浅谈高压真空开关的机械参数及其调试

浅谈高压真空开关的机械参数及其调试
浅谈高压真空开关的机械参数及其调试

浅谈高压真空开关的机械参数及其调试

下面分析真空开关的几个重要参数的选择及其调试。1高压真空开关的额定开距额定开距是真空开关触头处在完全断开位置时,动静触头之间的最短距离。它决定于真空开关的额定电压、使用条件下开断电流的性质、触头材料及其耐压要求。在不同额定电压下,不同种类的真空开关触头开距的选择范围见表1。表1真空开关触头额定开距的选择范围种类额定电压/KV 额定开距/mm 真空接触器3~63~6 3~64~8 真空断路器1035 9~1235~40 真空负荷开关6~10 8~12

从表1可知,真空接触器的触头开距选择得小些,主要是为了适应频繁操作的需要,以提高真空开关的电寿命和机械寿命,但牺牲了一定的耐压强度。断路器触头开距相对选得高些,但真空开关触头开距与耐压强度并非是呈线性关系。当额定电压超过一定值后,往往采用两个断口或多个开关管串联的方法来解决耐压问题。每一种真空开关触头开距都有技术条件的规定,开距太大太小都会引起开断能力下降,导致开关机械寿命降低。

2高压真空开关的超程超程是真空开关触头完全闭合后,动或静触头所能移动的距离。超程的作用主要有以下几点:a)保证触头在电磨损后仍能保持一定的接触压力;b)触头闭合时能利用触头弹簧力缓冲,减小弹跳;c)在触头分闸时,使动触头获得一定的初始的动能,拉断熔焊点,提高初始分闸速度,减小燃弧时间,从而提高介质恢复的速度。如果超程太小,就不能保证触头在烧损后应有的触头压力,同时,初始分闸速度变小,会影响真空开关的开断关合和动热稳定性能,甚至产生重合闸弹振。若超程太大,会增加操作机构的合闸功,使合闸变得极不可*。真空开关的超程取额定开距的15%~40%左右,10 kV级真空开关的超程一般取3~4 mm。

3触头工作压力真空开关在合闸工作状态时,还必须使操动机构给予一外加弹簧压力,使动、静触头接触良好,这一外加压力称作触头工作压力。选择和调试触头工作压力时,应考虑以下几种情况。a)由于真空开关管触头之间的接触电阻与触头间的压力有关,在一定范围内,压力越大,接触电阻越小越稳定,因此,一般真空开关每相的接触电阻不要大于100 μΩ;b)关合短路电流试验是考核触头工作压力是否满足要求的最苛刻的条件,并以此工作条件决定触头的工作压力,因此,在关合短路电流试验中,所选择的真空开关管两触头之间的压力必须大于触头在击穿后要产生的电弧和电动斥力,否则,会导致试

验的失败和开关的损坏;c)必须能抑制合闸弹跳。当真空开关合闸时,动电极(包括动触头、导电杆、导电夹、软连接线及机构上与动电极相连的其它零件)具有较大的动能,其动能的大小为:Ek=(1/2)mv 2 式中Ek——合闸瞬时动能,J;m——动电极质量,kg;v——闭合瞬时速度,m/s。

从上式可见,这一动能与动电极的质量成正比,与触头闭合时的即时速度平方成正比。当两触头碰撞后,能量可分三部分,即碰撞损失能量、触头压缩弹簧的部分储能、触头弹跳时动能,其中弹簧储能大小为:Ep=(1/2)(F1+F0)·h 式中Ep——触头压缩弹簧储能,J;F1——下限触头工作压力,N;

F0——压缩弹簧初始压力,N;h——触头超程,m。从上式可知,合理选择F1,F0,h可有效地抑制合闸弹跳。d)真空开关分闸后,在额定开距处会作衰减振动的机械震荡,这种情况称分闸弹振。它不仅对真空开关的机械寿命产生不良影响,而且增加了真空开关工作时的重燃和重击穿概率。因此,要想减小弹振,必须从下面几方面考虑:尽量降低触头及其连接部分的质量;选择适当的分闸弹簧;使用适当的缓冲橡皮以降低分闸到底时的触头即时速度;选择适当的触头压缩弹簧参数F1和F0。此外,选择触头的工作压力还必须考虑触头材料的硬度、分闸速度的需要等因素。它们对真空开关的性能有很大影响,必须进行综合考虑。下面列出真空开关的触头工作压力在不同的分断电流下得出的经验数据,见表2。

表2触头接触压力与分断电流大小的关系I/kA 8 12.5 16 20 25 31.5 40 F1/N 300 500 700 900~1200 1400~1700 1400~1800 2000~2500

4分闸速度分闸速度的大小将直接影响电流过零后触头之间介质强度的恢复速度。如果在电弧熄灭后,触头间介质强度的恢复速率小于恢复电压,将造成重燃。可见,分闸速度不能太低,太低不但影响灭弧,而且加速触头的电磨损引起重燃,产生严重的过电压。通常,分闸速度取0.8~1.2 m/s,根据工作任务,必要时可高于1.5 m/s。当额定电压和触头开距一定时,分闸速度的调整范围取决于开断电流的大小、负载性质、恢复电压等因素。开断电流较大时,分闸速度也应该较大,此时,由于恢复电压较高,为减少重燃概率,分闸速度也应较大。但并不是分闸速度越大越好,当分闸速度过大时,操作过程中的振动(弹跳和弹振)也越严重,对真空开关波纹管的振动压缩也就越严重,甚至会提前损坏波纹管而漏气,同时,整机的振动也越大,易造成整机零部件的损坏,因此,还必须根据真空开管的工作任务作出适当的选择。5

合闸速度合闸速度通常是指触头闭合运动时的平均合闸速度。由于真空开关管在额定开距时的静态耐压水平比较高,因而真空开关的合闸速度要比分闸速度低些,但必须具备一定的合闸速度,在能减小触头在合闸过程中由于被击穿造成的电磨损,避免产生触头熔焊。可是,过高的合闸速度,不但增加振动机构的合闸功,而且使开关管受到的合闸冲击增大,降低它的使用寿命。通常10 kV级真空开关的合闸速度取0.4~0.7 m/s,根据工作任务,必要时取0.8~1.2 m/s。6弹跳时间弹跳时间是指触头合闸时的衰减振动时间。合闸弹跳时间越小,整机的性能相对较好,合闸弹跳时间过长,将会引起触头燃损,产生合闸过电压,在做短路关合试验时,有可能导致触头熔焊。对于10 kV级、铜铬触头材料的真空开关,一般要求它的合闸弹跳时间不得超过2 ms,铜钨触头的合闸弹跳时间不得超过3 ms。

7三极同期性真空开关的三极同期性表示三极不同时闭合或分离的程度。三极同期性差的真空开关,对开断能力产生一定影响,测得燃弧时间也长。通常规定,合闸或分闸的同期性不超过1 ms。数值上合闸和分闸同期性的数值差别不大。由于真空开关的分闸速度均较大,开距较小,通过它的制造工艺及准确的调试,达到这一参数并不困难。8动静触头的同轴度动静触头的同轴度对真空开关管也有具体要求,并通过制造工艺来保证的。对于悬挂式机构,同轴度主要取决于操动机构,落地式机构对同轴度的影响也较大,在装配时要避免开关管受到剪力和切力的作用,同轴度一般要求不大于1 mm。

呼吸机常见模式及参数设置

呼吸机常见模式及参数设置 间歇正压通气(IPPV) ?间歇正压通气(IPPV):最基本的通气方式。吸气时产生正压,将气体压入肺内,靠身体自身压力呼出气体。 ?优点 ?可改善病人的通气和氧合,适用于呼吸停止、通气不足和呼吸功能不全者。用于容量负荷过大心力衰竭患者的呼吸支持时,可减少静脉回心血量。 ?缺点 ?可使肺循环阻力增加,右心负荷增加,正压过高可致血压下降。对换气障碍引起的急性呼吸衰竭的疗效不理想,而且如通气压力过高可造成肺压伤。 ?辅助/控制通气(A/C) ?辅助/控制通气(A/C):病人有自主呼吸时,机器随呼吸启动,一旦自发呼吸在一定时间内不发生时,机械通气自动由辅助转为控制型通气。它属于间歇正压通气。 同步间歇指令通气(SIMV) ?同步间歇指令通气(SIMV):属于辅助通气方式,呼吸机于一定的间歇时间接收自主呼吸导致气道内负压信号,同步送出气流,间歇进行辅助通气。即(可自主呼吸)若干次自主呼吸后给一次正压通气,保证每分钟通气量,IMV的呼吸频率成人一般小于10次/分。 优点 1.是自主呼吸与控制呼吸的有机结合,有利于呼吸肌锻炼。撤离呼吸机前常使用的通气方式。 2、在有自主呼吸的前提下进行的,只负担部分通气,从而减轻心血管负担,减少气道压力损失缺点SIMV频率需人工调节,有时会发生低通气量或CO2蓄积,在实施时必须严密观察 双水平气道内正压(BiPAP) ?双水平气道内正压(BiPAP):病人在不同高低的正压水平下自主呼吸。自主呼吸或机械通气时,交替给予两种不同水平的气道正压,即气道压力周期性地在高压力和低压力之间转换,每个压力水平均可独立调节。以两个压力水平之间转换引起的呼吸容量改变来达到机械通气辅助作用。?优点是病人自主呼吸轻松作功小,危险性小,几乎适合各种病人。 呼吸机的参数 1.时间参数 2.容量参数 3.压力参数 时间参数 ?呼吸频率( f ) ?吸呼比(I/E) ?吸气时间T i (s) -----、呼气时间T e(s) ?屏气时间T P(s) -----是吸气时间的一部份,一般不超过呼吸周期的20%。 容量参数 ?分钟通气量(Minute V olume,MV )— ?潮气量(Tidal Volume,VT),V TI,V T E ?吸气流量(F,l/s),是一个动态物理参数,峰值流速F peak :影响吸呼比 ?叹气/深吸气(Sign,1.5或2倍的V T /100次)

(仅供参考)呼吸机参数设置

**呼吸机的参数设置: 1.潮气量:成人一般为5~15ml/kg,8~12ml/kg是最常用的范围。容量控制通气时,潮气量设置的目的是保证足够的通气,并使患者较为舒适。气压伤等呼吸机相关的损伤是应用不当引起的,潮气量设置过程中,为防止发生气压伤,一般要求气道平台压力不超过35~40cmH O。对于压力控制通气,潮气量的大 2 小主要取决于预设的压力水平、病人吸气力量及气道阻力。一般情况下,潮气量亦不应高于8~12ml/kg。 2.通气频率:8~20次/分,对于急慢性限制性通气功能障碍患者,应设定较高的机械通气频率(20次/分或更高)。机械通气15~30分钟后,应根据动脉血氧分压、二氧化碳分压和pH值,进一步调整机械通气频率。机械通气频率的设置不宜过快,一避免肺内气体闭陷、产生内源性呼气末正压。一旦产生内源性PEEP,将影响肺通气/血流,增加患者呼吸功,并使气压伤的危险性增加。 3.吸呼比:1:1.5~3,吸气时间过长,患者不易耐受,往往需要使用镇静剂,甚至肌松剂。而且,呼气时间过短可导致內源性PEEP,加重对循环的干扰。4.吸入氧浓度:一般要求低于50%~60%。由于吸入高浓度氧可产生氧中毒性肺损伤。 5.触发灵敏度:-1~-2。呼吸机吸气触发机制有压力触发和流量触发(1~3L/分)两种。 6.呼气末正压:3~5cmH O。PEEP的目的是增加肺容积、提高平均气道压力、改 2 善氧合。 7.吸气流速在定容型控制呼吸时,一般设定在30-60L/min (1)高流速,可减少吸气功,使患者感觉舒服,减少内源性PEEP,但是增加吸气峰压。 (2)低流速,可减少吸气峰压,减少气压伤的危险,但是减少呼气时间,可能导致残存气体增加,患者不舒服。 8.压力支持水平(pressure support, PS)压力支持水平一般设置在10~20cmH 2O。9.报警设置: (1)吸气峰压(PIP):是整个呼吸周期中气道的最高压力,吸气末测得。正常

呼吸机参数

成人应用呼吸机的生理指标为:潮气量5~7ml/kg;呼吸频率12~20次/分;气道压30~35c m H2O;每分钟通气量6~10l/m i n。 1.呼吸机的检测:依呼吸机类型而定 2.控制部分: (1)模式选择:依据病情需要 (2)参数调节: ①潮气量(Tidal Volume):8~15ml/kg ;定容:VT=Flow×Ti(三者设定两者);定压:C=ΔV/ΔP(根据监测到的潮气量来设置吸气压力Inspirator Pressure) ②吸气时间:Ti=60/RR,一般吸呼比(I:E)为1:1.5~2;吸气停顿时间:属吸气时间,一般设置呼吸周期的10%秒(应〈20%) ③吸气流速:Peak Flow键;流速波形:递增、正弦波、方波、递减 ④通气频率(RR):接近生理频率 ⑤氧浓度(FiO2,21%~100%):只要PaO2/FiO2满意,FiO2应尽量低,FiO2高于60%为高浓度氧 ⑥触发灵敏度:压力触发水平一般在基础压力下0.5~1.5cmH2O;流速触发水平一般在基础气流下1~3L/min ⑦呼气灵敏度(Esens):一般设置20~25% ⑧呼气末正压(PEEP):生理水平为3~5 cmH2O ⑨压力支持水平(Pressure Support):初始水平10~15 cmH2O ⑩吸气上升时间百分比(Insp RiseTime%)、压力上升梯度、压力斜坡(Pressure Scope)、流速加速百分比

(2)其它特殊功能键: ①吸气暂停键(InspPause):吸气末阻断法测定气道平台压 ②呼气暂停键(Exp Pause):呼气末阻断法测定auto PEEP ③手动呼吸键(Manual Breath、Manual Insp、Start Breath) ④氧雾化键(Nebulization) ⑤100% O2键 ⑥叹气功能键(Sigh) 3.报警设置 (1)分钟通气量(minute ventilation,MV,VE)上(下)限:高(低)于设定或目标分钟通气量10~15% (2)呼气潮气量上(下)限:高(低)于设定或目标潮气量10~15% (3)气道压(airway pressure)上(下)限:高(低)于平均气道压5~10 cmH2O (4)基线压(baseline pressure)上(下)限:PEEP值上(下)3 cmH2O (5)通气频率上(下)限:机控时设定值上(下)5bpm,撤机时视情况而定。 (6)FiO2:设定值上下5~10% 4.呼吸机的监测系统(有些呼吸机有监测显示屏) (1)数据监测: (2)呼吸力学曲线监测: ①三条动态曲线:压力-时间(P-T)、容量-时间(V-T)、流速-时间(F-T) ②两个环:压力-容量环(P-V)、流速-容量环(F-V)

呼吸机参数的设置

一、呼吸机参数的设置和调节 1、呼吸频率:8-18次/分,一般为12次/分。COPD及ARDS者例外。 2、潮气量:8-15ml/kg体重,根据临床及血气分析结果适当调整。 3、吸/呼比:一般将吸气时间定在1,吸/呼比以1:2-2.5为宜,限制性疾病为 1:1-1.5,心功能不全为1:1.5,ARDS则以1.5-2:1为宜(此时为反比呼吸,以呼气时间定为1)。 4、吸气流速(Flow):成人一般为30-70ml/min。安静、入睡时可降低流速;发热、烦躁、抽搐等情况时要提高流速。 5、吸入氧浓度(FiO2):长时间吸氧一般不超过50%-60%。 6、触发灵敏度的调节:通常为0.098-0.294kPa(1-3cmH2O),根据病人自主吸气力量大小调整。流量触发者为3-6L/min。 7、吸气暂停时间:一般为0-0.6s,不超过1s。 8、PEEP的调节:当FiO2>60%,PaO2<8.00kPa(60cmH2O)时应加PEEP。临床上常用PEEP值为0.29-1.18kPa(3-12 cmH2O),很少超过1.47kPa(15 cmH2O). 9、报警参数的调节:不同的呼吸机报警参数不同,根据既要安全,又要安静的原则调节。压力报警:主要用于对病人气道压力的监测,一般情况下,高压限设定在正常气道高压(峰压)上0.49-0.98 kPa(5-10 cmH2O),低压下限设定在能保持吸气的最低压力水平。FiO2:一般可高于或低于实际设置FiO2的10%-20%.潮气量:高水平报警设置与所设置TV和MV相同;低水平报警限以能维持病人生命的最低TV、MV水平为准。PEEP或CPAP报警:一般以所应用PEEP或CPAP水平为准。 二、呼吸机各种报警的意义和处理 1、气道高压high airway pressure: (1)原因:病人气道不通畅(呼吸对抗)、气管插管过深插入右支气气管、气管套管滑入皮下、人机对抗、咳嗽、肺顺应性低(ARDS、肺水肿、肺纤维化)、限制性通气障碍(腹胀、气胸、纵隔气肿、胸腔积液) (2)处理:听诊肺部呼吸音是否存在不对称、痰鸣音、呼吸音低;吸痰;拍胸片排除异常情况;检查气管套管位置;检查管道通畅度;适当调整呼吸机同步性;使用递减呼吸机同步性;使用递减流速波形;改用压控模式;使用支气管扩张剂;使用镇静剂。 2、气道低压Low airway pressure 原因:管道漏气、插管滑出、呼吸机参数设置不当 处理:检查漏气情况;增加峰值流速或改压力控制模式;如自主呼吸好,改PSV模式;增加潮气量;适当调整报警设置。 3、低潮气量Low tidal volume(通气不足): (1)原因 *低吸气潮气量:潮气量设置过低、报警设置过高、自主呼吸模式下病人吸气力量较弱、模式设置不当、气量传感器故障。 *低呼气潮气量:管道漏气、其余同上。 (2)处理:检查管路以明确是否漏气;如病人吸气力量不足可增加PSV压力或改A/C模式;根据病人体重设置合适的报警范围;用模拟肺检查呼吸机送气情况;用潮气量表监测送气潮气量以判断呼吸机潮气量传感器是否准确。 4、低分钟通气量Low minute volume(通气不足) (1)原因:潮气量设置过低、通气频率设置过低、报警设置过高、自主呼吸模式下病人通气不足、管道漏气。 (2)处理:排除管道漏气;增加辅助通气参数;如自主呼吸频率不快可用MMV模式并设置合适的每分钟通气量;适当调整报警范围。

呼吸机的参数设置

呼吸机的参数设置 一、呼吸机的潮气量的设置 潮气量的设定是机械通气时首先要考虑的问题。容量控制通气时,潮气量设置的目标是保证足够的通气,并使患者较为舒适。成人潮气量一般为5~15ml/kg,8~12mg/kg是最常用的范围。潮气量大小的设定应考虑以下因素:胸肺顺应性、气道阻力、呼吸机管道的可压缩容积、氧合状态、通气功能和发生气压伤的危险性。气压伤等呼吸机相关的损伤是机械通气应用不当引起的,潮气量设置过程中,为防止发生气压伤,一般要求气道平台压力不超过35~40cmH2O。对于压力控制通气,潮气量的大小主要决定于预设的压力水平、病人的吸气力量及气道阻力。一般情况下,潮气量水平亦不应高于8~ 12ml/kg。 二、呼吸机机械通气频率的设置 设定呼吸机的机械通气频率应考虑通气模式、潮气量的大小、死腔率、代谢率、动脉血二氧化碳分压目标水平和患者自主呼吸能力等因素。对于成人,机械通气频率可设置到8~20次/分。对于急慢性限制性通气功能障碍患者,应设定较高的机械通气频率(20次/分或更高)。机械通气15~30分钟后,应根据动脉血氧分压、二氧化碳分压和pH值,进一部调整机械通气频率。另外,机械通气频率的设置不宜过快,以避免肺内气体闭陷、产生内源性呼气末正压。

一旦产生内源性呼气末正压,将影响肺通气/血流,增加患者呼吸功,并使气压伤的危险性增加。 三、呼吸机吸气流率的设置 许多呼吸机需要设定吸气流率。吸气流率的设置应注意以下问题: 1.容量控制/辅助通气时,如患者无自主呼吸,则吸气流率应低于40升/分钟;如患者有自主呼吸,则理想的吸气流率应恰好满足病人吸气峰流的需要。根据病人吸气力量的大小和分钟通气量,一般将吸气流率调至40~100升/分钟。由于吸气流率的大小将直接影响患者的呼吸功和人机配合,应引起临床医师重视。 2.压力控制通气时,吸气峰值流率是由预设压力水平和病人吸气力量共同决定的,当然,最大吸气流率受呼吸机性能的限制。 四、呼吸机吸呼比的设置 机械通气时,呼吸机吸呼比的设定应考虑机械通气对患者血流动力学的影响、氧合状态、自主呼吸水平等因素。 1.存在自主呼吸的病人,呼吸机辅助呼吸时,呼吸机送气应与病人吸气相配合,以保证两者同步。一般吸气需要0.8~1.2秒,吸呼比为1∶2~1∶1.5。

机械通气参数的调节

一、通气参数的设置 (一)分钟通气量(VE)的设置: 绝大多数高档呼吸机既可通过压力控制模式(或也可称为压力目标通气)又可通过容量控制模式(也称为容量目标通气)来提供分钟通气量。目前尚无确凿的证据说明两者孰优孰劣,具体选用哪种方式可根据临床情况和使用者的熟悉程度决定。一般来说,当患者的肺顺应性和呼吸阻力变化迅速时,最好选用容量控制通气,而当人-机协调性不良为主要矛盾时可考虑选用压力控制通气。 当采用容量控制通气时,根据呼吸机的配置不同,有两种方法设置和调节VE。一种是分别调节VT和f(VE=VT×f),大多数呼吸机通过此方式确定VE。另一种方法是先设定VE和f,VT通过计算得出(VT=VE÷f),临床常用的SIMENS900C 型呼吸机就是采用此方法确定VE和VT。对完全通气支持的患者来说,VE全部由呼吸机提供,无论是调节VT还是f都可导致VE的变化,进而影响PaCO2水平。但对部分通气支持的患者来说,VE是由呼吸机和患者自主呼吸两部分来提供,即VE=VE(呼吸机)+VE(自主呼吸),其中由自主呼吸提供的VE受患者的呼吸中枢驱动影响很大,因而变化较大。当采用部分通气支持时,医生应及时评估患者的总的分钟通气量需求,当总的VE需求增大,而未能及时调整呼吸机提供的VE,必然使患者自主呼吸增强,导致实际VE>设定的VE,如过超出报警限则出现呼吸机报警,对某些患者可引起呼吸功增加,产生呼吸肌疲劳。 当选用压力控制通气时,通过设定呼吸驱动压力来产生一定的VT,VT受驱动压力的水平、患者肺顺应性、气道阻力等因素影响。一般认为在机械通气开始时,设定15cmH2O的压力水平较为安全,然后根据VT的大小上调或下调压力水平。 VE的确定通常按理想公斤体重来估算,不同的疾病状态应区别对待,如COPD 呼衰时为减少肺动态过度充气和内源性PEEP的程度,应尽量减少VE。采用部分通气支持时f设置应低,而采用完全通气支持时,f设置应接近正常呼吸频率。使用SIMV初期,f应接近患者的自主呼吸频率,以后逐渐降低呼吸机支持频率。采用辅助-控制通气模式时,备用呼吸机通气频率应低于自主呼吸2-4次,以防止患者呼吸停止或呼吸减慢时造成低通气。不同临床情况下推荐的潮气量(VT)和通气频率(f)详见表1。不同疾病状态下推荐的潮气量和通气频率 病人类型潮气量(VT)通气频率(f) 成人正常肺8-10ml/kg8-12bpm COPD<8-10ml/kg8-10bpm ARDS<8-10ml/kg>12-20bpm 限制性肺疾病<10ml/kg>12-20bpm 儿童8-16岁8-10ml/kg20-30bpm 0-8岁6-8ml/kg23-35bpm

呼吸机模式及参数

呼吸机参数设置 一、呼吸机的作用及适应症: 1. 作用:替代和改善外呼吸,降低呼吸(Respiratory )做功。(主要是改善通气功能,对改善换气功能能力有限) 2. 适应症:呼吸功能不全、呼吸衰竭;呼吸肌肉和神经等不可逆损害的替代治疗;危重病人的呼吸支持;术中及术后病人等。 二、呼吸机的组成、驱动、原理: 1. 组成部分: (1)主机(ventilator ):正压呼吸控制器、通气模式控制器、持续气流控制器、空氧混合器、压力感受器、流量感受器、呼气末正压发生器、触发装置、阀门系统、报警及监测装置等(由微电脑及电路等控制)。 (2)空气压缩机(compressor ):中心供空气时不需要工作。 (3)外部管道系统:吸气管道(inspiratory tube )、气体加温湿化装置 (humidifier )、呼气管道(expiratory tube )、集水杯。 2. 驱动调节方式: (1)电动电控:不需空气压缩机,驱动调节均由电源控制。 (2)气动气控:需空、氧气源,逻辑元件调节参数。 (3)气动电控:多数现代呼吸机的驱动调节方式。 3. 工作原理: (1)切换方式:吸气向呼气转换的方式。分为:时间、流速、压力、容量切换 (2)限制方式:吸气时气体运送的方式(吸气气流由什么来管理)。分为:流速、压力、容量限制(多数靠设置流速或压力)。 (3)触发方式:呼气向吸气转换的方式。分为:机器控制(时间触发)和病人触发(流量触发和压力触发)。 三、呼吸机的调试与监测: 1. 呼吸机的检测:依呼吸机类型而定 2. 控制部分: (1)模式选择:依据病情需要 (2)参数调节: ①潮气量(Tidal Volume ) : 8~15ml/kg ;定容:VT=Flow X Ti (三者设定两者);定压:C=A V/ AP (根据监测到的潮气量来设置吸气压力Inspirator Pressure ) ②吸气时间:Ti=60/RR,—般吸呼比(l:E)为1:1.5~2 ;吸气停顿时间:属吸气时间,一

呼吸机模式以及参数的调节

二、呼吸机(respirator)的基本构造和种类[返回] 由于呼吸机的主要功能是辅助通气,而对气体交换的影响相对较少,因而称为通气机(ventilator)更符合实际情况。本文沿用习惯叫法,称ventilator为呼吸机。 呼吸机本质上是一种气体开关,控制系统通过对气体流向的控制而完成辅助通气的功能。 呼吸机的种类 1.依工作动力不同:手动、气动(以压缩气体为动力)、电动(以电为动力)。 2.仍吸-呼切换方式不同:定压(压力切换)、定容(容量切换)、定时(时间切换)。 3.依调控方式不同:简单、微电脑控制。 三、正压通气的生理学效应[返回] (一)对呼吸功能的影响 1、对呼吸肌的影响 机械通气一方面全部或部分替代呼吸肌做功,使呼吸肌得以放松、休息;另一方面通过纠正低氧和CO2 潴留,使呼吸肌做功环境得以改善。但长期应用呼吸机会使呼吸肌出现废用性萎缩,功能降低,甚至产生呼吸机依赖。为了避免这种情况的发生,临床上可根据病情的好转,给予适当的呼吸负荷。

机械感受器和化学感受器的反馈机制在机械通气中的作用:机械通气使肺扩张及缺氧和CO2潴留的改善,使肺牵张感受器和化学感受器传入呼吸中枢的冲动减少,自主呼吸受到抑制。另外,胸廓和膈肌机械感受器传入冲动的改变,也可反射性地使自主呼吸抑制。 2、对呼吸动力学的影响 机械通气的主要目的是通过提供一定的驱动压以克服呼吸机管路和呼吸系统的阻力,把一定潮气量的气源按一定频率送入肺内。驱动压和对比关系决定潮气量,用运动方程式(equation of motion)表示为:P=V T/C+F×R,其中P为压力,V T为潮气量,C为顺应性,R为阻力,F为流速。 (1)压力指标 ◎吸气峰压(peak dynamic pressure P D)用于克服胸肺粘滞阻力和弹性阻力。与吸气流速、潮气量、气道阻力、胸肺顺应性和呼气末正压(PEEP)有关。 ◎平台压(peak static pressure或plateau pressure, P S)用于克服胸肺弹性阻力。与潮气量、胸肺顺应性PEEP有关。若吸入气体在体内有足够的平衡时间,可反映肺泡压。 ◎呼气末正压(positive end-expiratory pressure,PEEP)若无外源性PEEP,呼气末压应为零。 ◎气道平均压(mean airway pressure, Pmean)为数个周期中气道压的平均值。与影响PD的因素及吸气时间长短有关。Pmean的大小直接与对心血管系统的影响有关。 (2)气道阻力(resistance,R)

呼吸机模式以及参数的调节

呼吸机模式以及参数的调节

————————————————————————————————作者: ————————————————————————————————日期: ?

二、呼吸机(respirator)的基本构造和种类 由于呼吸机的主要功能是辅助通气,而对气体交换的影响相对较少,因而称为通气机(ventilator)更符合实际情况。本文沿用习惯叫法,称ventilator为呼吸机。 呼吸机本质上是一种气体开关,控制系统通过对气体流向的控制而完成辅助通气的功能。 呼吸机的种类? 1.依工作动力不同:手动、气动(以压缩气体为动力)、电动(以电为动力)。? 2.仍吸-呼切换方式不同:定压(压力切换)、定容(容量切换)、定时(时间切换)。 3.依调控方式不同:简单、微电脑控制。 三、正压通气的生理学效应(一)对呼吸功能的影响 1、对呼吸肌的影响?机械通气一方面全部或部分替代呼吸肌做功,使呼吸肌得以放松、休息;另一方面通过纠正低氧和CO2潴留,使呼吸肌做功环境得以改善。但长期应用呼吸机会使呼吸肌出现废用性萎缩,功能降低,甚至产生呼吸机依赖。为了避免这种情况的发生,临床上可根据病情的好转,给予适当的呼吸负荷。?机械感受器和化学感受器的反馈机制在机械通气中的作用:机械通气使肺扩张及缺氧和CO2潴留的改善,使肺牵张感受器和化学感受器传入呼吸中枢的冲动减少,自主呼吸受到抑制。另外,胸廓和膈肌机械感受器传入冲

2、对呼吸动力学的影响?机动的改变,也可反射性地使自主呼吸抑制。? 械通气的主要目的是通过提供一定的驱动压以克服呼吸机管路和呼吸系统的阻力,把一定潮气量的气源按一定频率送入肺内。驱动压和对比关系决定潮气量,用运动方程式(equation of motion)表示为:P=V T/C+F×R,其中P为压力,VT为潮气量,C为顺应性,R为阻力,F为流速。?(1)压力指标?◎吸气峰压(peak dynamic pressure PD)用于克服胸肺粘滞阻力和弹性阻力。与吸气流速、潮气量、气道阻力、胸肺顺应性和呼气末正压(PEEP)有关。?◎平台压(peakstatic pressure或plateau pressure,P S)用于克服胸肺弹性阻力。与潮气量、胸肺顺应性PEEP有关。若吸入气体在体内有足够的平衡时间,可反映肺泡压。 ◎呼气末正压(positive end-expiratorypressure,PEEP)若无外源性PEEP,呼气末压应为零。 ◎气道平均压(meanairwaypressure, Pmean)为数个周期中气道压的平均值。与影响PD的因素及吸气时间长短有关。Pmean的大小直接与对心血管系统的影响有关。 (2)气道阻力(resistance,R)?人工气道使气道阻力增加,与人工气道的管径及长度有关。正压通气对气道的机械性扩张作用使气道阻力降低。 (3)顺应性(compliance, C) 正压通气通过减轻肺水肿和增加肺表面活性物质的生成,使肺顺应性改善。 3.对肺气道压过高,肺泡过度扩张和肺表面活性物质的减少,使肺顺应性降低。? 气容积的影响?机械通气通过改善顺应性、降低气道阻力和对气道、肺泡的机械性扩张作用使肺气容积增加,而PEEP的应用使呼气末肺容积增加尤为明

呼吸机模式及参数详细介绍

呼吸机参数 参数调节: (1)参数调节 ①潮气量(Tidal Volume):8~15ml/kg ;定容:VT=Flow×Ti(三者设定两者);定压:C=ΔV/ΔP(根据监测到的潮气量来设置吸气压力Inspirator Pressure) ②吸气时间:Ti=60/RR,一般吸呼比(I:E)为1:~2;吸气停顿时间:属吸气时间,一般设置呼吸周期的10%秒(应〈20%) ③吸气流速:Peak Flow键;流速波形:递增、正弦波、方波、递减 ④通气频率(RR):接近生理频率 ⑤氧浓度(FiO2,21%~100%):只要PaO2/FiO2满意,FiO2应尽量低, FiO2高于60%为高浓度氧 ⑥触发灵敏度:压力触发水平一般在基础压力下~;流速触发水平一般在基础气流下1~3L/min ⑦呼气灵敏度(Esens):一般设置20~25% ⑧呼气末正压(PEEP):生理水平为3~5 cmH2O ⑨压力支持水平(Pressure Support):初始水平10~15 cmH2O ⑨压力支持水平(Pressure Support):初始水平10~15 cmH2O ⑩吸气上升时间百分比(Insp RiseTime%)、压力上升梯度、压力斜坡(Pressure Scope)、流速加速百分比 (2)其它特殊功能键: ①吸气暂停键(InspPause):吸气末阻断法测定气道平台压 ②呼气暂停键(Exp Pause):呼气末阻断法测定auto PEEP ③手动呼吸键(Manual Breath、Manual Insp、Start Breath) ④氧雾化键(Nebulization) ⑤100% O2键 ⑥叹气功能键(Sigh) 3.报警设置 (1)分钟通气量(minute ventilation,MV,VE)上(下)限:高(低)于设定或目标分钟通气量10~15% (2)呼气潮气量上(下)限:高(低)于设定或目标潮气量10~15% (3)气道压(airway pressure)上(下)限:高(低)于平均气道压5~10 cmH2O (4)基线压(baseline pressure)上(下)限:PEEP值上(下)3 cmH2O (5)通气频率上(下)限:机控时设定值上(下)5bpm,撤机时视情况而定。 (6)FiO2:设定值上下5~10% 4.呼吸机的监测系统(有些呼吸机有监测显示屏) (1)数据监测: (2)呼吸力学曲线监测: ①三条动态曲线:压力-时间(P-T)、容量-时间(V-T)、流速-时间(F-T) ②两个环:压力-容量环(P-V)、流速-容量环(F-V) 特别贡献 通气模式及方式简介: 1.常见通气模式简介:

呼吸机参数设置

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 呼吸机参数设置 一、通气模式:(Mode Select) 1、VCV:容量控制模式:呼吸机完全代替病人的自主呼吸,呼吸频率、潮气量、吸呼比、吸气流速完全由呼吸机控制,呼吸机提供全部的呼吸功。 2、A/C:辅助控制通气(Assist-Control ventilation,ACV)是辅助通气(A V)和控制通气(CV)两种通气模式的结合,当病人自主呼吸频率低于预置频率或无力使气道压力降低或产生少量气流触发呼吸机送气时,呼吸机即以预置的潮气量及通气频率进行正压通气,即CV;当病人的吸气用力可触发呼吸机时,通气以高于预置频率的任何频率进行,即A V,结果,触发时为辅助通气,无触发时为控制通气。 3、SIMV:同步间歇指令通气是自主呼吸与控制通气相结合的呼吸模式,在触发窗内患者可触发和自主呼吸同步的指令正压通气,在两次指令通气周期之间允许病人自主呼吸,指令呼吸可以以预设容量(容量控制SIMV)或预设压力(压力控制SIMV)的形式来进行。可用于长期带机的患者的撤机;由于患者能应用较多的呼吸肌群,故可减轻呼吸肌萎缩。 4、压力支持通气(Pressure Support Ventilation,PSV)属于部分通气支持模式,是病人触发、压力目标、流量切换的一种机械通气模式,即病人触发通气并控制呼吸频率及潮气量,当气道压力达预设的压力支持水平时,且吸气流速降低至低于阈值水平时,由吸气相切换到呼气相。故PSV可应用于撤机过程。注意:PSV的潮气量是由呼吸系统的顺应性和阻力决定,当呼吸系统的力学改变时会引起潮气量的改变应及时调整支持水平。 5、CVC+SIGH:叹气模式,是在CVC基础上每隔100次来一次约1.5

呼吸机参数的设置与调节84134

呼吸机参数的设置与调节 无论何种通气模式均需对吸气触发、吸气控制、吸呼切换这三个关键环节进行参数设置。 1 触发参数设定与调节 此类参数的作用在于决定呼吸机何时向患者送气。按触发信号的来源可分为由呼吸机触发和病人触发。1.1 呼吸机触发一般是指时间触发,参数为呼吸频率(f)。呼吸机按照预设的呼吸频率定时给病人送气。此种触发方式多用于病人自主呼吸较弱或无自主呼 吸时,如昏迷状态、全麻术后恢复期病人等。呼吸频率在成人通常设为12一20次/min,取决于欲达到的理想每分通气量和PaCO 目标值。 1.2 病人触发此种触发方式需要病人存在自主呼吸,触发信号为患者吸气动作导致的管路内流速或压力 的变化。这种变化在呼吸机上体现为触发灵敏度(trigger sensitivity),相应的有流速触发灵敏度和压力触发灵敏度,流速触发灵敏度通常设为3—5L /min,压力触发灵敏度通常设为-0.5~-2cmH2O。现在大多采用的是流速触发。 上述两种触发方式可以单独使用,亦可联合应用。相对应于自主呼吸由无到有的过程,触发方式一般是从

呼吸机触发向患者触发逐渐过渡的。 2 控制参数的设定与调节 此类参数的作用在于呼吸机怎样按照预设的目标向病人送气。按照控制目标可分为容量控制和压力控制。 2.1 容量控制是指呼吸机以一个预设的潮气量(Vt)为目标送气。这一潮气量通常可按照6—8ml/kg来计算,需注意达到预设潮气量时气道压力不可过高,以防气压伤。此控制方式下还需要设置吸气峰流速(peak flow)、气体的流速波形、吸气时间(Ti)。 吸气峰流速一般情况下以使气流满足患者吸气努力为目标,成人通常设为40—80L/min。吸气时间通常设为0.8—1.2秒。流速与送气时间的积分即为潮气量,所以潮气量设定后吸气峰流速与吸气时问只需设定其一。流速波形通常选用方波和减速波。减速波因与正常吸气时的正弦波较接近,比较符合生理状态,而较多采用。 2.2 压力控制呼吸机以一个预设的吸气压力(in.spiratory pressure)为目标送气。此压力目标通常设为35cmH2O以下,以达到合适的潮气量且防止肺内压过高。还需要设置吸气触发后达到目标压力所需的时间,这一参数在有些呼吸机上为压力上升时间

呼吸机常用参数、通气模式设置

呼吸机常用参数、通气模式设置 一、机械通气的基本模式 (一)分类 1.“定容”型通气和“定压”型通气 ①定容型通气:呼吸机以预设通气容量来管理通气,即呼吸机送气达预设容量后停止送气,依靠肺、胸廓的弹性回缩力被动呼气。 常见的定容通气模式有容量控制通气、容量辅助-控制通气、间歇指令通气(IMV)和同步间歇指令通气(SIMV)等,也可将它们统称为容量预设型通气(volume preset ventilation, VPV)。 VPV能够保证潮气量的恒定,从而保障分钟通气量;VPV的吸气流速波形为恒流波形,即方波,不能适应患者的吸气需要,尤其存在自主呼吸的患者,这种人-机的不协调增加镇静剂和肌松剂的需要,并消耗很高的吸气功,从而诱发呼吸肌疲劳和呼吸困难;当肺顺应性较差或气道阻力增加时,使气道压过高。 ②定压型通气:呼吸机以预设气道压力来管理通气,即呼吸机送气达预设压力且吸气相维持该压力水平,而潮气量是由气道压力与PEEP之差及吸气时间决定,并受呼吸系统顺应性和气道阻力的影响。 常见的定压型通气模式有压力控制通气(PCV)、压力辅助控制通气(P-ACV)、压力控制-同步间歇指令通气(PC-SIMV)、压力支持通气(PSV)等,统称为压力预设型通气(pressure preset ventilation,PPV)。 PPV时潮气量随肺顺应性和气道阻力而改变;气道压力一般不会超过预置水平,利于限制过高的肺泡压和预防VILI;流速多为减速波,肺泡在吸气早期即充盈,利于肺内气体交换。 2.控制通气和辅助通气 ①控制通气(Controlled Ventilation,CV):呼吸机完全代替患者的自主呼吸,呼吸频率、潮气量、吸呼比、吸气流速,呼吸机提供全部的呼吸功。 CV适用于严重呼吸抑制或伴呼吸暂停的患者,如麻醉、中枢神经系统功能障碍、神经肌肉疾病、药物过量等情况。在CV时可对患者呼吸力学进行监测时,如静态肺顺应性、内源性PEEP、阻力、肺机械参数监测。 CV参数设置不当,可造成通气不足或过度通气;应用镇静剂或肌松剂将导致分泌物清除

常用机械通气模式及方式

常用机械通气模式及方 式 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

控制方式(为基本通气模式的通气控制方式,不能单独运用)容量控制(VC) 预置潮气量(VT)水平进行通气 优点:可保证通气量。 缺点:易引起气压伤, 压力控制(PC) 预置送气压力水平进行通气 优点:可控制PIP,防止气压伤。 缺点:通气量受肺的顺应性影响,可能出现通气不足或通气过度。 压力调节容量控制(PRVC) 综合VC和PC的优点而开发出的一种新的控制通气方式 PRVC控制方式能持续监测病人的肺顺应性和气道阻力,自动调节气道压力及流速,以最低的PIP,达到预设的目标潮气量。 基本通气模式 1.控制通气(CMV、IPPV): 呼吸机完全替代自主呼吸的通气方式,无视自主呼吸。 2.同步(辅助)控制通气(ACMV、A/C): 自主呼吸触发呼吸机送气后,呼吸机按预置参数送气;无自主呼吸或自主呼吸频率低于预置频率,呼吸机则以预置参数通气。需设置触发灵敏度。 3.间歇指令通气(IMV)

按预置频率给予CMV,实际IMV的频率与预置相同,间隙期间允许自主呼吸存在。 4.同步间歇指令通气(SIMV) 每一次送气在同步触发窗内由自主呼吸触发,若在同步触发窗内无触发,呼吸机按预置参数送气,间隙期允许自主呼吸。需设置触发灵敏度。 支持模式(要有自主呼吸) 持续气道正压(CPAP) 在自主呼吸基础上,气道压在吸气相和呼气相都保持在同一正压水平 双相气道正压(BIPAP) 在自主呼吸基础上,为一种双水平CPAP的通气模式,设置吸气压较高、呼气压较低 压力支持模式(PSV) 在自主呼吸基础上,对每次呼吸的气道压进行调节,使其达到预置气道压 容量支持模式(VSV) 在自主呼吸基础上,对每次呼吸的通气量进行调节,使其达到预置通气量 注:基本通气模式常常和支持模式叠加应用,达到最佳效果。

呼吸机参数设置

呼吸机参数的设臵和调整 医生对机械通气患者进行的呼吸支持和呼吸管理,是通过呼吸机参数的设 臵和调整来实施的。因此,呼吸机参数的设臵和调整应体现医生为患者制订的通 气目标和策略。而正确制订通气目标和策略,有赖于医生对患者基础疾病的病理 生理、呼吸力学改变、病情及各脏器功能、动脉血气检测结果等的全面了解,以 及对患者的氧合状态、通气能力和通气需要进行恰当评估。 一、呼吸机参数的设臵[1~5] 1潮气量(VT和通气频率(f:成人预设的VT一般为5~15ml/kg,f为15~25次 /min,将VT和f一起考虑是合理的,因VT×f=Vmin(每分钟通气量。 预设Vmin需考虑患者的通气需要和PaCO2的目标水平。VT过大, 可导致气道压过高和肺泡过度扩张,诱发呼吸机相关性肺损伤(V ALI,这 在急性呼吸窘迫综合征(ARDS患者尤易发生。VT过小,易引起通气不足。f过快,易致呼气时间不足而诱发气体陷闭和内源性呼气末正压(PEEPi。此外, 在固定Vmin的情况下,f过快,必然使VT减小,有效VT和有效Vmin随 之减小而致通气不足。从气体交换的效率考虑,有效Vmin比Vmin更重要。 预设VT和f时,还应考虑所用的通气模式,如用辅助控制通气(ACV模式时, 预设f与触发的频率不要相差太大,否则可导致呼气时间不足和反比通气。因为 此时预设的f是备用f,而实际上f是由患者触发的。例如,预设Vmin=8L/min,f =20次/min,吸∶呼(I∶E=1∶2;那么此时VT=04L/min,每个呼吸周期是3s, 吸气时间(TI1s,呼气时间(TE2s。如果患者触发的f是 30次/min,那么实际Vmin[即每分钟呼出气量(V〃E]是VT×f=04×30=12L,TI 1s,TE1s,I∶E为1∶1。这不仅导致V〃E过大,也使I∶E近于反比通气。所以, 设臵了VT和f后,还要看监测显示的V〃E、实际f和PE EPi结果。 应用同步间歇指令通气(SIMV时,设臵的VT和f是指令通气的VT和f, 自主呼吸的VT和f则取决于患者的呼吸能力。有些呼吸机可分别自 动显示指令通气和自主呼吸的每分钟气量。设臵的VT和f是否恰当,还要考虑到人

呼吸机模式及参数

呼吸机参数设置 、呼吸机的作用及适应症: 1.作用:替代和改善外呼吸,降低呼吸(Respiratory )做功。(主要是改善通气功能, 对改善换气功能能力有限) 2.适应症:呼吸功能不全、呼吸衰竭;呼吸肌肉和神经等不可逆损害的替代治疗;危 重病人的呼吸支持;术中及术后病人等。 、呼吸机的组成、驱动、原理: 1.组成部分: (1)主机(ventilator ):正压呼吸控制器、通气模式控制器、持续气流控制器、空 氧混合器、压力感受器、流量感受器、呼气末正压发生器、触发装置、阀门系统、报 警及监测装置等(由微电脑及电路等控制)。 (2)空气压缩机(compressor ):中心供空气时不需要工作。 (3)外部管道系统:吸气管道(inspiratory tube )、气体加温湿化装置(humidifier )、 呼气管道(expiratory tube )、集水杯。 2.驱动调节方式: (1)电动电控:不需空气压缩机,驱动调节均由电源控制。 (2 )气动气控:需空、氧气源,逻辑元件调节参数。 (3)气动电控:多数现代呼吸机的驱动调节方式。 3.工作原 理: (1)切换方式: 吸气向呼气转换的方式。分为:时间、流速、压力、容量切换 (2)限制方式: 压力、容量限制 吸气时气体运送的方式(吸气气流由什么来管理)。分为:流速、 (多数靠设置流速或压力)。 (3)触发方式: (流量触发和压力触发)。 呼气向吸气转换的方式。分为:机器控制(时间触发)和病人触发 三、呼吸机的调试与监测: 1.呼吸机的检测:依呼吸机类型而定 2.控制部分: (1)模式选择:依据病情需要 (2)参数调节: ①潮气量(Tidal Volume ) : 8~15ml/kg ;定容:VT=Flow X Ti (三者设定两者); 定 压:C=A V/ △P (根据监测到的潮气量来设置吸气压力 Inspirator Pressure )

相关文档
最新文档