碎屑岩和火山碎屑岩岩性特征及异同

碎屑岩和火山碎屑岩岩性特征及异同
碎屑岩和火山碎屑岩岩性特征及异同

碎屑岩和火山碎屑岩岩性特征及异同

碎屑岩的基本组成:

颗粒填隙物杂基胶结物孔隙

碎屑成分(颗粒)

矿物碎屑岩石碎屑(岩屑)

填隙物成分杂基胶结物

孔隙

碎屑颗粒:

矿物碎屑

按密度分为

轻矿物:比重小于2.86,石英、长石、云母为主。

重矿物:比重大于2.86

来自岩浆岩:榍石、锆英石、铁镁矿物

来自变质岩:石榴石、红柱石

碎屑岩自生矿物:黄铁矿、重晶石(属化学成因物质成分)

石英

抗风化能力强,在碎屑岩中分布最广,含量最高,在沉积岩中相对富集,主要出现在砂岩及粉砂岩中。

在中酸性岩中,石英平均含量10-20%,

在片岩、片麻岩中含量一般小于40%。

在砂岩和粉砂岩中平均含量66.8%,在砾岩中含量较少,粘土岩中更少。

石英含量高是风化富集的结果。

长石

1)分布:

主要分布于粗砂岩中,有时见于中粒长石砂岩中,砾岩、粉砂岩中含量较少。

(2)来源:主要来自花岗岩、花岗片麻岩

(3)长石大量出现的有利因素:

地壳运动比较剧烈,地形高差大,气候干燥,物理风化作用为主,搬运距离近,快速堆积。

(4)稳定性:钾长石>钠长石>钙长石;正长石>微斜长石。

云母

云母为片状矿物,搬运过程中表现为较低的沉降速度。常作为大碎屑出现。

白云母比黑云母抗风化,常与粉、细砂岩伴生;

黑云母易风化为海绿石或绿泥石、磁铁矿,常分布在距母岩较近的砾岩或杂砂岩中;

云母呈薄片状,常分布于细、粉砂岩的层面,平行层理排列,可作为层面的判断标志,在成岩中可发生变形→反映压实作用。

重矿物

指碎屑岩中比重大于 2.86g/cm3的矿物。在岩石中含量很少,一般<1%,主要分布在0.25~0.05mm的粒级范围内(细砂—粗粉砂岩)

根据风化稳定性,分为:

稳定重矿物

锆石、金红石、电气石、石榴石、榍石、磁

铁矿等

不稳定重矿物

重晶石、磷灰石、绿帘石、黄铁矿等

岩屑:是母岩机械破碎形成的碎块

提供母岩区岩石类型的直接标志

岩屑含量取决于粒度、母岩成分及成熟度等

砾岩中岩屑含量最大

岩屑类型

杂基

1.定义:分布于碎屑颗粒之间的,以悬移载荷方式与颗粒同时沉积的,粒径一般小于0.03mm 的,细小的机械成因碎屑沉积物

2.成因:机械成因

3.成分:

(1)高岭石、水云母、蒙脱石、绿泥石、伊利石等粘土矿物

(2)灰泥、云泥

(3)细粉砂级别的石英、长石及岩屑

胶结物

1.定义:胶结物是碎屑岩在沉积、成岩阶段,以化学沉淀方式从胶体或真溶液中沉淀出来,充填在碎屑颗粒之间的各种自生矿物。

2. 成因:化学沉淀

3. 常见的胶结物类型

(1)硅质胶结物:蛋白石、玉髓、石英

(2)碳酸盐胶结物:方解石、白云石、菱铁矿等

(3)铁质胶结物:赤铁矿、褐铁矿

(4)其它胶结物:粘土矿物、石膏、硬石膏、黄铁矿、磁铁矿、磷酸盐类矿物等

碎屑岩的结构及粒度分析

碎屑岩的结构

指碎屑岩内各结构组分的特点和相互关系

包括:

碎屑颗粒的结构

杂基和胶结物的结构

孔隙的结构

碎屑颗粒与杂基和胶结物之间的关系

碎屑颗粒的粒度:就是碎屑颗粒的大小,是碎屑岩最主要的结构特征

常见的碎屑颗粒粒度分级

>2mm 砾

2~0.1mm 砂

0.1~0.01mm 粉砂

<0.01mm 粘土(泥)

碎屑颗粒的圆度

圆度指碎屑颗粒的原始棱角被磨圆的程度。

手标本描述分四级:

棱角状、次棱角状、次圆状、圆状

填隙物的结构

原杂基:杂基。原始沉积状态,泥质结构,与颗粒界线清楚。

正杂基:经成岩作用明显重结晶后的原杂基。

杂基的结构——杂基的含量和性质可以反映搬运介质的流动特性及碎屑组分的分选性——碎屑岩结构成熟度的重要标志

胶结物结构按晶粒大小、晶体生长方式及重结晶程度划分:

(1)非晶质及隐晶质结构

(2)显晶粒状结构

(3)嵌晶结构

(4)自生加大结构

孔隙结构

——孔隙是碎屑岩的重要结构组分之一

可分为:

1、原生孔隙——主要是粒间孔隙;

2、次生孔隙——是沉积物沉积以后,特别是在固结成岩之后,岩石组分发生溶蚀作用形成的孔隙。

碎屑岩的构造和颜色

沉积构造

沉积岩的各个组成部分之间的空间分布和排列方式,或指组成岩石的颗粒彼此间的相互排列关系。

碎屑岩的颜色

继承色——陆源碎屑颗粒的颜色:母岩

如:长石砂岩-肉红色;石英砂岩-白色

自生色——自生矿物:粘土或早期成岩

如:红色泥岩——含赤铁矿或褐铁矿等

次生色——成岩作用或风化过程中,发生次生变化,由新生成的次生矿物造成的颜色,如:氧化作用——发红、黄

火山碎屑岩类

火山碎屑岩(pyroclastic rocks)是指火山活动时,由火山爆发作用产生的火山碎屑物质,

于火山口附近就地堆积,或在空气或水介质中搬运、降落、沉积、而后固结形成的岩石。火山碎屑物质来源于地下岩浆的爆炸破碎,和火山通道壁周围岩石的破坏。火山碎屑央求常和火山熔岩伴生,也经常与正常沉积岩共存。它既可发育在陆地上,也可形成于水下,即既可为陆相,也可为海相。

火山碎屑岩的外貌很似正常的沉积碎屑岩,但两者碎屑物质的组分和形态以及产状都不相同。因此,两者还是很容易区别的。

火山碎屑岩的结构

火山碎屑物质的结构

表1-1火山碎屑物质的粒度分类

粗火山碎屑

细火山碎屑

集块(火山岩块)火山(角)砾火山灰火山尘粗细粗细粗细粉

>128 mm 128-64m

m

64-8m

m

8-2mm 2-0.25m

m

0.25-0.05m

m

0.05-0.005m

m

<0.005

mm

火山碎屑岩的结构

根据火山碎屑物的粒度划分及其含量,可将火山碎屑岩的结构分为:

集块结构由>64mm的粗火山碎屑物占50%以上所组成。

火山角砾结构由64-2mm为粗火山碎屑物占50%以上所组成。

凝灰结构由2-0.05mm的细火山碎屑物占50%以上所组成。

火山尘结构由<0.005mm的细火山碎屑物为主组成。外貌致密,似泥质岩石。

此外,尚有一些过渡的结构,强主要由塑性玻屑和塑性岩屑组成的塑变结构;与溶岩过渡的碎屑熔岩结构;与沉积过渡的沉凝灰结构和凝灰沉积结构等。

火山碎屑岩的构造

层理构造

像正常和沉积碎屑岩一样,在部分火山碎屑岩层中可有层理构造发育,其中死扣儿大型的平

行层理或交错层,也可以有微细层理与小型的交错层。这些层理的形成多半是水携或风携的火山灰物质在水舆地中或陆表堆积成的,火山喷发的大气降落物中少见。偶尔可有不清楚的水平层理或小型层纹。火山碎屑沉积物则无层理可见。

粒序层理

可有正向粒序和逆向粒序层理两种,其中以正向粒序(即由下而上粒度由粗变细)为常见,粒序层理是密度流沉积的特征。当有大量相对密度小的浮岩质碎屑沉积进可有逆向粒序发育。

假流纹构造

是部分火山碎屑岩中,由于塑变玻屑和塑性岩屑的变形拉长,形成了貌似熔岩中流纹状构造的构造。它们与主、流纹构造的区别如表1-2所列。

假流纹构造与流纹构造的区别

假流纹构造流纹构造

流纹的成分由颜色不同的塑变玻屑、塑性岩

屑定向变形而成由颜色不同的熔岩条纹和拉长的气孔或杏仁及斑晶定向分布而成的流动构造

流纹的形态纹理宽窄不定,断续延伸且有分

叉现象,有塑残迹

纹理细密,延伸很长,无分叉现象

气孔或杏仁无或极少常见

斑晶晶屑成分杂,破碎不整无向分布成分单一,晶体完整,平行流纹分布

基质结构由明显的塑变玻屑组成玻璃质、结晶质、球粒霏细质的显微晶质

岩屑常见少见

岩石类型为中酸性熔结凝灰岩所特有熔岩,以中酸性熔岩为常见

斑杂构造

为颜色、粒度、成分分布不均,且无向分布的火山碎屑物质所组成的一种构造。

火山泥球构造

是由火山泥球所组成的一种构造。火山泥球是由细小的火山灰所构成的圆形或扁圆形球体。球体内部为较粗的火山灰或晶屑,边部极细的火山灰,常呈同心圆状分布。火山泥球是大陆喷发,陆表或水下沉积的火山碎屑岩中常见的一种构造。

豆石构造是一种黄豆大小的球状体,散布于凝灰岩中,有同心层或无。主要由已重结晶的硅质物质组成,有的还有碳酸盐物质层或核心,表皮有火山灰层。它们的形成可能是在火山灰物质沉积的同时,水体中的分散硅质和碳酸盐物质凝聚流动增大的结果。

碎屑岩和火山碎屑岩的区别

1,碎屑岩和火山碎屑岩的成分物质来源不同,碎屑岩的主要来源是母岩的风化产物,而火山碎屑岩的主要来源是火山碎屑物质。

2他们的分类方式不同。碎屑岩的分类方式是按碎屑颗粒的大小分类,

火山碎屑岩分类方法很多。

3他们的颗粒划分标准相同,及粒度球度分选性的划分相同4构造和颜色的分类方式基本相同

5

永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式

2008-11-07 来源:internet 浏览:504

主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。

增量式编码器的相位对齐方式

在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ 输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.用示波器观察编码器的U相信号和Z信号;

3.调整编码器转轴与电机轴的相对位置;

4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:

1.用示波器观察编码器的U相信号和电机的UV线反电势波形;

2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:

1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;

2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;

3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;

4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。

绝对式编码器的相位对齐方式

绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.用示波器观察绝对编码器的最高计数位电平信号;

3.调整编码器转轴与电机轴的相对位置;

4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。

这类绝对式编码器目前已经被采用EnDAT,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下:

1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳;

2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中;

4.对齐过程结束。

由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。

这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机绕组提供确定相序和方向的转子定向电流,无需调整编码器和电机轴之间的角度

关系,因而编码器可以以任意初始角度直接安装在电机上,且无需精细,甚至简单的调整过程,操作简单,工艺性好。

如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测的最高计数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和显示,则可以考虑:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.利用伺服驱动器读取并显示绝对编码器的单圈位置值;

3.调整编码器转轴与电机轴的相对位置;

4.经过上述调整,使显示的单圈绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算位置点都能准确复现,则对齐有效。

如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。

个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应性好,便于向用户开放,以便用户自行安装编码器,并完成电机电角度的相位整定。

正余弦编码器的相位对齐方式

普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相当于方波信号的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z信号,一圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正余弦编码器获得比

原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048细分后,就可以达到每转400多万线的名义检测分辨率,当前很多欧美伺服厂家都提供这类高分辨率的伺服系统,而国内厂家尚不多见;此外带C、D信号的正余弦编码器的C、D信号经过细分后,还可以提供较高的每转绝对位置信息,比如每转2048个绝对位置,因此带C、D信号的正余弦编码器可以视作一种模拟式的单圈绝对编码器。

采用这种编码器的伺服电机的初始电角度相位对齐方式如下:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.用示波器观察正余弦编码器的C信号波形;

3.调整编码器转轴与电机轴的相对位置;

4.一边调整,一边观察C信号波形,直到由低到高的过零点准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,过零点都能准确复现,则对齐有效。

撤掉直流电源后,验证如下:

1.用示波器观察编码器的C相信号和电机的UV线反电势波形;

2.转动电机轴,编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。

这种验证方法,也可以用作对齐方法。

此时C信号的过零点与电机电角度相位的-30度点对齐。

如果想直接和电机电角度的0度点对齐,可以考虑:

1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;

2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;

3.调整编码器转轴与电机轴的相对位置;

4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

由于普通正余弦编码器不具备一圈之内的相位信息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。

如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息;

3.调整旋变轴与电机轴的相对位置;

4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。

此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果:

1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形;

2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。

如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下:

1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳;

2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中;

4.对齐过程结束。

由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。

这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。

旋转变压器的相位对齐方式

旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。

旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS 输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sinωt,转定子之间的角度为θ,则SIN信号为sinωt×sinθ,则COS信号为sin ωt×cosθ,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。

商用旋变与伺服电机电角度相位的对齐方法如下:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出;

2.然后用示波器观察旋变的SIN线圈的信号引线输出;

3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置;

4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效。

撤掉直流电源,进行对齐验证:

1.用示波器观察旋变的SIN信号和电机的UV线反电势波形;

2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。

这个验证方法,也可以用作对齐方法。

此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。

如果想直接和电机电角度的0度点对齐,可以考虑:

1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;

2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;

3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;

4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SIN信号是以转定子之间的角度为θ的sinθ值对激励信号的调制结果,因而与sinθ的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sinθ的负半周对应的SIN信号包络中,被调制的激励信

号与原始激励信号反相,据此可以区别和判断旋变输出的SIN包络信号波形中的正半周和负半周。对齐时,需要取sinθ由负半周向正半周过渡点对应的SIN 包络信号的过零点,如果取反了,或者未加准确判断的话,对齐后的电角度有可能错位180度,从而造成速度外环进入正反馈。

如果可接入旋变的伺服驱动器能够为用户提供从旋变信号中获取的与电机电角度相关的绝对位置信息,则可以考虑:

1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

2.利用伺服驱动器读取并显示从旋变信号中获取的与电机电角度相关的绝

对位置信息;

3.依据操作的方便程度,调整旋变轴与电机轴的相对位置,或者旋变外壳与电机外壳的相对位置;

4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系;

5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。

此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果:

1.用示波器观察旋变的SIN信号和电机的UV线反电势波形;

2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。

如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储旋变随机安装在电机轴上后实测的相位,具体方法如下:

1.将旋变随机安装在电机上,即固结旋变转轴与电机轴,以及旋变外壳与电机外壳;

2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;

3.用伺服驱动器读取由旋变解析出来的与电角度相关的绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中;

4.对齐过程结束。

由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由旋变解析出来的与电角度相关的绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。

这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、旋变、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。

注意

1.以上讨论中,所谓对齐到电机电角度的-30度相位的提法,是以UV反电势波形滞后于U相30度的前提为条件。

2.以上讨论中,都以UV相通电,并参考UV线反电势波形为例,有些伺服系统的对齐方式可能会采用UW相通电并参考UW线反电势波形。

3.如果想直接对齐到电机电角度0度相位点,也可以将U相接入低压直流源的正极,将V相和W相并联后接入直流源的负端,此时电机轴的定向角相对于UV相串联通电的方式会偏移30度,以文中给出的相应对齐方法对齐后,原则上将对齐于电机电角度的0度相位,而不再有-30度的偏移量。这样做看似有好处,但是考虑电机绕组的参数不一致性,V相和W相并联后,分别流经V相和W相绕组的电流很可能并不一致,从而会影响电机轴定向角度的准确性。而在UV相通电时,U相和V相绕组为单纯的串联关系,因此流经U相和V相绕组的电流必然是一致的,电机轴定向角度的准确性不会受到绕组定向电流的影响。

4.不排除伺服厂商有意将初始相位错位对齐的可能性,尤其是在可以提供绝对位置数据的反馈系统中,初始相位的错位对齐将很容易被数据的偏置量补偿回来,以此种方式也许可以起到某种保护自己产品线的作用。只是这样一来,用户就更加无从知道伺服电机反馈元件的初始相位到底该对齐到哪儿了。用户自然也不愿意遇到这样的供应商。

国外火山岩油气藏特征及其勘探方法

1998年特 种 油 气 藏第5卷第2期 国外火山岩油气藏特征及其勘探方法 伊培荣Ξ 彭 峰 韩 芸 编译 前 言 随着能源需求的日益增长,石油与天然气的勘探、开发领域也在不断地扩展。以往认为没有油气聚集价值的火山岩,如今也成为寻找油气不可忽视的领域之一。特别是夹于生油岩系中的火山岩,与沉积岩一样,同样有利于油气聚集和保存。早在19世纪末20世纪初,古巴、日本、阿根廷、美国等国家均先后发现火山岩油气藏。日本对火山岩油气竭尽全力进行勘探开发,从50年代中期到80年代已陆续发现了几十个中、小型火山岩油气藏。 火山岩储集层特征 11 岩石类型 前苏联C1B1克卢博夫综合分析世界各国含油气盆地的火山岩储集层,将其岩石类型归纳为三大类。 (1) 熔岩和熔岩角砾岩 熔岩按其化学成分可划分为玄武岩(SiO2<52%),安山岩(SiO2为57%~62%),英安岩(SiO2为6510%~68.5%),流纹岩(SiO2>78%);熔岩角砾岩指熔岩角砾被相同成分的熔岩所胶结的岩石。 在阿塞拜疆、格鲁吉亚陆续发现基性和中性火山熔岩中的油气藏较多。例如,阿塞拜疆穆腊德汉雷油气田产于白垩系的蚀变基性(玄武岩和玄武玢岩)和中性(安山岩和安山玢岩)火山岩及其风化壳中。古巴的克里斯塔列斯油气藏也产于破碎的基性和中性火山岩及其风化壳中。 在日本,酸性火山岩中的油气藏较多。例如,日本新泻县吉井—东柏椅气田、南长岗—片贝气田和见附油田产层位于上第三系的“绿色凝灰岩”的流纹岩中。 (2) 火山碎屑岩 按其碎屑大小可划分为凝灰集块岩、火山角砾岩、凝灰砾岩、砂屑凝灰岩和粉砂屑凝灰岩。 格鲁吉亚第比利斯萨姆戈里油田产于上—中始新统厚达100~150m的凝灰质砂岩和凝灰岩中。阿塞拜疆穆腊德汉雷油田除了在基性—中性火山熔岩中含油之外,在裂缝性安山凝灰岩中也具有工业性原油。美国内华达州伊格尔泉和特腊普泉油田则产于第三系流纹凝灰岩中。阿根廷门多萨盆地西部图平加托油田也是火山凝灰岩产层。 Ξ辽河石油勘探局勘探开发研究院 辽宁 盘锦 124010

浅谈火山喷发类型与火山岩相分类

浅谈火山喷发类型与火山岩相分类 xbs 内容提要:本文根据前人工作简要分析、整理并总结了火山的喷发类型,火山岩相及其分类,以及中国东南火山的火山-侵入岩相的分类三分方案。全文分为两个部分,即火山与火山喷发类型、火山岩相及分类方案。旨在共同学习和激发兴趣。 关键词:火山;火山喷发;火山岩相 火山岩是岩石学研究的重要领域之一,此项工作对寻找和开发相关矿产有着密切的联系。而火山岩的产生自然离不开火山与火山作用。现在讨论的问题是火山岩的喷发类型,火山岩相的含义、类型与识别。重点为后者。火山岩相研究方面,前苏联学者提出相、亚相分类(或成因类型),普遍的应用于古火山岩地区。美国学者对于近代火山喷发产物的研究提出了火山碎屑流相模式。但由于划分标准的不统一,不论是火山喷发类型,还是火山岩相的分类,都还众说纷纭。为了方便非专业人士的了解和参考,笔者就世界主流观点做了一些分析和总结,并以中国东部火山来进行分类。 一、火山与火山喷发类型 火山,炽热地心的窗口,是地球上最具爆发性的力量。早在东汉时的《神异经》中就有“荒外有火山,风吹不强,猛雨不灭”的相关描述。“火山”(volcano)这一名词来源于拉丁语vulcanus或volcanus,与希腊神话密切相关,意指地壳上的一个开口,炽热的物质通过它被抛出形成的“山”。而火山和火山喷发的现代定义为:高温的地下熔体流体经地下通道喷出地表,谓之火山喷发;由这些喷发出的喷出物形成的地貌景观,称之为火山,为火山作用产物。 一般说来,只有活火山(包括休眠火山)才会喷发。火山喷发(volcanic eruption)是一种奇特的地质现象,是地壳运动的一种表现形式,也是地球内部热能在地表的一种最强烈的显示。是岩浆等喷出物在短时间内从火山口向地表的释放。因岩浆性质、地下岩浆库内压力、火山通道形状、火山喷发环境(陆上或水下)等诸因素的影响,使火山喷发的形式有很大差别。按岩浆的通道分为裂隙式喷发和中心式喷发两大类。 裂隙式喷发又称冰岛型火山喷发。岩浆沿地壳中的断裂带溢出地表。喷发温

常见沉积岩的特征碎屑岩类

常见沉积岩的特征碎屑岩类 砾岩:粒径大于2mm的碎屑占50%以上,具砾状结构,层理发育差。砾石一般为圆或次圆状者称砾岩,砾石呈棱角和次棱角状者称角砾岩。主要由一种砾石成分(含量75%)组成的砾岩,称单成分砾岩,这样的砾岩一般分选性和磨圆度均好,如石英砾岩。砾石成分复杂者称复成分砾岩,一般分选不良,圆度变化也大。砾岩的胶结物有硅质、钙质、铁质和泥质等。 砂岩:粒径介于2-0.05mm之间的砂粒占50%以上,具砂状结构,各类层理均可发育,胶结物多硅质、钙质、铁质及泥质等。按砂粒大小可分为粗粒砂岩(粒径2-0.5mm)、中粒砂岩(粒径0.5-0.25mm)、和细粒砂岩(粒径0.25-0.05mm)。按成分又可分为石英砂岩、长石砂岩和岩屑砂岩。石英砂岩中石英含量占75%以上,甚至95%以上,一般磨圆度高,分选好,颜色浅。长石砂岩中石英含量<75%,长石含量>25%,浅红色到浅灰色,圆度较差,分选中等或差。岩屑砂岩中石英含量<75%,岩屑含量>25%,甚至>60%,颜色深,圆度和分选都很差。 粉砂岩:粒径介于005-0.005mm的碎屑粒占50%以上,具粉砂状结构,多呈薄层状,水平或微波状层理,颗粒细小,肉眼难以辨认,放大镜下可识别石英颗粒或少量白云母。岩石断面粗糙,无滑感,可与粘土岩相区别。黄土则是未固结的粉砂,呈土黄色,松散状,层理不清,主要由石英、长石等粉砂组成,含粘土矿物及碳酸钙结核。 泥质岩类:分布最广的一类沉积岩,均为泥质结构,并常具水平层理,主要由各种粘土矿物组成。通常按固结程度分为以下三种: 粘土:未固结或弱固结的泥质岩,具吸水性和可塑性,在水中易泡软。单矿物粘土有高岭石粘土、蒙脱石粘土、水云母粘土等,但自然界多数为复矿物粘土。 泥岩:固结较紧的泥质岩,呈块状,吸水性和可塑性极弱,在水中不易泡软。成分较复杂,多水云母,含粉砂。 页岩:固结很好的泥质岩,成页片层,无吸水性和可塑性,水中不能泡软,可按其所含次要成分进一步命名,如炭质页岩、钙质页岩等。 化学岩及生物化学岩类:这类岩石结构多样,有碎屑结构和生物结构,但以化学结构为主。由于岩石多数为非晶质或隐晶质,肉眼不能分辩矿物颗粒,因此,要注意区分岩石种类众多的化学成分和矿物成分。其中主要的岩石种类有以下几种: 碳酸盐岩:主要由钙镁的碳酸盐组成,分布广泛,在沉积岩中仅次于页岩和砂岩,结构以碎屑结构和化学结构为主,最主要的岩石有石灰岩和白云岩。 石灰岩:主要由方解石组成,常呈灰或灰白色,由于含有机质多少不等,颜色可由浅灰到黑色,一般较致密,断口呈贝壳状,硬度不大,加稀盐酸起泡剧烈。常因结构不同而给予不同的名称,如豹皮灰岩、鲕状灰岩和竹叶状灰岩等。灰岩中常含有粘土矿物、硅质等杂质,含量较多时称为泥灰岩、硅质灰岩等。

火山岩作为石材的特点

火山岩作为石材的特点: 1、火山岩(玄武岩)石材性能优越、除具有普通石材的一般特点外,还具有自身独特风格和特殊功能。与花岗岩等石材相比,火山岩(玄武岩)石材的低放射性,使之可以安全用于人类生活居住场所,而无放射性污染之虞。 2、火山岩(玄武岩)石材抗风化、耐气候、经久耐用;吸声降噪有利于改善听觉环境;古朴自然避免眩光,有益于改善视觉环境;吸水防滑阻热有益于改善体感环境:独特的“呼吸”功能能够调节空气湿度,改善生态环境。种种独特优点,可以满足当今时代人们在建筑装修上追求古朴自然、崇尚绿色环保的新时尚。 3、火山岩(玄武岩)石质坚硬,可用以生产出超薄型石板材,经表面精磨后光泽度可达85度以上,色泽光亮纯正,外观典雅庄重,广泛用于各种建筑外墙装饰,市政道路广场、住宅小区的地面铺装,更是各类仿古建筑、欧式建筑、园林建筑的首选石材,深受国内外广大客户的喜爱和欢迎。 4、火山岩(玄武岩)石铸石管具有极好的耐磨损、抗腐蚀性能,可作为电力、化工、冶金、矿山、煤炭等部门气力或水力输送磨损腐蚀性物料和浆料的管道系统的衬里。 5、火山岩(玄武岩)石经破碎后的碎石料(0.5~2厘米)广泛用于道路、桥梁、楼房、堤坝海塘等场合的基础施工。产品较之其他石料具有独特的高强度、高耐磨、高硬度的特性,尤其适用于高速公路和机场跑道的路基浇注,可大大提高道路基础的承重、抗压、耐磨损、抗疲劳等各项性能指标,有利于确保工程质量的百年大计,成为各建设项目单位和建筑设计部门在确定工程用料时的首选石材。? 吸光阻热火山岩产品源于火山熔岩喷发后冷凝而生成,因产生与绝对高温而具有明显的吸光阻热功能,在强烈的阳光照射下绝不会向花岗岩一样烫手,并没有铁板烘烤的感觉。在寒冷的动机也不会向花岗岩一样冰手。 ? 吸音降燥 火山岩独具的天然孔洞,是目前所有建材中唯一的一个天然吸音材料。适应与车站、地铁、地下工程及噪音较大的生产车间、广场等场所。 ? 呼吸功能 火山岩的天然孔洞,使其具备独特的呼吸功能,就是在雨天可以利用孔洞将水分吸足,晴天在阳光的照射下,使水分慢慢的释放来调解周边空气的温度。此功能多适用于步行街、广场、特别是花、草、树木的周边,使其天空的雨水渗入地下,与地下的水分沟通,保证植物有充分的水分,并且周边也没有阳光的强烈烘烤。? 防滑功能 天然的孔洞,使其形成泡沫体的材料,绵软防滑、耐磨耐酸碱。 ? 保健功能 天然的火山岩产品,具有三十余种对人体健康有益的微量元素。火山孕育的无数的温泉,可想人们洗温泉浴能够治疗很多疾病。如关节炎、风湿痛及各种皮肤病等,都有较好的疗效及保健功能。

从岩石组合看大地构造

大地构造读书报告 学院: 专业: 学号: 姓名:

从岩石组合到大地构造 摘要:当今科学发展的一个重要特点,是不同学科之间的相互渗透交叉。地质学中的板块构造学、岩石学与地球化学的发展,以及分析手段、测试精度的提高,在总结岩石学特征与板块构造关系方面出现一个介于岩石学、大地构造学和地球化学之间的一个边缘学科——岩石大地构造学。本篇文章就是从岩石组合的角度对大地构造进行分析,主要介绍几种重要的岩石大地构造组合,分别是蛇绿岩(套)、混杂堆积、双变质带、超高压变质岩(带)、复理石、磨拉石。 第一章.蛇绿岩(套) 1、概念 1972年9月,在美国召开的彭罗斯(Penrose)蛇绿岩会议上,赋予蛇绿岩一词如下含义: 1)蛇绿岩是镁铁质至超镁铁质岩的特征的岩石组合; 2)蛇绿岩不应作为一种岩石名称或填图单元; 3)发育完整的蛇绿岩层序由下而上包括超镁铁质杂岩、辉长岩类杂岩、镁铁质席状岩墙群和镁铁质火山杂岩; 4)伴生的岩石类型包括上覆沉积层序中的条带状硅质岩、页岩夹层和少量灰岩,通常与纯橄榄岩伴生的豆荚状铬铁岩,以及富Na 的长英质侵入和喷发岩;可填图的岩石单元之间通常为断层接触,完整剖面可能缺失。因此,蛇绿岩可以是不完全的,肢解的或变质的。

2、蛇绿岩套的组成及层序 蛇绿岩套以其层序性、岩浆作用、变质作用和构造变形这四个方面的紧密联系特征,通常认为完整蛇绿岩套在层序上(由下至向上)有:超镁铁质岩-辉长岩-辉绿岩-枕状玄武岩熔岩-深海沉积层。 (1)变质超镁铁质杂岩:有纯橄榄岩、多期变形变质,常形成蛇纹化石橄榄岩或蛇纹岩。 (2)堆积杂岩:为岩浆结晶分异作用所造成的“晶体堆积体”,下部为堆积的橄榄岩,上部为堆积的辉长岩。有时,尚有英云闪长岩、斜长花岗岩等产于辉长岩顶部(基性岩浆结晶分异产物)。 (3)席状岩墙群:由许多近于垂直,互相紧挨着的辉绿岩墙组成,相邻岩墙在接触处出现对称的冷凝边,可见岩墙是岩浆沿张性裂隙先后依次贯入而成; (4)枕状熔岩:属海底喷发,以拉斑玄武岩为主,常有细碧岩,形成紧密堆积的岩枕,岩枕中有气孔、冷凝边及放射状裂隙。 (5)深海沉积物:包括放射虫硅质岩、含钙质超微化石的灰岩、页岩和硬砂岩等。 3、蛇绿岩的成因 关于蛇绿岩的成因模式为:洋脊扩张时,地幔成分的物质沿扩张裂隙上涌,同时发生玄武质岩浆的部分熔融,这种基性岩浆在岩浆房中不断分异和固结,就依次形成海底喷发的基性熔岩,贯入的席状岩墙,以及堆晶的层带超基性岩、基性杂岩、分异的终端产物还有淡色岩类(奥长花岗岩、闪长岩等),而残留下来的物质则为方辉橄榄岩、

火山岩区域地质调查

【火山岩区填图方法体系】从火山地质特点出发,采取在纵向上研究火山层状喷发物的层序,横向上研究火山岩岩相的变化与产出特征,通过古火山机体的调查与恢复,深入揭示火山岩地区的地质矿产特征及其发展、演化历史的岩性-岩相双重填图法。 【火山岩系列】几个火山岩建造的组合。范围很广,但具有一定的演化规律,主要表现在化学成分和矿物成分的变化具明显的规律性。火山岩一般分为三个系列:拉斑系列、钙碱性些列及碱性系列(包含碱性系列,但国际上常用过碱性系列而包含碱性系列)。 【双峰式火山岩】由地幔和地壳两种岩浆源区喷发形成的火山岩组合中的两种端员之间,无论是元素地球化学或者是同位素特征均存在极大差别,表明它们的岩石成因和物质来源都是分离的,如新生代裂谷带中局部地段出现的碱性玄武质和流纹质双峰式火山岩组合。另外,双峰式火山岩是以玄武岩质和富硅质岩浆近于同时喷发,且很少有中性岩石为特征。它们可以是拉斑玄武岩-流纹岩组合,也可以是碱性玄武岩-粗面岩组合。双峰式火山岩的两端员体积除个别情况外差别一般不大。但也有两端员体积差相当大的双峰式火山岩,如在埃塞俄比亚双峰式火山岩中,富硅质岩石一般要比镁铁质岩少的多。 【细碧岩-石英角斑岩】主要出现在海相或海陆交互相的火山岩系中,由细碧岩、角斑岩和石英角斑岩形成的岩石组合,而且往往同沉积岩相伴生。细碧岩含SiO245%-52%,主要矿物为钠长石或钠更长石和绿泥石等,不含石英或含量很低,贫钙,Na2O数倍于K2O,富钾的变种较少。角斑岩的SiO252%-63%,主要矿物为钠长石或更钠长石,其次为绿泥石、绿帘石、石英、钾长石等矿物,以钾长石为主的变种较少。石英角斑岩的SiO2>63%,主要由石英和钠长石组成,偶含钾长石。如果在上述岩石的钠长石中有拉长石和辉石交代残余,或者铁镁矿物以假象纤闪石为主,则不宜使用细碧岩、角斑岩和石英角斑岩的术语。该岩系在中国分布相当普遍,一般使用此类岩石名称。如果由于成因观点不同而不愿使用以上术语时,可用变玄武岩、变安山岩(或粗面岩)和变流纹岩(或变英安岩)的术语取而代之。 【火山碎屑岩】通过一定方式胶结成岩的火山碎屑集合体。它包括三大类:正常火山碎屑岩(火山碎屑物含量100%-75%)、沉积火山碎屑岩(火山碎屑物含量75%-25%)、火山碎屑沉积岩(火山碎屑物含量小于25%)。此外,按碎屑粒度可粗分为三种粒级:即集块级(集块岩),碎屑粒度大于64毫米;角砾级(火山角砾岩),64-2毫米;凝灰级(凝灰岩),小于2毫米。不同的碎屑岩类前冠以不同的前缀,如角砾岩、火山角砾岩、溶结角砾岩、凝灰质角砾岩和角砾熔岩。集块岩和凝灰岩也可以以此类推。目前对于把碎屑熔岩类归于火山碎屑岩还存在着不同的看法。 【火山韵律】由火山活动本身变化而引起的火山岩重复出现和周期变化现象。它有别于沉积岩层中以物质或补给方式而发生周期性变化的沉积韵律。火山韵律的级别规模相当于沉积地层中的“段”,作为火山岩地区的最小单位。 【火山旋回】在划分火山韵律的基础上,即可进行火山旋回的划分,它大于火山韵律,由数个火山韵律组成,相当于沉积地层中“组”一级的填图单位。 【火山岩相调查】在火山岩分布地区,依据岩石特征正确划分火山岩相的类别,研究各种火山岩相形成的地质环境,恢复古火山机构,提供寻找火山矿产的信息等工作总称。 【火山岩相】火山物质的喷发类型、搬运方式和定位环境与状态,即其形成方式的总和。可分为爆发相、喷溢相、侵出相、喷发-沉积相、火山通道相和潜火山相六个基本类型。 【爆发相】火山爆发时产生的各种火山碎屑物(如火山弹、火山集块、火山砾、火山灰等)或原地堆积,或经大气、重力、气液搬运、分选,并以不同比例混合,形成一系列不同类型的火山碎屑堆积物。这种特点的火山岩相为爆发相。可分为空落堆积、崩落堆积和碎屑流堆积三种。 【喷溢相】熔岩从地下深处经火山通道上升地表,自火山口向外溢流,形成各种类型的熔岩即为喷溢相。基性岩浆由于黏度小,流动速度块,流布面积大,主要形成岩被和岩流。它可

【精品】火山岩分类命名及肉眼鉴定

火山岩的分类与命名及肉眼鉴定 关键词:地壳/矿物/熔岩/碎屑岩/肉眼鉴定 主讲人:李丹 时间:2004.8。1 地点:大庆油田油田录井分公司资料采集第一大队五楼培训室 1。预备知识 1.1地壳 地球是个准旋转椭球体,形状象个梨子,极半径略短,赤道半径略长,与标准旋转椭球相比,北极凸出10km,南极约缩进30km. 地球赤道半径:6378.245km 极半径:6356。863km 表面积:5。1*108km2

体积:1。083*1012km3 质量:5。976*1027g 地球表面形态基本上分为大陆和海洋两大部分,大陆约占29。2%,平均高度0.86km,最高点珠穆朗玛峰达8848.13m;大洋约占70.8%,平均深度3。9m,最深马里亚纳海沟深11034m,抹平后,位于海平面以下2.44km处。 从地表往下,洋区:5—12km 大陆平原区:30—40km 大陆高山区:50—75km 在一莫霍面,是地壳与地幔的分界线 大地表向下,大陆地下:80—250km 大洋地下:50—400km 在200Km外存在软流圈 670km为古登堡面,上部为上地幔,下部为下地幔 2900km以下为地核

5100km以下为内核 大陆区地热梯度为20-50℃/km 平均30℃/km 地壳的8种主要化学成分: 02SiAeFeCaMgNaK 46.5%25.7%7。65%6.24%5.79%3。23%1。81%1。34% 1。2岩浆作用 岩浆作用:分为火山作用和侵入作用,分别形成火山岩和侵入岩. 火山作用:包括地下岩浆的分异、运移、喷出、直至冷凝的全过程及其相关构造和产物的特征,包括由此形成的岩石、矿物组合和成矿特征。 火山作用有阶段性 次火山阶段:通常认为上地幔软流圈是形成岩浆的有利地段,温度达1200℃以上,熔融的岩浆向上运移,汇集到岩浆房,积蓄能量,沿地球内部薄弱地带(断层、裂隙)上升。在1200℃以下时,气液分异出来,从而加大了岩浆的活动性,向上运移时围岩的压力减少,气体膨胀,产生向上的作用力。在地表以下2—3km处沿破坏的通道喷出地表。 火山过程主阶段: 熔透式喷发:直接熔透地壳(大陆区几乎没有) 裂隙式喷发:沿地壳巨大裂隙溢出地表,表现为串珠状火山口现象。 中心式喷发:由喉管状通道喷出 中心式又根据喷发的激烈程度,分为: 爆发式:爆炸现象(产生酸性熔浆、火山灰、蒸气) 宁静式:岩浆从火山口涌出(产生基性岩浆) 中间式:有时激烈、有时宁静(产生基→酸性岩浆) 火山期后阶段:喷气、喷水 火山岩分为四大类,通常分为:

滴西地区火山岩岩性_岩相分布特征研究

第12卷第35期2012年12月1671—1815(2012)35-9657-05 科学技术与工程 Science Technology and Engineering Vol.12No.35Dec.2012 2012Sci.Tech.Engrg. 滴西地区火山岩岩性、岩相分布特征研究 赵建芝 柴绪兵* 刘景山 别慧秋 (大庆钻探工程公司地球物理勘探一公司研究院,大庆163000) 摘要滴西地区是准噶尔盆地石炭系火山岩十分发育的地区。多个井区的石炭系气藏已探明。通过区域地质条件的分 析,基于地震资料、钻井、测井资料,在单井、联井相分析的基础上,应用波形聚类、分频属性、相位属性分析等手段,对火山岩岩性、岩相分析研究。预测有利火山岩储层发育区,指导下步勘探部署方向。关键词 火山岩岩性 岩相 单井相 地震相 地震属性 波形聚类 有利火山岩储层 中图法分类号 TE122.22; 文献标志码 B 2012年8月15日收到 * 通信作者简介:柴绪兵。E-mail :chaixubing19861216@https://www.360docs.net/doc/c410959870.html, 。 滴西地区位于陆梁隆起区东部的滴南凸起之上,受滴水泉南北断裂夹持的向西倾没的大型复式鼻状构造。目前研究区已发现千亿立方米储量规模的克拉美丽气田。随着对火山岩的勘探开发不断深入,进一步证明石炭系火山岩是滴西地区油气储集的有利层系。但火山岩储层是一种复杂而特殊的储集层,识别火山岩储层,首先要了解储层各方面的特征如岩性、岩相等[1]。因此,火山岩岩性、岩相的研究是火山岩有利储层预测的重中之重。本文旨在以滴西地区火山岩岩性、岩相研究为例,在井震结合的基础上,探讨利用波形聚类、分频属性、 相位属性、地震属性分析等手段,对火山岩岩性、岩相进行刻画分析,进一步预测有利火山岩储层有利区,指导井位部署。 1石炭系区域地质特征 研究区石炭系主要为海西中期沉积的一套浅 变质火山碎屑岩建造和局部岩浆侵入岩建造以及海陆过渡相、陆相沉积的碎屑岩建造,区域上,石炭系发育有上、下两个统3个组。自下而上为下统塔木岗组(C 1t )、滴水泉组(C 1d )、(C 2b )。下石炭统火山活动较弱,上统巴塔玛依内山组为火山岩夹沉 积岩,火山活动强烈。赖世新等(2009)对三南一滴水泉地区巴塔玛依内山组的划分成三段,分别为上序列火山岩组合、沉积岩层和下序列火山岩组合[2]。 从各井钻揭情况上看,DX1001、滴西10、滴西21等井为流纹质、火山角砾质、凝灰质的酸性岩,而滴西17井以沉积岩夹层为界将火山岩分为上下两个岩性段。从沉积学角度分析,该套沉积岩夹层是火山活动间歇期的沉积产物,因此该套沉积岩夹层在泥岩、砂岩、砾岩和煤线组合中含有大量的火山碎屑。而沉积岩夹层之上的火山岩段,其岩性在纵向上表现为底部发育玄武岩基性段。向上为安山岩中性段,区域上在安山岩中性段之上还发育一套流纹岩-凝灰岩酸性岩段。但后期的地壳抬升剥蚀作用使得滴西17井酸性岩段剥蚀殆尽,因此沉积岩夹层之上的火山岩在纵向上具备从基性-中型-酸性的正序列韵律性岩性变化特点。结合岩浆演化规律,将沉积岩夹层之上的火山岩总体划归同一个火山序列,命名为火山序列Ⅱ(或上序列)。滴西17井只钻遇了沉积岩夹层下伏火山岩段的顶部,其岩性以流纹质酸性岩为主。结合区域认识和岩浆演化规律分析,可将沉积岩夹层下伏的巴塔玛依内山组火山岩段划归为同一火山序列,命名为火山序列Ⅰ(或下序列), 滴西17井钻遇的流纹质酸性岩是火山序列Ⅰ顶部的酸性岩段(图1)。

火山岩大地构造环境

火山岩大地构造环境 摘要:花岗岩与大地构造环境之间存在着成因联系,因为岩浆活动受到了构造环境的控制。在大地构造演化的各个阶段中,花岗岩的岩石化学成分表现出有序的演化趋势,这种趋势在常量、微量及稀土元素等方面都有反映。通过化学成分的变化,并利用典型的构造环境中花岗岩的数据及数学手段建立的一套判别方法,可以用来判别花岗岩形成的大地构造环境。 关键词:花岗岩;构造环境;成因分类;成分演化 花岗岩与大地构造的成因联系: 板块构造理论的建立为岩石大地构造学的研究提供了理论依据。不同的构造环境由于物质组成、温压条件及构造变动的差异,岩浆在形成机制、混染程度、分异类型、运移过程和侵位方式及其以后的变质、变形等地质作用也必然有不同的表现形式,并形成一定的岩石类型和岩浆岩组合。BarkerD.5.关于岩浆作用的基本假设反映了岩浆活动与大地构造作用的内在关系:(1)岩浆是由地慢或地壳部分熔融产生的,没有一个长久的世界性的岩浆房存在。(2)熔化是动力过程的反映,热量不能聚集在一个很小的高温空间中,且仅仅依靠放射热能不足以引起熔融。因此,岩浆的形成有三种方式:(a)通过下部岩浆的热传导或者断裂、剪切、俯冲等作用的运移使岩石达到高温状态;(b)断裂抬升或贯入作用的降压过程;(c)变质作用中固相线较低的物质成分变化。(3)即使岩浆在进入地壳中用地质的时间尺度看是瞬时的,不同期次的岩浆作用(甚至是被改造过的)也将保留其化学特征川。这些基本假设明确地阐述了岩浆作用与大地构造作用之间的成因联系,前两条假设说明了大地构造作用对岩浆作用的限制性,第三条假设则说明了探索二者之间关系的可能性。PeiveA.B等人把花岗岩的形成与地壳的演化直接联系起来,将地壳的发展演化划分为大洋、过渡和大陆三个有序阶段。洋壳在俯冲作用等一系列复杂的过程中受到改造,向过渡壳演化。在这一过程中,玄武岩通过局部熔融或者交代作用,在不成熟的过渡壳(如岛弧)中可以形成局部新生的花岗岩层,构成未来陆壳的“萌芽体”,其明显的特点是Na 2 O的含量大于 K 2 O的含量,反映了花岗岩层的新生性质和不成熟特点。斜长花岗岩化是过渡壳成熟过程中的产物,反映了洋壳物质不断被改造,并向陆壳逐步演化的过程。由斜长花岗岩化发展为大规模的钾长花岗岩化是过渡壳向陆壳演化阶段的突出事 件,K 2O和Na 2 O的含量也发生了变化,使地壳走向最终的成熟阶段。这种新的认 识揭示了花岗岩在大地构造演化中的意义,并且明确了地壳演化中各个阶段的花岗岩种类及其性质,成为地壳演化不同阶段的直接标志。近年来Wiokham5.M.对东比利牛斯裂谷变质作用的研究认为,花岗岩可以形成于大陆裂谷这一高温低压的构造环境。由于裂谷作用使地壳拉伸减薄,引起上地慢热物质的上涌,并使地壳物质发生部分重熔,形成大量的花岗岩类侵入体和若干代表极高的地温梯度的凝缩变质岩系川。上地慢的热物质在裂谷环境中也可能直接参与了岩浆的混染改造作用,使地壳物质向过渡类型转化,形成拉张型过渡壳,由此何国琦等提出了地壳演化的五阶段模式闭。所有这些关于花岗岩与大地构造作用之间的关系的新认识,就是我们研究二者之间内在联系的基础,也是我们进行花岗岩的构造环境判别的理论依据。 花岗岩的构造成因分类: 近代一些花岗岩学说都包含了一种假说,即花岗岩的形成与造山运动和区域变质作用有关。从这一观点出发,传统的槽台学说认为,地槽褶皱回返或者造山运动的各个不同阶段可以形成一些不同特征的花岗岩,并将其分为同造山期花岗

火山岩认识培训

火山岩的分类与命名及肉眼鉴定 1. 预备知识 1.1 地壳 地球是个准旋转椭球体,形状象个梨子,极半径略短,赤道半径略长,与标准旋转椭球相比,北极凸出10km,南极约缩进30km。 地球赤道半径:6378.245km 极半径:6356.863km 表面积:5.1*108km2 体积:1.083*1012km3 质量:5.976*1027g 地球表面形态基本上分为大陆和海洋两大部分,大陆约占29.2%,平均高度0.86km,最高点珠穆朗玛峰达8848.13m;大洋约占70.8%,平均深度3.9km,最深马里亚纳海沟深11034m,抹平后,位于海平面以下2.44km处。 从地表往下,洋区:5-12km 大陆平原区:30-40km 大陆高山区:50-75km 在一莫霍面,是地壳与地幔的分界线 大地表向下,大陆地下:80-250km 大洋地下:50-400km 在200Km外存在软流圈 670km为古登堡面,上部为上地幔,下部为下地幔 2900km以下为地核 5100km以下为内核 大陆区地热梯度为20-50℃/km 平均 30℃/km 地壳的8种主要化学成分: 02 Si Ae Fe Ca Mg Na K 46.5% 25.7% 7.65% 6.24% 5.79% 3.23% 1.81% 1.34%

1.2 岩浆作用 岩浆作用:分为火山作用和侵入作用,分别形成火山岩和侵入岩。 火山作用:包括地下岩浆的分异、运移、喷出、直至冷凝的全过程及其相关构造和产物的特征,包括由此形成的岩石、矿物组合和成矿特征。 火山作用有阶段性 次火山阶段:通常认为上地幔软流圈是形成岩浆的有利地段,温度达1200℃以上,熔融的岩浆向上运移,汇集到岩浆房,积蓄能量,沿地球内部薄弱地带(断层、裂隙)上升。在1200℃以下时,气液分异出来,从而加大了岩浆的活动性,向上运移时围岩的压力减少,气体膨胀,产生向上的作用力。在地表以下2-3km处沿破坏的通道喷出地表。 火山过程主阶段: 熔透式喷发:直接熔透地壳(大陆区几乎没有) 裂隙式喷发:沿地壳巨大裂隙溢出地表,表现为串珠状火山口现象。 中心式喷发:由喉管状通道喷出 中心式又根据喷发的激烈程度,分为: 爆发式:爆炸现象(产生酸性熔浆、火山灰、蒸气) 宁静式:岩浆从火山口涌出(产生基性岩浆) 中间式:有时激烈、有时宁静(产生基→酸性岩浆) 火山期后阶段:喷气、喷水 火山岩分为四大类,通常分为: 火山喷出的固体产物 火山灰<0.001mm 火山砂0.01-1mm 火山角砾1-50mm 火山巨砾>50mm 火山气体:CO2、CO、SO2、SO3、N2、H2、Cl2、水蒸气

火山碎屑岩

120第五章 火山碎屑岩 火山碎屑岩是主要由火山碎屑物质组成的岩石。 火山碎屑岩是介于正常火山岩与正常沉积岩之间的岩石类型,兼有二者的特点,又与二者相互过渡。在沉积岩系中它属于碎屑沉积岩中的一种特殊类型。 与火山碎屑岩相伴生的是熔岩、次火山岩(或超浅层侵入岩)和正常沉积岩类。 火山碎屑岩在自然界分布十分广泛,从前寒武纪至第四纪均有分布。我国东部地处环太平洋火山活动地带,中、新生代沉积中有着发育的火山岩系。由于不少重要矿产常与其有关,近十年来,对于这些地区的火山作用及火山碎屑岩的研究,有较大的进展。 火山岩和火山碎屑岩可做为油气储集层,目前已是我国中、新生代陆相含油气盆地中重要的油气储集层类型之一。 第一节 一般特征及分类 一、物质成分 火山碎屑物质按其组成及结晶状况分为岩屑(岩石碎屑)、晶屑(晶体碎屑)和玻屑(玻璃碎屑)三种。此外,也还有一些其它的物质成分,如正常沉积物、熔岩物质等。兹分述如下。 1. 岩屑 岩屑形状多样,大小不一,可由微细粒至数米的巨块。依其物态可分为刚性及塑性两种。 刚性岩屑是已凝固的熔岩、或火山基底和管道的围岩,当火山爆炸时冲碎而成。塑性岩屑又 图5-1 塑性浆屑 具流纹构造,去玻化后显皱晶和 球粒结构,河北,下花园,白垩系 图5-2 火山弹 山西、大同

121 称塑性玻璃岩屑、浆屑或火焰石等,是由塑性、半塑性熔浆在喷出后经塑变而成,具玻璃质结构,断面呈火焰状、撕裂状、树枝状、纺缍状、透镜状、条带状等(图5-1)。火山弹是由于塑性熔浆团在空中旋转而成,形如纺缍、椭球、麻花、陀螺、梨状等,表面具旋扭纹理和裂隙,并具一层淬火边(图5-2),大者可达数米。 2. 晶屑 晶屑多为早期析出的斑晶随熔浆炸碎而成。大小一般不超过2~3mm,常呈棱角状,有 时也保持原来的部分晶形,其成分多为石英、长石、黑云母、角闪石、辉石等。石英晶屑表面极为光洁,具不规则裂纹及港湾状溶蚀外形(图5-3)。长石晶屑主要为透长石、酸性至基性斜长石,有较高自形程度,可见沿解理破裂及明显的裂纹(图5-4),扫描电镜下更为清晰(图5-5)。黑云母和角闪石晶屑常具弯曲、断裂及暗化现象(图5-6)。辉石主要出现在偏基性的火山碎屑岩中。 1. 玻屑 玻屑通常大小在0.1~0.01mm 之间,很少超过2mm;2~0.01mm 者称火山灰,小于0.01mm 者称火山尘。酸性和中酸性熔浆生成的玻屑折光率在1.48~1.51之间。刚性玻屑有弧面棱角状和浮石状两种。前者出现普遍,形状多样,镜下常用弓形、弧形、镰刀形、月牙形、鸡骨状、管状、海绵骨针状、不规则尖角状等一系列形容词来描述(图5-7)。综观其共同特点不外是一些不完整的气孔壁和贝壳状断口等所组成。后者,不甚普遍,是没有彻底炸碎的弧 图5-3 石英晶屑 取自张家口-富化一带中生代凝灰岩 图5-4 长石晶屑 取自张家口-富化一带中生代凝灰岩岩

火山岩的观察与描述

岩石的观察与描述及实例 (2011-06-10 15:26:47) 转载▼ 标签: 石英晶 安山 斜长石 斑状结构 黑云母 杂谈 岩石的观察与描述及实例 岩浆岩的观察和描述 对各类岩浆岩的观察和描述,要从以下方面入手: l.颜色 岩浆岩的颜色大致可分为浅色、中色和暗色几种。观察时,应分出原生色(即新鲜面的颜色) 及次生色(即经过次生变化后风化面的颜色)。原生色可反映岩石的成分及形成环境,次生色可 反映岩石的经历过程。 深成岩的颜色深浅,是暗色矿物含量和浅色矿物含量比率的反映。辉长岩、撖榄岩为深色; 闪长岩为中色;花岗岩、霞石正长岩为浅色。 浅成岩的颜色深浅,多受矿物拉度大小。结晶程度的影响,如微晶和隐晶质岩石比相同成分 的深成岩颜色深。 喷出岩的颜色深浅,则受到岩石成分、次生变化、结晶程度等方面的影响。此外,还受到强 烈氧化燃烧作用的影响。通常玄武岩类多呈黑、黑绿色、蚀变后呈中绿~浅绿色;安山岩类呈深 灰、暗紫~紫红色;流纹岩类呈浅灰~粉红色。 描述岩石颜色时,应分出新鲜面(原生色),风化面(次生色),分别加以描述。2.结构 显晶质岩石,其主要造岩矿物粒度大致相等时,应写出粒度与习惯用结构名称。如中粒辉长 结构、粗粒花岗结构、中粒二长结构、粗粒半自形结构等; 隐晶质至玻璃质岩石,应写明隐晶质结构或半晶质结构,或玻璃质结构。 具隐晶质至玻璃质的岩石,以及其它显微结构的岩石,只有在岩石薄片鉴定的情

沉下,才能 定出其具体结构。 3.构造 最常见的岩浆岩构造的种类不多,只须准确描述即可。侵入岩多具块状、斑杂状、条带状构 造;喷出岩则多具气孔、杏仁、流纹构造等。 4.矿物成分 对矿物成分的观察和描述应包括以下内容:矿物名称、物性特点、粒度大小、百分含量等。 对显晶质等粒结构的岩石,应描述主要矿物、次要矿物、副矿物、次生矿物。描述时应按含 量多的先描述,含量少的后描述,即“先多后少”的顺序。 对矿物特征的描述应包括以下几方面:颜色、形态及鉴定特征(包括可反映岩石的结构、构 造等特征)、粒度、目估百分含量等。 岩石具斑状或似斑状结构时,应首先指明斑晶矿物在整个岩石中的目估百分含量,然后以斑 晶矿物含量“先多后少”的顺序描述其特征。接着描述基质中矿物的特征,如矿物粒度呈细粒时, 其描述顺序与要求同前述。当基质粒度小于细粒时,只要求指明主、次要矿物.不要求作详细描 述。 2 玢岩和斑岩的区别:由基性斜长石和暗色矿物作斑晶的岩石称为:××玢岩;以钾长石和石 英作斑晶的岩石称为:××斑岩。 岩浆岩描述实例 1 .深成岩——橄揽辉长岩 肉眼描述:新鲜面暗灰色,风化面暗褐色。中粒辉长结构,颗粒均匀,颗粒直径在2-5mm。 块状构造。岩石比较新鲜。暗色矿物主要为黑色的辉石,呈近于短轴状的颗粒,有时可见解理。 其次,可见少量黄绿色(或暗绿),油脂光泽的橄榄石和具珍珠光泽的黑云母。暗色矿物含量约 50%。浅色矿物为斜长石,呈长板状,白色至灰色,玻璃光泽,含量约50%。镜下描述:岩石新鲜,未经蚀交。主耍矿物为普通辉石、基性斜长石,次要矿物为橄榄石、 黑云母。辉长结构。 岩石定名:橄榄辉长岩 2 .浅成岩——闪长玢岩 肉眼描述:浅灰色,斑状结构,块状构造。斑晶成分为灰白色板状斜长石和绿色柱状角闪石,

火山岩分类命名及肉眼鉴定

火山岩的分类与命名及肉眼鉴定 关键词:地壳/矿物/熔岩/碎屑岩/肉眼鉴定 主讲人:李丹 时间:2004.8.1 地点:大庆油田油田录井分公司资料采集第一大队五楼培训室 1. 预备知识 1.1 地壳 地球是个准旋转椭球体,形状象个梨子,极半径略短,赤道半径略长,与标准旋转椭球相比,北极凸出10km,南极约缩进30km。 地球赤道半径:6378.245km 极半径:6356.863km 表面积:5.1*108km2 体积:1.083*1012km3 质量:5.976*1027g 地球表面形态基本上分为大陆和海洋两大部分,大陆约占29.2%,平均高度0.86km,最高点珠穆朗玛峰达8848.13m;大洋约占70.8%,平均深度3.9m,最深马里亚纳海沟深11034m,抹平后,位于海平面以下2.44km处。 从地表往下,洋区:5-12km 大陆平原区:30-40km 大陆高山区:50-75km 在一莫霍面,是地壳与地幔的分界线 大地表向下,大陆地下:80-250km 大洋地下:50-400km 在200Km外存在软流圈 670km为古登堡面,上部为上地幔,下部为下地幔 2900km以下为地核 5100km以下为内核

大陆区地热梯度为20-50℃/km 平均30℃/km 地壳的8种主要化学成分: 02 Si Al Fe Ca Mg Na K 46.5% 25.7% 7.65% 6.24% 5.79% 3.23% 1.81% 1.34% 1.2 岩浆作用 岩浆作用:分为火山作用和侵入作用,分别形成火山岩和侵入岩。 火山作用:包括地下岩浆的分异、运移、喷出、直至冷凝的全过程及其相关构造和产物的特征,包括由此形成的岩石、矿物组合和成矿特征。 火山作用有阶段性 次火山阶段:通常认为上地幔软流圈是形成岩浆的有利地段,温度达1200℃以上,熔融的岩浆向上运移,汇集到岩浆房,积蓄能量,沿地球内部薄弱地带(断层、裂隙)上升。在1200℃以下时,气液分异出来,从而加大了岩浆的活动性,向上运移时围岩的压力减少,气体膨胀,产生向上的作用力。在地表以下2-3km处沿破坏的通道喷出地表。 火山过程主阶段: 熔透式喷发:直接熔透地壳(大陆区几乎没有) 裂隙式喷发:沿地壳巨大裂隙溢出地表,表现为串珠状火山口现象。 中心式喷发:由喉管状通道喷出 中心式又根据喷发的激烈程度,分为: 爆发式:爆炸现象(产生酸性熔浆、火山灰、蒸气) 宁静式:岩浆从火山口涌出(产生基性岩浆) 中间式:有时激烈、有时宁静(产生基→酸性岩浆) 火山期后阶段:喷气、喷水 火山岩分为四大类,通常分为: 火山喷出的固体产物

岩浆岩岩石学——火山碎屑岩类

第十二章火山碎屑岩类 火山碎屑岩是火山剧烈爆发中产出的火山碎屑堆积物经压实、固结以后形成的岩石。同一般岩浆岩比较起来,火山碎屑岩的形成过程有以下三个特点:第一。其中的碎屑物质是由火山爆破的机械作用产生的岩石碎块、晶体或玻璃质的碎块构成,而非岩浆冷凝的产物;第二,火山碎屑物质有些是喷射至大气中后经过空气介质而沉落于陆地,有些可能是降落在水中再经一定的搬运作用而在异地沉积的;而岩浆岩无这一沉积过程;第三,火山碎屑岩是由松散的火山碎屑堆积物经过压实、胶结作用后形成的岩石。而岩浆岩却是岩浆直接的冷凝结晶产物。由于火山碎屑岩形成过程(机械破碎、沉积、压实、胶结等)和沉积岩相似,因而,也形成了许多和沉积岩相似的特征(如碎屑结构、层理等)。由于火山碎屑岩中的碎屑物质来源是火山活动这种内动力地质作用的产物,但其沉积—成岩过程中却又有外动力地质作用的因素,即它在成因上具内、外动力地质作用的二重性;在岩性上也显示岩浆岩和沉积岩的双重特征,因而它是岩浆岩—沉积岩之间的过渡类型。据此,有些人也把它归到沉积岩的分类体系中。 火山碎屑岩分布十分广泛,从前寒武纪的古老地层至近代死火山堆积物中均有产出。在许多喷出岩出露的地区,也往往相伴而生,共同构成复杂的火山岩系,如我国东南沿海诸省的中生代火山岩系。火山碎屑岩常富集有一般金属矿产,稀有、放射性元素矿产等,而且规模也比较大。 一、火山碎屑物质的一般特征 火山碎屑物质的主要特征表现在它的物态、形状和大小上。 (一)火山碎屑物质的物态和形状 火山碎屑物质的物态一般指它降落着地时的物理状态,即是固态、液态,抑或是塑性体。固态碎屑包括岩屑、晶屑和玻屑;塑性碎屑包括浆屑,塑性玻屑。 1.岩屑 是火山活动中早期先凝结的喷出岩和火山通道的围岩经火山作用爆碎后形成的岩石碎块。岩屑的形状极不规则,呈棱角状,一般大于2毫米。 2.晶屑 是火山爆碎的各种矿物的晶体碎块,常见者是石英、长石的晶屑,它们多半是岩浆中早期形成的斑晶破碎以后的产物。晶屑棱角尖锐,有时在显微镜下可见到熔化痕迹,一般粒度小于2毫米。根据晶屑的矿物成分可大致判断火山岩的岩浆成分。 3.玻屑

浙江缙云中生代陆相火山岩沸石矿床地质特征_陈婉君

文章编号:1005-6157(2006)04-252-05 摘 要:浙江省缙云县是我国东部中生代陆相火山岩型沸石矿床的重要产区。本文主要叙述了浙江缙云壶镇盆地及外围的沸石矿区-区域地质概况及矿床地质特征。关键词:矿床地质特征;找矿标志;沸石矿石;浙江缙云中图分类号: P619.2; P588.21 文献标识码:B 收稿日期:2006-07-27 责任编辑:李勇作者简介:陈婉君(1968-),女,江西上饶人,工程师,主要从事地质找矿和研究工作。 沸石是一类具有奇妙孔道结构和独特晶体化学性质的含水架状硅铝酸盐矿物,具有优异的离子交换、吸附、催化及分子筛分性能,在农业、建材、化工、环保、医药、国防以及新材料等众多领域有着广泛的现实应用与巨大的应用潜力。浙江省缙云县是我国东部中生代陆相火山岩型沸石矿床的重要产区。自20世纪70年代初在该地区发现沸石矿床以来,国内对沸石矿床的特征及应用研究从未间断,也已经取得了一些成果和进展[1-2]。本文主要介绍了浙江省缙云县壶镇盆地及其外围一带中生代陆相火山岩型沸石矿床的矿床地质特征。 1 区域地质背景 矿区处在中生代断陷型陆相火山盆地-壶镇盆地(沈宅矿区)及其外围(岱石东南矿区)。该区位于东南地洼区闽浙地洼系福州地穹列与浙粤地穹系绍广地洼列交替复合部位,主体处在福州地洼列。 壶镇盆地及其外围地层出露比较简单。除少量第四系全新统冲积层分布冲沟和溪流及其沿岸外,盆地内部主要出露晚侏罗世和白垩纪地层,盆地外围仅出露晚侏罗世地层。 区域构造以断裂发育为基本特点。断裂构造主体可分为北东向和北西向两组,尤以北东向者为著。延伸规模大、区域性控岩控矿作用显著的北东向断裂在区域西侧外围有江山-绍兴深断裂,区域东侧外围有温州-镇海大断裂,区域内部则有丽水-余姚深断裂直接通过壶镇盆地。延伸规模较大、具有一定区域控 第16卷第4期 2006年12月安徽地质Geology of AnhuiVol.16 No.4December 2006 陈婉君,杨智荣 (广东省有色金属地质勘查研究院, 广东 广州 510080) 岩控矿作用的北西向断裂有区域南部的淳安-温州大断裂和区域北侧外围的嵊州-宁海大断裂。 本区燕山期岩浆活动非常强烈,岩浆活动方式主要为多期次多旋回陆相火山喷发。形成了广泛分布于本区的晚侏罗世、晚白垩世中期中酸性陆相火山岩建造,并伴有大量霏细岩、流纹斑岩、霏细斑岩等次火山岩浆侵入,呈脉状、筒状或小岩株状产出,对区域沸石矿床的矿化就位具有明显控制作用。 2 矿床地质特征 2.1 地层 2.1.1沈宅矿区赋矿地层 沈宅矿区出露地层包括第四系全新统(Q)、白垩系上统赖家组(K2l)、塘上组(K2t) 以及上侏罗统c段下亚段(J3c-1)。K2l和K2t是本小区所出露的地层主体,J3c-1仅出露于矿区南东角,亦无明显沸石矿化现象。其中塘上组(K2t)又分为7层(K2t-7、K2t-6 、K2t-5、 K2t-4、K2t-3 、K2t-2 、K2t-1),主要赋矿层位为K2t-6、 K2t-4、K2t-2三个亚层。上白垩统塘上组(K2t):以陆相酸性火山碎屑岩为主,岩性类型包括火山集块角砾凝灰岩、角砾凝灰岩、晶屑玻屑凝灰岩、含砾玻屑凝灰岩、流纹岩及珍珠岩。除陆相火山岩外,常有紫红色粉砂岩、含砾砂岩以及砂质砾岩夹层。该组地层分布广泛,是主要沸石含矿层位,并有珍珠岩、膨润土等矿化,与下伏地层不整合接触。 2.1.2岱石东南矿区赋矿地层 浙江缙云中生代陆相火山岩沸石矿床地质特征

火山碎屑岩的一般特征

火山碎屑岩的一般特征 火山碎屑岩:是火山作用(包括地下火山作用)形成的各种火山碎屑物,堆积后经多种成岩方式固结而成的岩石。火山碎屑岩中除火山碎屑物外,还可含有一定数量的正常沉积物或熔岩物质(作为胶结物)。 火山碎屑岩不仅见于地表,亦可见于火山管道和次火山岩体中。火山碎屑岩在各个地质时期,不论在陆上,还是水下,均有广泛分布。 火山碎屑物指的是由于火山爆发所产生的各种碎屑物质,主要来自地下熔融的岩浆或已凝固的熔岩,经火山爆发时被粉碎或破碎而成各种岩屑、晶屑和玻屑。有时亦可混入火山通道两侧、上部或基底围岩的碎屑。因此它带有内生成因特征;另一方面,火山碎屑物被喷出后,又在空气或水盆地中搬运、降落、沉积,所以它们又具有沉积形成的特点。火山碎屑岩的物质成分与相应的熔岩有密切联系,尤其是向熔岩过渡的种属很相似,在空间分布上,两者者也经常是共生的;而在结构构造上有的则和正常沉积碎屑岩有相似之处,但又有很多差别。如前者岩石和矿物的碎屑多半成棱角状,碎屑物分选很差,成分和结构构造上变化很大,常缺乏稳定的层理,只有正常沉积物增多及在水中沉积时,这些特点才逐渐消失。所以火山碎屑岩是一种介于熔岩和正常沉积岩之间的过渡类型岩石,向两端都有一系列过渡变种。因此含有火山碎屑物50-10%的岩石,可属广义的火山碎屑岩,而正常火山碎屑岩则含火山碎屑物应在90%以上。 火山碎屑岩的成岩方式不同于其它岩石。向熔岩过渡的火山碎屑岩,主要由熔浆胶结凝固而成。向沉积岩过渡的火山碎屑岩,则粘土物质、化学沉积物及火山灰次生变化产物—蒙脱石、绿泥石、沸石等胶结。而正常火山碎屑岩主要不是压紧固结,部分有火山灰分解产物或化学沉积物胶结。另外还有一种特殊的成岩方式,即是在较酸性、碱性、粘度大,富含挥发分的岩浆上升过程中,气体析出成“牛奶泡沫”状,形成火山碎屑流,火山碎屑物高温熔结在一起,而成为熔结火山碎屑岩。 火山碎屑岩常具有特殊鲜艳的颜色,如浅红、浅黄、淡绿、灰绿等各种色调。颜色主要取决于本身的物质成分,如中基性的火山碎屑岩颜色很深,为暗紫红色、墨绿色等,而中酸性火山碎屑岩则颜色较浅,常为粉红色、淡黄色。其次决定于次生变化,如凝灰岩的绿色与绿泥石化作用有关,而含铁较少的凝灰岩,蒙脱石化后则呈灰白色或粉红色。

相关文档
最新文档