N); D—球体直径(mm); d—压痕平均直径(mm)。 由上式可以看出,当F、D一定时,布氏硬度值仅与压痕直径d的大小有关。所以在测定布氏硬度时,只要先测得压痕直径d,即可根据d值查有关表格得出HB值,并不需要进行上述计算。 国家标准GB231-1984规定,在进行布氏硬度试验时,首先应选择压头材料,布氏硬度值在450以下(如灰铸铁、有色金属及经退火、正火和调质处理的钢材等)时,应选用钢球作压头;当材料的布氏硬度值在450~650时,则应选用硬质合金球作压头。其次是根据被测材料种类和试样厚度,按照表1—1所示的布氏硬度试验规范正确地选择压头直径D、试验力F和保持时间t。 布氏硬度习惯上只写出硬度值而不必注明单位,其标注方法是,符号HBS或HBW之前为硬度值,符号后面按以下顺序用数值表示试验条件:球体直径、试验力,试验力保持时间(10~15s不标注)例如: 120HBS10/1000/30,表示直径10mm钢球在9.80KN(1000kgf)的试验力作用下,保持30s测得的布氏硬度值为120。 500HBW5/750,表示用直径5mm的硬质合金球在7.35KN(750kgf)试验力作用下,保持10~15s测得的布氏硬度值为500。 布氏硬度值的测量误差小,数据稳定,重复性强,常用于测量退火、正火、调质处理后的零件以及灰铸铁、结构钢、非铁金属及非金属材料等毛坯或半成品 (2)操作前的准备工作 a. 选定压头擦拭干净,装入主轴衬套中; b. 选定载荷,加上相应的砝码; c. 确定持续时间,把圆盘上的时间定位器(红色指示点)转到与持续时间相符的位置上。

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

工程材料与成形技术基础实验报告

实验一、金属材料的硬度实验 一、 实验类型 验证性 二、 实验目的 1、了解硬度测定的基本原理及应用范围。 2、了解布氏、洛氏硬度试验机的主要结构及操作方法。 三、实验仪器与设备 1、HB -3000型布氏硬度试验机; 2、H -100型洛低硬度试验机; 3、读数放大鏡; 四、实验内容: 金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力。硬度测量能够给出金属材料软硬程度的数量概念。由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。另外,硬度与其它机械性能(如强调指标b σ及塑性指标ψ和δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义。 硬度的试验方法很多,在机械工业中广泛采用压入法来测定硬度,压入法又可分为布氏硬度、洛氏硬度、维氏硬度等。 压入法硬度试验的主要特点是: (1)试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。 (2)金属的硬度与强调指标之间存在如下近似关系。 HB K b ?=σ (3)硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常硬度值高,这些性能也就好。在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。 (4)硬度测定后由于仅在金属表面局部体系内产生很小压痕,并不损坏零件,因而适合于成品检验。 (5)设备简单,操作迅速方便。

材料基本物理性质试验报告

《土木工程材料》试验报告 项目名称:材料基本物理性质试验 报告日期:2011-11-02 小组成员:

材料基本物理性质试验 - 2 - 1. 密度试验(李氏比重瓶法) 1.1 试验原理 石料密度是指石料矿质单位体积(不包括开口与闭口孔隙体积)的质量。 石料试样密度按下式计算(精确至0.01g /cm 3): gfdgfbg 感d 式中: t ρ──石料密度,g /cm 3; 1m ──试验前试样加瓷皿总质量,g ; 2m ──试验后剩余试样加瓷皿总质量,g ; 1V ──李氏瓶第一次读数,mL (cm 3); 2V ──李氏瓶第二次读数,mL (cm 3)。 1.2 试验主要仪器设备 李氏比重瓶(如图1-1)、筛子(孔径0.25mm )、烘箱、干燥器、天平(感量0.001g )、温度计、恒温水槽、粉磨设备等。 1.3 试验步骤 (1)将石料试样粉碎、研磨、过筛后放入烘箱中,以100℃±5℃的温度烘干至恒重。烘干后的粉料储放在干燥器中冷却至室温,以待取用。 (2)在李氏瓶中注入煤油或其他对试样不起反应的液体至突颈下部的零刻度线以上,将李氏比重瓶放在温度为(t ±1)℃的恒温水槽内(水温必须控制在李氏比重瓶标定刻度时的温度),使刻度部分进入水中,恒温0.5小时。记下李氏瓶第一次读数V 1(准确到0.05mL ,下同)。 (3)从恒温水槽中取出李氏瓶,用滤纸将李氏瓶内零点起始读数以上的没有的部分擦净。 (4)取100g 左右试样,用感量为0.001g 的天平(下同)准确称取瓷皿和试样总质量m 1。用牛角匙小心将试样通过漏斗渐渐送入李氏瓶内(不能大量倾倒,因为这样会妨碍李氏瓶中的空气排出,或在咽喉部分形成气泡,妨碍粉末的继续下落),使液面上升至20mL 刻度处(或略高于20mL 刻度处) ,注意勿使石粉粘附于液面以上的瓶颈内壁上。摇动李氏瓶,排出其中空气,至液体不再发生气泡为止。再放入恒温 咽喉部分 2 12 1V V m m t --= ρ比重瓶

材料力学实验报告

青岛黄海学院实验指导书 课程名称:材料力学 课程编码: 04115003 主撰人:吕婧 青岛黄海学院

目录 实验一拉、压实验 (1) 实验二扭转实验 (6) 实验三材料弹性模量E和泊松比μ的测定 (8) 实验四纯弯曲梁的正应力实验 (12)

实验一低碳钢拉伸实验 一、实验目的要求: (一)目的 σ、延伸率δ,截面收缩率ψ。 1.测定低碳钢的屈服极限σS,强度极限 b σ,观察上述两种材料的拉伸和破坏现象,绘制拉伸时2.测定铸铁的强度极限 b 的P-l?曲线。 (二)要求 1.复习讲课中有关材料拉伸时力学性能的内容;阅读本次实验内容和实设备中介绍万能试验机的构造原理、操作方法、注意事项,以及有关千分表和卡尺的使用方法。 2.预习时思考下列问题:本次实验的内容和目的是什么?低碳钢在拉伸过程中可分哪几个阶段,各阶段有何特征?试验前、试验中、试验后需要测量和记录哪些数据?使用液压式万能试验机有哪些注意事项? 二、实验设备和工具 1.万能实验 2.千分尺和游标卡尺。 3.低碳钢和铸铁圆形截面试件。 三、实验性质: 验证性实验 四、实验步骤和内容: (一)步骤 1.取表距L =100mm.画线 2.取上,中,下三点,沿垂直方向测量直径.取平均值

3.实验机指针调零. 4.缓慢加载,读出 s P .b P .观察屈服及颈缩现象,观察是否出现滑移线. 5.测量低碳钢断裂后标距长度1l ,颈缩处最小直径1d (二)实验内容: 1.低碳钢试件 (1)试件 (2)计算结果 屈服荷载 s P =22.1KN 极限荷载 b P =33.2KN 屈服极限 s σ=s P /0A =273.8MPa 强度极限 b σ=b P /0A =411.3MPa 延伸率 δ=(1l -0l )/0l *100%=33.24% 截面收缩率ψ=(0A -1A )/0A *100%=68.40% (3)绘制低碳钢P~ l ? 曲线

实验报告一-材料成形技术

实验一材料成形技术 材料成形制造工艺多利用模型使原材料形成零件或毛坯。材料成形加工过程中,原材料的形状、尺寸、组织状态,甚至结合状态都会改变。由于成形精度一般不高,材料成形制造工艺常用来制造毛坯。也可以用来制造形状复杂但精度要求不太高的零件。材料成形工艺的生产效率较高。常用的成形工艺有铸造、锻压、粉末冶金等。 1、不同类型成型技术 a.铸造成型: 卡特挖机CA T: 1、铸造成型:其原理是铸造是将所需的金属熔化成液体,浇注到铸型中,待其冷却凝固后获得铸件(毛坯)的。因此,铸造也可以称为液态成形。铸造是毛坯或机器零件成形的重要方法之一。 2、铸造成形优缺点: 优点:(1)适应性广泛,铸件材质、大小、形状几乎不受限制;不宜塑性加工或焊接成形的材料,铸造成形尤具优势。(2)可形成形状复杂的零件;(3)生产成本较低。铸造用原材料来源广泛,价格低廉。铸件与最终零件的形状相似,尺寸相近,加工余量小。由于铸造具有如此突出的优点,所以才会经久不衰,且不断发展,直到现在仍然在制造业中得到广泛应用。 缺点:涉及生产工序较多,过程难以精确控制,废品率较高;铸件组织疏松,晶粒粗大,铸件某些力学性能较低;铸件表面粗糙,尺寸精度不高。工作环境较差,工人劳动强度大。 3、主要工艺特点: 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: (1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 (2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 (3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 (4)铸件一般使用的原材料来源广、铸件成本低。 (5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 视频中,亚米特驻扎和机具公司锁铸造的是797b卡车的关键部位——车架。首先先把金属废料填进电弧炉,之后把三个电极伸入炉中,电极中通有强大的电流,碰到金属后便产生2200℃的高温的电弧,金属加热后起泡溶解,半小时后即可浇注。然后把将近2000℃的金属液体倒入空浇桶,之后再引导空浇桶到零

工程材料综合实验(基础实验+钢的热处理)实验报告

工程材料综合实验 处 理 报 告 单位:过程装备与控制工程10-1班 实验者: 侯鹏飞学号10042107 胡兴文学号10042108 李东升学号10042110

【实验名称】 工程材料综合实验 【实验目的】 运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论的系统认识,并提高分析问题和解决问题的能力。 通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的仪器和设备: 1、研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、 组织与性能之间的相互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 【实验材料及设备】 1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、金相砂纸、水砂纸、抛光布、研磨膏等;

3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢 45#、高碳钢T10) 【实验内容】 三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温时间、冷却方式)。做实验前完成。 样品加热温度保温时间冷却方式 20# 880℃25min 空冷 45# 淬火880℃ 高温回火600℃淬火25min 高温回火25min 水冷 T10 900℃30min 水冷 2、选定硬度测试参数,一般用洛氏硬度。 样品20# 45# T10 硬度HRB50 HRC20 HR63 3、热处理前后的金相组织观察、硬度的测定。 4、分析碳钢成分—组织—性能之间的关系。 样品成分组织性能 20# 马氏体F+P冲压性与焊接性良好 45# 马氏体F+P经热处理后可获得良好的综 合机械性能 T10 马氏体+奥氏体P+Fe3C II硬度高,韧性适中 【实验步骤】

材料力学实验报告答案

材料力学实验报告答案 Prepared on 22 November 2020

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分)

1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫

快速成型实验报告

实验一:零件的快速成型技术 一、实验目的 了解和掌握快速成型制造技术,了解FDM(融熔堆积固化成型)的原理,培养学生综合分析问题的能力,提高学生动手实验和实践的能力。 二、实验的主要内容 样件的FDM快速成型制造 三、实验设备和工具 本实验采用奥尔克特科技Allcct印客(200)FDM快速成型机(3D打印机)。该设备生产厂商为武汉奥尔克特科技有限公司,打印耗材为PLA、ABS 或复合PLA。 四、实验原理 一、FDM原理 FDM是“Fused Deposition Modeling”的简写形式,即为熔融沉积成型。 FDM通俗来讲就是利用高温将材料融化成液态,通过打印头挤出后固化,最后在立体空间上排列形成立体实物。FDM机械系统主要包括喷头、送丝机构、运动机构、加热工作室、工作台5个部分。将低熔点丝状材料通过加热器的挤压头熔化成液体,使熔化的热塑材料丝通过喷头挤出,挤压头沿零件的每一截面的轮廓准确运动,挤出半流动的热塑材料沉积固化成精确的实际部件薄层,覆盖于已建造的零件之上,并在0.1s内迅速凝固,每完成一层成型,工作台便下降一层高度,喷头再进行下一层截面的扫描喷丝,如此反复逐层沉积,直到最后一层,这样逐层由底到顶地堆积成一个实体模型或零件。FDM成形中,每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,以保证成形过程的顺利实现。 FDM的优缺点 FDM快速成型工艺的优点: (1)成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低; 另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。 (2)采用水溶性支撑材料,使得去除支架结构简单易行,可快速构建复杂的内腔、中空零件以?及一次成型的装配结构件。 (3)原材料以卷轴丝的形式提供,易于搬运和快速更换。 (4)可选用多种材料,如各种色彩的工程塑料ABS、PC、PPS以及医用ABS等。 (5)原材料在成型过程中无化学变化,制件的翘曲变形小。 (6)用蜡成型的原型零件,可以直接用于熔模铸造。 (7)FDM系统无毒性且不产生异味、粉尘、噪音等污染。不用花钱建立

土木工程材料实验报告册

土木工程材料实验报告册 苏胜昔阎宇杰 河北大学建筑工程学院 姓名:_________________ 班级:_________________ 学号:_________________ 组别:_________________ 成绩:_________________

实验一材料基本物理性质实验 试验日期:年月日试验室温度: 实验1.1密度实验 1、实验目的: 测定材料的密度,掌握材料密度的测定方法。材料的密度是指材料在绝对密实状态下单位体积的质量。主要用来计算材料的孔隙率和密实度。而材料的吸水率、强度、抗冻性及耐蚀性都与孔隙的大小及孔隙特征有关。如砖、石材、水泥等材料,其密度都是一项重要指标。 2、实验仪器、设备: 密度瓶(又名李氏瓶)、筛子(孔径0.2mm或900孔/cm2)、量筒、烘箱、天平(称量1kg;感量0.01 g)、温度计、玻璃漏斗、滴管和小勺等。 3、实验步骤:

实验1.2表观密度实验 1、实验目的: 表观密度是指材料在自然状态下,单位表观体积(包括材料的固体物质体积与内部封闭孔隙体积)的质量。测定表观密度可为近似绝对密实的散粒材料计算空隙率提供依据。 2、实验仪器、设备: 天平(称量10kg,感量1g),钢尺(精确到1mm),烘箱 3、实验步骤:

5、孔隙率计算: 实验1.3吸水率实验 1、实验目的: 材料吸水饱和时,其含水率称为吸水率。 2、实验仪器、设备: 天平(称量10kg)、烘箱、容器等 3、实验步骤:

4、实验数据: 思考题: 材料密度、表观密度、孔隙率、密实度的关系如何? 实验二水泥实验(一)试验日期:年月日试验室温度: 水泥品种:制造厂名: 原注标号:出厂日期:实验2.1细度实验

材料力学实验报告标准答案

力学实验报告 标准答案 长安大学力学实验教学中心 目录 一、拉伸实验 (2) 二、压缩实验 (4)

三、拉压弹性模量E测定实验 (6) 四、低碳钢剪切弹性模量G测定实验 (8) 五、扭转破坏实验 (10) 六、纯弯曲梁正应力实验 (12) 七、弯扭组合变形时的主应力测定实验 (15) 八、压杆稳定实验 (18) 一、拉伸实验报告标准答案 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试 件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,

断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 二、压缩实验报告标准答案 问题讨论: 1、分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏。 2、低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这 两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。 故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 三、拉压弹性模量E测定试验报告 问题讨论: 1、试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是 否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 四、低碳钢剪切弹性模量G测定实验报告标准答案 问题讨论: 1、试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么 措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。

相关文档
最新文档