汽轮机主要零部件的结构与作用

汽轮机主要零部件的结构与作用
汽轮机主要零部件的结构与作用

汽轮机主要零部件的结构与作用

一、基础与机座

基础是由钢筋混凝土构成的整体结构。其型式根据机组的结构特点及大小而定。基础主要承受着汽轮机、凝汽器、工作机(及冷却器)等的重量,此外还承受着由于机组的转动部分质量不平衡所引起的离心力。机座(台板)是用来支承机组并使其牢固地固定在基础上的部件。小型机组采用整块式台板,是用铸铁浇铸的空心结构。台板与基础之间置有垫铁,汽缸找平后,拧紧地脚螺栓,然后在空心台板内灌入混凝土,使台板牢固地固定在基础上。连接台板与基础的地脚螺栓一般有双头螺栓和带钩式螺栓两种型式。

二、汽缸

1.汽缸的作用及受力

汽缸是汽轮机的外壳。其作用是将汽轮机的通流部分与大气隔开,形成封闭的汽室,保证蒸汽在汽轮机内完成其能量转换过程。汽缸内部装有喷咀室、喷咀、隔板套、隔板和汽封等零部件,汽缸外部装有调节汽阀及进汽、排汽和回热抽汽管路。汽缸的受力情况比较复杂,而且随着汽轮机的运行工况改变而变化,为了掌握正确地运行方式,保证机组的安全,必须了解汽缸在工作时的受力情况。汽缸在工作时承受的作用力主要有:

(1)汽缸内外的压力差,使汽缸壁承受一定的作用力。

(2)隔板和喷咀作用在汽缸上的力,这是由隔板前后的压力差及汽流流过喷咀时的反作用所引起的。

(3)汽缸本身和安装在汽缸上零部件的重量。

(4)轴承座与汽缸铸成一体或轴承座螺栓连接下汽缸的机组,汽缸还承受着转子的重量及转子转动时产生的不平衡力。

(5)进排汽管道作用在汽缸上的力。

(6)汽轮机在运行中,汽缸各部分存在着温度差引起的热应力。

因此,在考虑汽缸结构时,必须保证汽缸有足够的强度和刚度,保证各部分受热时自由膨胀,根据汽流压力、温度和容积的变化要求通流部分有比较大地流通特性;在满足强度和刚度的情况下,尽量减薄汽缸和法兰壁的厚度,力求汽缸形状简单、对称。在汽轮机运行时,必须合理地控制汽缸的温度变化速度,以避免汽缸产生过大的热应力和热变形及由此引起的汽缸结合面不严密或汽缸裂纹。

2.汽缸的结构

根据机组的功率不同,汽轮机有单缸和多缸结构。我国生产的功率10万千瓦以下的汽轮机多采用单缸结构。汽缸从高压向低压方向看,大体呈圆筒形或园锥形。为了便于加工、安装及检修,汽缸一般做成水平剖分式,即分为上、下汽缸,水平结合面通常用法兰螺栓连接。

3.汽缸的支承及滑销系统

(1)气缸是支撑在台板上,台板通过垫铁用地脚螺栓固定在基础上。汽缸的支承方式一般有两种:一种是气缸通过轴承座支撑;另一种是通过其外伸的撑脚直接放置在台板上。汽缸与轴承座的连接方式有:(1)汽缸与轴承座作成一体。(2)汽缸与轴承座采用半法兰连接。(3)汽缸与轴承座采用猫爪连接。这种方式能保证汽缸自由膨胀和不会使轴承座温度升高过多,因此得到广泛应用。

(2)滑销系统

汽轮机在启动、停机和运行中,汽缸温度变化很大,随着汽缸各部温度的变化,各部件将产生膨胀和收缩。为了保证汽轮机自由地膨胀,并保持汽缸与转子中心一致,均装有滑

销系统。根据滑销的构造、安装位置和不同的作用可分为(1)纵销:其作用是允许汽缸沿纵向中心线自由膨胀,限制汽缸向中心线的横向移动。(2)横销:其作用是允许汽缸在横向能自由膨胀。一般装在低压缸排汽室的横向中心线上。(3)立销:其作用是保证汽缸在垂直方向能自由膨胀,并与纵销共同保持机组的纵向中心不变。(4)猫爪横销:其作用是保证汽缸能横向膨胀,同时随着汽缸在轴向的膨胀和收缩,推动轴承座向前或向后移动,以保持转子和汽缸的轴向相对位置。猫爪横销和立销共同保持汽缸中心与轴承座中心的一致。

三、喷咀及隔板

1.喷咀组

汽轮机第一级的喷咀通常由若干个喷咀组成喷咀组固定在单独设置的喷咀室上,第二级以后的各级喷咀装在隔板上。第一级喷咀分成数目不同的弧段,直接受各调速汽门的控制,用它来调整汽轮机进汽量的多少,因此,第一级喷咀又称调节级喷咀。

2.隔板

隔板是用来固定喷咀汽片,并将整个汽缸内间隔成若干个汽室,隔板在汽缸壳体内与汽缸壳体或内机壳组成气道,即形成扩压器、弯道及回流器。隔板由隔板体、喷咀汽片和隔板外缘等部分组成。隔板通过外缘直接安装在汽缸或隔板套内专门的凹槽中,为了检修方便,隔板沿水平分剖为上、下两半。

四、汽封

汽轮机通汽部分的动、静机件之间,为了避免碰磨,必须留有一定的间隙。而间隙的存在又要导致漏汽,使汽轮机的效率降低。为解决这一矛盾,在汽轮机动、静机件的有关部位设有密封装置,通常称为汽封。汽封的结构形式一般用迷宫汽封。迷宫汽封由若干个依次排列的环形密封齿组成,与轴形成一系列节流间隙和膨胀空腔,对通过的汽体产生节流效应而起密封作用。

五、轴承

(1)分类

根据轴承中摩擦性质的不同,可把轴承分为滑动轴承和滚动轴承两大类,每一类轴承按其所能承受的载荷方向的不同,又可分为支持轴承(承受径向载荷)、止推轴承(承受轴向载荷)和支持止推轴承(同时承受径向载荷和轴向载荷)等。滑动轴承按其摩擦状态可分为非流体滑动轴承(干摩擦和半干摩擦)和流体润滑轴承(流体摩擦),按照获得流体摩擦状态的方法不同,流体润滑轴承又分为动压轴承和静压轴承两种。动压轴承就是依靠本身轴颈(或止推盘)的回转,把润滑油带人轴(或止推盘)与轴承之间,建立起油压而把轴支撑起来(或承受转子的轴向推力)的轴承。静压轴承就是用泵向轴与轴承之间输人压力油,把轴支撑起来的轴承。

对于工业透平机械(汽轮机、离心压缩机),从承受载荷的角度来说,常用的是支持轴承和止推轴承两类。支持轴承的作用是承受转子重量和其他附加径向力,保持转子转动中心与汽缸中心一致,并在一定的转速下正常运行。止推轴承的作用是承受转子的轴向力,限制转于的轴向窜动,保持转子在汽缸中的轴向位置。从轴承的工作原理角度来说,普遍采用动压轴承。

汽轮机、离心压缩机转速很高,它们的支持轴承线速度一般在50m/s以上,止推轴承线速度一般在80m/s以上,均属于高速滑动轴承,所以对轴承的要求是安全可靠、运行稳定、抗振性好、使用寿命长,尤其突出的是要求高度可靠。与其他轴承相比,动压轴承能够更好地满足这些要求。

(2)动压轴承的工作原理

动压轴承在运行过程中,轴承与轴颈之间会形成一层薄薄的油膜,这层油膜可以使轴浮起来。对于止推轴承,在止推轴承和瓦块之间形成楔状间隙,止推盘旋转,由于润滑油

有一定的黏性,止推盘把油带进这个间隙中,进油口大,出油口小,便在油楔中形成油模压力,承受转子的轴向推力。同样,在径向轴承运行过程中,由于轴颈不停地回转,轴颈便把润滑油带人轴颈与轴承之间,从而形成了一层薄薄的油膜。由于轴颈与轴承中心并不同心,而是有一个偏心,这种楔形油膜可使沉重的轴浮起来。

概括来说,动压轴承为了获得液体润滑,在结构上必须满足有楔形间隙的要求,使进油口大与出油口小。轴承油膜的形成以及产生油膜压力的大小受轴的转速、润滑油的黏度、轴承间隙和轴承承受的负荷等因素的影响。一般来说,轴的转速越高,油的黏度越大,被带进的油就越多,油膜压力就越大.承受的载荷也就越大.但是,油的黏度过大,会使油分布不均匀,增加摩擦损失,不能保持良好的润滑效果。轴承间隙过大,对油膜形成不利,并增加油的消耗量;轴承间隙过小,又会使油量不足,不能满足轴冷却的要求。一定的轴承结构,在一定的转速下,只能承受相当的负荷,如果负荷过大,油膜形成会很困难,当超过轴承的承载能力时,轴瓦就会被烧坏。

(3)常用的径向轴承

在工业汽轮机上常用的径向轴承有圆瓦轴承、椭圆瓦轴承、多油楔固定轴承和可倾瓦轴承,并且以可倾瓦轴承使用为最多。圆瓦轴承的优点是结构简单,但高速稳定性差,只能用于中、小型和低速汽轮机中。椭圆瓦轴承同圆瓦轴承相比,其优点一是运行中形成上、下两个油膜,垂直方向稳定性好,二是油量大,轴承散热性好;缺点是功耗稍大,多应用于中型、轴承比压较高的汽轮机。多油楔固定轴承的优点是轴承的各方向抗振性均好、轴承温升低、不易发生油膜振荡,多用于高速工业汽轮机。可倾瓦轴承与上述轴承相比,其优点是每一块瓦均能自由摆动,在任何情况下都能形成最佳油楔,高速稳定性好,不易发生油膜振荡(旋转的轴颈在滑动轴承中,带动润滑油高速流动,在一定条件下高速油流反过来激励轴颈,产生一种强烈的自激振动现象)问题。多应用于高速轻载工业汽轮机。

近年来在高速透平机械上主要采用了可倾瓦轴承。可倾瓦轴承主要由轴承壳、两侧油封和可以自由摆动的瓦块构成。这种轴承由三个或更多个瓦块所组成,一般是五块瓦。轴瓦可以摆动。图3-1-19所示是五块瓦的可倾瓦轴承。

沿轴颈的周围均匀分布五个瓦块,各自可以绕自身的一个支点摆动。在轴颈的正下方有一个瓦块,以便停机时支撑轴颈及冷态时用于找正。瓦块与轴颈有正常轴承间隙量,一般取相对间隙的1.2220‰。每块瓦的外径都小于轴承壳体的内径。瓦背圆弧与壳体孔是线接触,

它相当于一个支点。当机组转速、负荷等运行条件变化时,瓦块能在壳体的支撑面上自由地摆动,自动调节瓦块位置,形成最佳润滑油楔。为了防止轴瓦随轴颈沿圆周方向一起转动,每个瓦块上都用一个装在壳体上并与轴瓦松配的销钉或螺钉来定位,图3-1-19中的定位销在瓦块中间,也有不在中间的,进油道至定位销的距离比出口边至定位销的距离大。为了防止轴瓦沿轴向和径向窜动,把瓦块装在壳体内的T形槽中。瓦块浇注有巴氏合金,巴氏合金厚度为0.8~2.5mm。为了保证巴氏合金与瓦块紧密贴合,在瓦块上预制出沟槽。轴承壳体上下水平剖分,安装在轴承座内,并用螺栓和定位销钉定位以保证对中,为了防止轴承壳体转动,装有一个径向定位销钉。一般情况下,轴承壳体外径紧配在轴承座内。也可以把轴承的外壳做成凸球面,装在轴承座的凹球面的支承上与其相吻合,从而轴孔壳体可以自动调位,以适应轴的弯曲和轴颈不对中时所产生的偏斜。轴承的进油口数各不一样,有的轴承只有一个进油孔,有的轴承采用瓦块与瓦块间都有进油孔,但总是布置在不破坏油膜的地方。润滑油沿轴向排出去。在轴承两端的壳体上有一个凹槽相通的排油孔,润滑油集中到凹槽中,经过排油孔流回油箱,也有的从上方排油孔排出。可倾瓦轴承与其他轴承相比,其特点是由多块瓦组成,每一瓦块可以摆动,因而使可倾瓦轴承在任何情况下有利于形成最佳油膜,不易产生油膜振荡。

(4)常用的止推轴承

在工业汽轮机上常用的止推轴承有米楔尔止推轴承和金斯伯雷止推轴承,这些轴承的共同特点是有多个活动的止推瓦块,在瓦块后有承力点,止推瓦块可以绕支点摆动,以形成最佳状态的润滑油膜。米楔尔止推轴承止推块同基环直接接触,是单层的;金斯伯雷止推轴承是止推块下还有上、下水准块,然后才是基环,是三层结构,分别如图3-l-20和图3-1-21所示。

米楔尔止推轴承的优点是结构简单,轴向尺寸小;缺点是当瓦块厚度稍有差别或轴承基环同止推盘平行度有误差时,每瓦块间负荷不能调节,会造成部分瓦块过载。米楔尔轴承主要包括轴向剖分的上下轴承壳体以及两个瓦环。若干块可倾瓦组成一个瓦环,瓦环直接通过止推轴承壳体和村环,将透平转子的轴向推力传给轴承壳体。可倾瓦块与转子止推盘接触的一面材有巴氏合金,其厚度应小于汽轮机动、静部分间的最小轴向间隙,目的是一旦巴氏合金熔化后,止推盘尚有钢圈支撑着,短时间内不致引起汽轮机内动、静部分碰伤,一般巴氏合金厚度为1~1.5mm。向旋转方向倾斜,这样,通过转子止推盘和可倾瓦表面的相对运动,止推盘和可倾瓦之间便形成油楔。由于可倾瓦这种布置方式,可出现最佳的润滑间隙。通过安装径向圆销防止了可倾瓦向切线方向移动。止推轴承包括两个相同的、对称安装的可倾瓦环,分别承受两个轴向方向的推力,一个作主推力轴承用,它应迎着转子的轴向推力方向,一个作副推力轴承用,它承受由于启动或甩负荷时可能出现的反向轴向推力。

金斯伯雷止推轴承的优点是瓦块间载荷分布均匀,调节灵活,能自动补偿转子不对中、偏斜;缺点是结构复杂,需要轴向安装尺寸较长。金斯伯雷止推轴承的结构中,止推瓦块下垫有上水准块,下水准块和基环。它们之间用球面支点接触,保证止推瓦块,水准块可

以自由摆动,使载荷分布均匀

六、转子

转子的组成及作用:汽轮机中所有转动部件的组合体称作转子。包括:主轴、轴封、平衡毂、转毂、动叶片、止推盘、危急保安器、联轴器总承、测量盘等

1.转子的结构

转子的结构基本上有三种类型:

(1)套装转子:

套装转子的结构如图6—4。这种转子是将主轴及叶轮分别加工制造,然后将叶轮热套(过盈配合)在主轴上。主轴加工成阶梯形,中间直径大、两端直径小,这样不仅有利于减少转子的挠度,而且便于叶轮的套装和定位,套装转子的优点是叶轮和主轴可以单独制造,故锻件小,加工方便,节省材料,容易保证质量、转子部分零件损坏后也容易拆换。其缺点是轮孔处应力较大,转子的刚性较差,特别是在高温下,金属的里面蠕变容易使叶轮与主轴套装产生松动现象。因此,它适用于工作温度小于400℃转速较低的中、低压汽轮机。

图6-4 套装转子

1-油封2-汽封环(平衡毂)3-轴4-叶片5-叶轮

整锻转子的结构如图6—5,这种转子的叶轮和主轴及其它主要零部件是用整体毛坯加工制成。主轴的中心通常钻有中心孔。其作用是用来检查整锻转子的质量,减轻转子的重量。整锻转子的优点是:叶轮与主轴作成整体,因此不会产生松动,能适应高温工作和快速启动的要求;装配零件少,结构紧凑,刚性较大。其缺点是:要求有生产大型锻件的专用设备,工艺、质量检验比较复杂、转子上零件损坏更换困难,甚至造成整个转子报废。汽轮机的高温转子均采用整锻转子。

(3)组合转子

组合转子是在同一转子上,高压部分采用整锻结构,中、低压部分采用套装结构,这种结构兼顾了整锻转子和套装转子的优点,因此,广泛用于高、中等功率的汽轮机上。如图6—6 还有焊接转子等。

2.叶轮结构

叶轮一般由轮缘、轮体和轮毂三部分组成。轮缘用来固定叶片,其结构根据叶片受力情况及叶根形状确定,大多数轮缘具有比轮体大的截面。轮毂是将叶轮套在主轴上的配合部分,故只有套装转子才有,其结构取决于叶轮在主轴上的套装方式。轮体是轮缘与轮毂连接的部分,其断面根据受力情况确定。轮体断面型线有等厚度叶轮、锥形叶轮、双曲线叶轮等。为了减少叶轮前的压力差,通常在叶轮的轮体上开有平衡孔。

七、叶片

叶片是汽轮机最重要的零件之一,这是因为:

(1)叶片的结构型线对汽轮机效率有直接影响;

(2)叶片的工作条件恶劣,受力情况复杂,故其事故较高、数量较大、加工量大。因此,要求叶片具有良好的流动特性,足够的强度及满意的转动特性,合理的结构和良好的工艺性能。

叶片的类型与结构叶片的类型很多,按工作原理可分为冲动式和反动式两大类,按叶片的截面形状还可分为等截面和变截面(扭曲)叶片,按制造工艺可分为铣制、轧制、模锻等类型。

叶片由叶型、叶根和叶顶三部分组成。图6—7所示为轧制叶片和铣制叶片的结构。

(1)叶型部分

叶型部分是工作部分,相邻叶片的叶型部分组成蒸汽的流道。

(2)叶根部分

叶片通过叶根固定在叶轮上,叶根与叶轮的连接应该牢固可靠,而且应保证叶片在任何运行条件下不会松动。叶根有T型、菌型、叉型、枞树型等。

(3)叶顶部分

汽轮机的叶顶部分通常装有围带,它将若干个叶片联成叶片组。

汽轮机转子与构成

汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。 图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振 动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。 2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速围,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子

轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。 1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的 中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。

汽轮机本体结构(低压缸及发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统得工作原理 1、汽水流程: 再热后得蒸汽从机组两侧得两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流得中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角得4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器得乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体得常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子得寿命及启动速度。#1 低压转子得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 三、岱海电厂得设备配置及选型 汽轮机有两个双流得低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子得寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16、7/538/538汽轮机采用一次中间再热,其优点就是提

汽轮机零件强度校核..

第五章汽轮机零件的强度校核 第一节汽轮机零件强度校核概述 为了确保电站汽轮机安全远行,应该使汽轮机零件在各种可能遇到的运行工况下都能可靠地工作。因此,需要对汽轮机零件进行强度校核,包括静强度校核和动强度校核两方面,这是本章要讨论的问题。 汽轮机的转动部分称为转子,静止部分称为静子。转子零件主要有叶片、叶轮、主轴及联轴器等,静子零件主要有汽缸、汽缸法兰、法兰螺栓和隔板等。由于备零件的工作条件和受力状况不同,采用的强度校核方法也各异。例如,转子中的叶片、叶轮和主轴除了受高速旋转的离心力和蒸汽作用力外,还会受到周期性激振力的作用,从而产生振动。当汽轮机在稳定工况下运行时,离心应力和蒸汽弯曲应力不随时间变化。稳定工况下不随时间变化的应力,统称为静应力,属于静强度范畴,周期性激振力引起的振动应力称为动应力,其大小和方向都随时间而变化,属于动强度范畴。直至目前为止、对汽轮机转子零件动应力的精确计算尚有一定困难,因此,本章对汽轮机零件的动强度分析,只限于零件自振频率和激振力频率计算及安全性校核。一般来说,对汽轮机转子零件,应从静强度和动强度两方面进行校核;对汽轮机静子零件,只需进行静强度校核,包括零件静应力和挠度计算。 静强度校核时,一般应以材料在各种工作温度下的屈服极限、蠕变极限和持久强度极限,分别除以相应的安全系数得到各自的许用应力,并取这三个许用应力中最小的一个许用应力作为强度校核依据。如果计算零件在最危险工况的工作应力小于或等于最小许用应力,则静强度是安全的。对动强度,常用安全倍率和共振避开率来校核。 需要指出,大型汽轮机某些零件的强度校核要求随工况变化而变化。在稳定工况下,某一零件只需进行静强度和动强度校核。但是在冷热态启动、变负荷或甩负荷等变工况下,沿零件径向和轴向会有较大的温度梯度,从而产生很大的热应力,且零件内任一点的热应力的大小和方向随运行方式而变化。如汽轮机冷态启动时,转子外表面有压缩热应力,中心孔表面有拉伸热应力;停机时,转子外

汽轮机的工作原理和结构-附图

汽轮机工作原理和结构 一、汽轮机工作原理 汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。如图1所示。高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。 图1 冲动式汽轮机工作原理图 1-轴;2-叶轮;3-动叶片;4-喷嘴 二、汽轮机结构 汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。

套装转子的结构如图2所示。套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。 图2 套装转子结构 1-油封环2-油封套3-轴4-动叶槽5-叶轮6-平衡槽 汽轮机主要用途是在热力发电厂中做带动发电机的原动机。为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。图3为汽轮机设备组成图。来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。凝汽设备由凝汽器、凝结水泵、循环水泵和抽气器组成,它的作用是建立并保持凝汽器的真空,以使汽轮机保持较低的排汽压力,同时回收凝结水循环使用,以减少热损失,提高汽轮机设备运行的经济性。

汽轮机主要零部件的结构与作用

汽轮机主要零部件的结构与作用 一、基础与机座 基础是由钢筋混凝土构成的整体结构。其型式根据机组的结构特点及大小而定。基础主要承受着汽轮机、凝汽器、工作机(及冷却器)等的重量,此外还承受着由于机组的转动部分质量不平衡所引起的离心力。机座(台板)是用来支承机组并使其牢固地固定在基础上的部件。小型机组采用整块式台板,是用铸铁浇铸的空心结构。台板与基础之间置有垫铁,汽缸找平后,拧紧地脚螺栓,然后在空心台板内灌入混凝土,使台板牢固地固定在基础上。连接台板与基础的地脚螺栓一般有双头螺栓和带钩式螺栓两种型式。 二、汽缸 1.汽缸的作用及受力 汽缸是汽轮机的外壳。其作用是将汽轮机的通流部分与大气隔开,形成封闭的汽室,保证蒸汽在汽轮机内完成其能量转换过程。汽缸内部装有喷咀室、喷咀、隔板套、隔板和汽封等零部件,汽缸外部装有调节汽阀及进汽、排汽和回热抽汽管路。汽缸的受力情况比较复杂,而且随着汽轮机的运行工况改变而变化,为了掌握正确地运行方式,保证机组的安全,必须了解汽缸在工作时的受力情况。汽缸在工作时承受的作用力主要有: (1)汽缸内外的压力差,使汽缸壁承受一定的作用力。 (2)隔板和喷咀作用在汽缸上的力,这是由隔板前后的压力差及汽流流过喷咀时的反作用所引起的。 (3)汽缸本身和安装在汽缸上零部件的重量。 (4)轴承座与汽缸铸成一体或轴承座螺栓连接下汽缸的机组,汽缸还承受着转子的重量及转子转动时产生的不平衡力。 (5)进排汽管道作用在汽缸上的力。 (6)汽轮机在运行中,汽缸各部分存在着温度差引起的热应力。 因此,在考虑汽缸结构时,必须保证汽缸有足够的强度和刚度,保证各部分受热时自由膨胀,根据汽流压力、温度和容积的变化要求通流部分有比较大地流通特性;在满足强度和刚度的情况下,尽量减薄汽缸和法兰壁的厚度,力求汽缸形状简单、对称。在汽轮机运行时,必须合理地控制汽缸的温度变化速度,以避免汽缸产生过大的热应力和热变形及由此引起的汽缸结合面不严密或汽缸裂纹。 2.汽缸的结构 根据机组的功率不同,汽轮机有单缸和多缸结构。我国生产的功率10万千瓦以下的汽轮机多采用单缸结构。汽缸从高压向低压方向看,大体呈圆筒形或园锥形。为了便于加工、安装及检修,汽缸一般做成水平剖分式,即分为上、下汽缸,水平结合面通常用法兰螺栓连接。 3.汽缸的支承及滑销系统 (1)气缸是支撑在台板上,台板通过垫铁用地脚螺栓固定在基础上。汽缸的支承方式一般有两种:一种是气缸通过轴承座支撑;另一种是通过其外伸的撑脚直接放置在台板上。汽缸与轴承座的连接方式有:(1)汽缸与轴承座作成一体。(2)汽缸与轴承座采用半法兰连接。(3)汽缸与轴承座采用猫爪连接。这种方式能保证汽缸自由膨胀和不会使轴承座温度升高过多,因此得到广泛应用。 (2)滑销系统 汽轮机在启动、停机和运行中,汽缸温度变化很大,随着汽缸各部温度的变化,各部件将产生膨胀和收缩。为了保证汽轮机自由地膨胀,并保持汽缸与转子中心一致,均装有滑

300MW汽轮机本体结构及运行

第一篇汽轮机本体结构及运行 第一章汽轮机本体结构 第一节本体结构概述 我公司300MW机组汽轮机是上海汽轮机有限公司生产的引进型、亚临界、一次中间再热、单轴、双缸双排汽、高、中压合缸、抽汽凝汽式汽轮机。 该汽轮机本体由转动和静止两大部分构成。转动部分包括动叶栅、叶轮、主轴、联轴器及紧固件,静止部分包括汽缸、喷嘴室、隔板套(静叶持环)、汽封、轴承、轴承座、滑销系统机座及有关紧固件。 本机通流部分由高、中、低三部分组成,高压汽缸内有一个部分进汽调节的冲动级和11个反动式压力级,中压汽缸内有9个反动式压力级,低压部分分为两分流式,每一分流由7个反动式压力级组成,全机共35级。高压蒸汽经主汽阀、调节汽阀,然后由高压上缸三个和下缸三个进汽套管连接到高压缸的喷嘴室,蒸汽在高压缸内做完功,通过高压外下缸的一个排汽口流到锅炉再热器,从再热器通过两个再热主汽阀、调节汽阀从中压缸下部进入中压缸的进汽室,蒸汽流经中压叶片,通过连通管到低压缸,再由低压叶片通道的中央,分别流向两端的排汽口。 本机高、中、低压缸均设有抽汽口,共有8级,抽汽口的分布见下表。对本机的各动、静部件,将在本章中分别介绍。 抽汽号级后抽汽抽汽口数抽汽口尺寸(mm)1(高压缸)71φ219×197 2(高压缸)111φ219×207 3(中压缸)161φ327×306 4(中压缸)201φ511×489 5(低压缸)221φ510×490 6(低压缸)241φ510×490 7(低压缸)252φ510×490 8(低压缸)264φ510×490

第二节技术规范及主要性能 一、技术规范 型号:C300-16.67/0.8/538/538 型式:亚临界,一次中间再热,单轴,双缸双排汽,高、中压合缸,抽汽凝汽式 额定功率:300MW 额定转速:3000r/min 额定蒸汽流量:907t/h 主蒸汽额定压力:16.67Mpa 主蒸汽额定温度:538℃ 再热蒸汽额定压力: 3.137Mpa 再热蒸汽额定温度:538℃ 额定排汽压力:0.00539Mpa 额定给水温度:273℃ 额定冷却水温度:20℃ 回热级数:3级高压加热+1级除氧加热+4级低压加热 给水泵驱动方式:小汽轮机驱动 低压末级叶片长:905mm 净热耗率:7892kj/kw.h(额定工况下) 临界转速:高中压转子一阶:1732r/min;二阶:>4000r/min 低压转子一阶:1583r/min;二阶:>4000r/min 振动值:工作转速下轴颈振动值≤0.075mm; 过临界时轴颈振动最大允许值0.2mm。 轴振:正常:0.076mm,报警:0.125mm,脱扣:0.25mm。 二、主要性能 1、厂用抽汽量四段为82t/h,五段为35t/h。 2、额定功率工况:汽轮机主汽门前压力、温度、再热汽门前温度和汽机背压均为额定值,回热系统正常投运,补给水率为零,发电机效率为98.7%时,发电机出线端发出额定功率的工况,为本机组的额定功率工况,也是本机组的保证工况。 3、夏季工况:汽轮机背压为0.0118MPa、主汽门、再热汽门前蒸汽参数为额定值,回

汽轮机与主要零部件质量检验规范标准

汽轮机股份标准 0-0001-7002-00 汽轮机及主要零部件质量检验通则2000年12月版 1围 本标准规定了汽轮机及主要零部件的关键特性(A级)和重要特性(B级) 的检验标准。 本标准适用于生产制造过程中的质量检验控制。 2引用标准 0-0001-2810-00 耐热紧固件技术条件 0-0001-6340-00 工业汽轮机轴承合金浇铸层技术条件 0-0001-6503-00 汽轮机铸钢件补焊技术条件 0-0001-7201-00 水压试验标准 0-0001-7202-00 煤油渗透试验方法 0-0001-7203-00 工业汽轮机挠性转子高速动平衡 0-0001-7205-00 工业汽轮机转子超速试验 0-0001-7401-00 叶片力学性能试样 0-0001-8004-00 汽轮机及主要零部件质量特性分级通则 0-0001-8008-00 工业汽轮机清洁度标准 0-0001-8021-00 工业汽轮机静子主要零部件加工装配技术条件 0-0001-8022-00 工业汽轮机转子主要零部件加工装配技术条件 0-0001-8023-00 工业汽轮机总装技术条件 0-0001-8024-00 工业汽轮机调节系统主要零部件加工装配技术条件 0-0001-9200-00 工业汽轮机转子和主轴用碳钢和合金钢锻件技术条件 0-0001-9200-01 工业汽轮机转子体锻件订货技术条件 0-0001-9201-00 工业汽轮机轮盘锻件订货技术条件 0-0001-9202-00 调质正火齿轮轴.齿轮锻件技术条件 0-0001-9202-01 渗碳、氮化齿轮轴.齿轮锻件技术条件 0-0001-9300-00 工业汽轮机灰铸铁技术条件 0-0001-9301-00 工业汽轮机重要球墨铸铁技术条件 0-0001-9310-00 工业汽轮机耐热铸钢件技术条件 0-1310-1109-00 联轴器加工工艺准则 0-1313-4101-00 叶轮叶根槽加工质控点文件

汽轮机结构及零件强度习题答案

第四章 汽轮机结构及零件强度习题答案 1.汽轮机本体由哪些主要部件组成? 汽轮机本体是汽轮机设备的主要组成部分,它由转动部分(转子)和固定部分(静子)组成。转动部分包括动叶片、叶轮(反动式汽轮机为转鼓)、主轴和联轴器及紧固件等旋转部件;固定部件包括汽缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。 2.动叶片常用的叶根型式有哪几种?各有何特点? 常用的结构型式有T 型、叉型和枞树型等 T 型叶根:结构简单,加工方便,增大受力面积,提高承载能力,多用于短叶片,加有凸肩的可用于中长叶片。 叉型叶根:强度高,适应性好。同时加工简单,更换方便。 枞树型叶根:承载截面按等强度分布,适应性好。但加工复杂,精度要求高。 3.围带和拉金分别有什么作用?有哪几种型式? 采用围带或拉金可增加叶片刚性, 围带:增加叶片刚性,减少级内漏气损失。降低叶片蒸汽力引起的弯应力,调整叶片频率。 拉金:增加叶片刚性,改善振动性能。 4.动叶片工作时主要受到哪些力的作用? ???? ????????????????静应力 动应力—交变部分汽流弯应力—稳定部分汽流力离心弯应力离心拉应力离心力叶片受力 5.等截面叶片上最大拉应力和弯应力在什么地方? 等截面直叶片其根部截面承受最大的离心力与离心拉应力。等截面直叶片根部截面不同部位均承受最大的弯应力 6.工作时引起叶片振动的激振力有哪几类?是如何产生的? 激振力按频率的高低可分为低频激振力和高频激振力。 主要是由于沿圆周方向汽流不均匀而产生的,这样形成的激振力产生这种现象的主要原因有:个别喷嘴损坏或制造、安装偏差;隔板中分面处结合不好使汽流异常;级前或级后有加强筋,干扰汽流;级前或级后有抽汽口或排汽口;隔板采用部分进汽等。 由于喷嘴的出汽边有一定的厚度,使得喷嘴叶栅出口的汽流速度分布不均匀,通道中间部分高而出汽边尾迹处低。叶片每经过一个喷嘴,所受的汽流力就变动一次,即受到一次激振,称为高频激振力。 7.叶片及叶片组的切向弯曲振动有哪些振型?其中最容易发生又最危险的是哪几种? 按振动时叶顶的状态,叶片切向振动又可分为A 型振动和B 型振动。 切向振动是最容易发生且最危险的振动。 8.什么是叶片的自振频率、静频率、动频率?影响叶片自振频率的因素有哪些? 静频率就是指叶片在静止时的自振频率;动频率是指叶片在旋转时的自振频率。 叶片的自振频率与下列因素有关:

相关文档
最新文档