无线电力传输技术汇总

无线电力传输技术汇总
无线电力传输技术汇总

无线电力传输技术

无线电力传输技术

人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。

在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。

大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。

正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。

好兆头

英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。

2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。

新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于“共振”。

科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振

的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。

最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,磁场的强度将不过和地球磁场强度相似,人们不用担心这种技术会对自己的身体和其他设备产生不良影响。

在2007年马林演示他的成果的时候,这项技术能够达到40%左右的效率。这在某些场合是可以接受的,但是人们还想更进一步。刚才我们提到的英特尔公司研究员们已经把传输效率提升到了75%,而马林小组最近声称,他们做到了90%。这意味着,一年之间提高到原来的两倍以上!

虽然成效惊人,但改进空间也依然很大。下一步,有望在提高传输效率的同时缩小发射端和接收端的体积,最终实现用电设备内置接收端的目标。

想象一下,这会对生活带来什么样的影响?我们可以完全从需要的角度出发来摆放家用电器,不用再考虑附近是否有插座;我们在装修房间的时候不用再考虑如何布设电线,笔记本电脑和手机这样的小件电子设备永远显示电池充满,清扫机器人在房间里跑来跑去,不用过一会就去找地方充电……这一天也许很快就会来到。市场上已经有了一些采用这种技术的原型产品,广泛使用也只是时间问题罢了。

第二基地

尼古拉·特斯拉(Nikola Tesla)的梦想——使用电磁波来远距离供电——也许很快就会变成现实。早在1890年,这位现代交流电系统的奠基者就开始构想无线供电方法,最后提出了一个非常宏大的方案——把地球作为内导体、距离地面约60千米的电离层作为外导体,在地球与电离层之间建立起大约8Hz的低频共振,再利用环绕地球的表面电磁波来远距离传输电力。他想像广播一样,将电能传遍全球。为此,在J. P.摩根的资助下,他在纽约长岛建立了57米高的瓦登克里夫塔(Wardenclyffe Tower)来实现这一构想,但最终被迫放弃。虽然我们现在可以从理论上证明特斯拉的方案的确可行,但是出于世界上各个国家的区隔,这种“天下大同”在短时间内恐怕不会成为现实。

不过另一种远程无线供电方案可能会更容易实现一点。

加拿大科学家正计划制造一架无人飞机,飞行高度33千米,可以在空中连续飞行几个月。这可能是世界上第一架可以真正投入使用的远程供电飞机,本身不携带燃料,而是从地面的微波站中获取能量。

微波是指那些频率在300MHz到300KMHz之间的电磁波,它的波长在1米到1毫

米之间。因为电磁波的频率越高,能量就越集中,方向性也越强,所以人们认为,使用微波来无线传递能量可能是最好的选择。更何况,微波可以通过硅整流二极管天线转换成电能,转化效率可以高达95%以上——这样高的转化率已经可以让人满意了。

在这架无人机起飞之后,地面的高功率发射机通过天线将发射机所产生的微波能量汇聚成能量集中的窄波束,然后将其射向高空飞行的微波飞机。微波飞机通过微波接收天线接收能量,转换成直流电,再由直流电动机带动飞机的螺旋桨旋转。因为无需携带燃料和发动机,这种飞机的有效载荷将会大大提升。

其实早在1968年,美国航天工程师彼得·格拉泽(Peter Glaser)就已经更进一步,提出了空间太阳能发电(SSP,Space Solar Power)的概念。他设想在大气层外通过卫星收集太阳能发电,然后通过微波将能量无线传输回地面,并且重新转化成电能供人使用。这一设想,不是在仅数十千米的距离上用微波传递能量,而是要把能量在三万多千米之外,从太空精确地射向地面接收站。

想象一个地球同步卫星。它停留在赤道上空36,000千米的高度,太阳能电池阵列始终对太阳定向,微波发射天线则瞄准地面的接收天线。这儿,不存在在地面接收太阳能所必然面临的照射时间、气候、重力等问题,每年有277天可以全天接受日照,而被地球遮挡时,最长停电时间也不过75分钟。它每年有99%以上的时间把源源不断的太阳光能转化为电能,效率将比地面上同样规模的太阳能电站高出十倍左右。

1977~1980年,美国宇航局和能源部共同出资,对空间太阳能发电的问题进行了概念研究,得出结论:这种方式不存在不可克服的技术困难。但是后来这个计划一度被锁进保险柜,原因在于耗资惊人。目前把物品送上太空还是很花钱的,要在太空中组装一颗收集太阳能来发电的卫星,成本令人难以接受。

不过,随着地球上不可再生资源的逐渐消耗,这个计划又被摆上了桌面。现在有几个能源消耗大国和能源匮乏的国家正在论证这种方案的可行性,并且开始了小规模实验,来验证在大气内进行微波能量传递以及从太空向地面发射微波束的实际效果,而目前比较乐观的估计是,2010~2020年太阳能发电卫星就可以进入实用阶段了。

亲爱的,你需要电?

感谢迈克尔·法拉第(Michael Faraday),这个英国人在1831年发现的电磁感应,带领我们进入了电气时代。到了今天,谁不需要电?

法拉第的发现,也促进了近距离无线供电技术的发展。最早的工业化近距离无线供电技术早在1885年就已经被实际应用了:随便拆开一个家用变压器,我们就会看到变压器里会有两组导线缠在一个铁芯框架上,但它们彼此并没有直接相连。

不仅如此。公共交通卡、一些学校的饭卡,还有二代身份证,这些也都需要电。在这些卡证中都有一块小小芯片,里面最少存储着一个唯一的编号。这一小块芯片就像是我们的一条内存或者一块硬盘,没有电的时候,它和一粒沙子没什么区别。即使储存了很多信息,也没有办法传递出来。

这种卡证的供电原理与变压器的原理类似。读卡机周围会形成一个快速变化的磁场,芯片进入这个磁场时,周围的线圈内就会产生感应电压,激活芯片,并且把自己的编号通过线圈发射出去被读卡机接收。读卡机会根据编号的不同而做出不同的反应,例如告诉你现在饭卡账户里还剩多少钱。

通过电磁感应来进行无线供电是非常成熟的技术,但会受到很多限制。最主要的问题是,低频磁场会随着距离的增加而快速衰减。如果要增加供电距离,只能加大磁场的强度。然而,磁场强度太大一方面会增加电能的消耗,另一方面可能会导致附近使用磁信号来记录信息的设备失效。我们都不想自己的硬盘里面的数据被强磁场一笔勾销吧。

所以这种方式往往会应用在一些防水要求比较高的小家电上,例如某些电动牙刷和电动刮胡刀等。人们也在尝试用电磁感应为手机这样的小型设备充电。从2005年开始,市场上就已经有了一些无线充电器,但使用起来并不能算是很方便,充其量也只是减少了我们把手机插上变压器的麻烦而已。有了室内距离的无线供电设备,谁还需要这种东西呢?

这是多么美好的一天

我们经常会使用和风筝相关的比喻。风筝飞得再高,也总会有一根线握在手里。断线的风筝也许会一时飞得更高,但最后一定会坠落地面。

也许以后会改用遥控航模的比喻吧——没有线,却依然尽在掌握。

当可以在远距离、中等距离和近距离都广泛实现无线供电的时候,人类目前最常用的能量将会变得像空气一样随处可得。无需再抱怨没有合适的充电器,不用再为电子设备准备厚重的电池以尽量延长它们的待机时间。我们可以把手持设备做得更小更薄,甚至可以容易地植入体内。在那时候,生活又是何等一幅模样?

没有人知道。当终于可以解开电线的束缚时,我们会飞得更高,走得更远,远到超出想象。

正如每天呼吸空气而不自觉一样,我们终会把无处不在的无线电力当作一件自然而然的事情,却忘了仅仅在200年前,祖辈们还仅仅把电当成一种用来博人一笑的小小魔术。

也许有一天,我们会对我们的下一代谈起我们年轻的时候。讲述中极尽描述从线缆束缚的无奈走到无线的自由这一过程。会回味那些有电线的日子,不可避免地谈及那些因电线接头松动让所有工作成果化为一缕青烟的小插曲。会怀念电池的质感,会怀念在抽屉里缠成一团的充电器的沉稳踏实。也许还会一遍遍提起法拉第、麦克斯韦,以及特斯拉这些名字。我们会像小时候的老师那样,循循善诱地提问:“那么,电是从哪里来的呢?”

也许,坐在对面的小孩,会像《三体II·黑暗森林》中那个两百年后的漂亮女护士一样,不以为然地说:“电?到处都有电啊。”

为了这样轻率的答案而微笑吧,欣慰的是,他们,终于拥有了一个比我们更加宽广更加自如的世界。

无线电力传输技术:创造未来空间神话

自17世纪人类发现如何发电后就用金属电线来四处传输电力,一直到今天供电网、高压线已遍布全球的角角落落。生活中,大人们总少不了教导孩童“不要碰电源插口和裸露的电线”,想来那些高压电线更是给不少人留下过“恐惧”感的记忆。而如今,无论是在工作还是生活中,越来越多的电器给我们带来极大的便捷,不知不觉中各种“理不清”的电源线、数据线带来的困扰也与日俱增——这样下去难道人间要“作茧自缚”?不过,这些年的科技发展表明,在无线数据传输技术日益普及之时,科学家对无线电力传输(Wireless Power Transmission, WPT)的研究也有了很大突破——从某种意义上来讲,无线电力传输也不是幻想——在未来的生活中摆脱那些纷乱的电源线也已成为可能。

最近有报道称,2008年8月的英特尔信息技术峰会(IDF:Intel Developer Forum)上演示了无线供电方式点亮一枚60W电灯泡(图1)。该研究是由英特尔西雅图实验室Joshua R.Smith等基于美国麻省理工学院(MIT:Massachusetts Institute of Technology)马林?索尔贾希克(Marin Soljacic)的研究理论进行的,可以在1m距

离内隔空给60W灯泡提供电力,效率高达75%。

在2006年末有报道称MIT在无线电力传输技术上获得突破:物理学助教授马林?索尔贾希克为首的研究团队试制出的无线供电装置(图2),可以点亮相隔7英尺(约2.1m)远的60W电灯泡,能量效率可达到40%——有关内容刊登在2007年6月7日的《Science》在线版《ScienceExpress》上。这个“隔空点灯泡”实验引起了欧美及全球各大媒体的极大关注并进行了“Goodbye Wires”之类的广泛报道。

在2001年5月,国际无线电力传输技术会议在印度洋上的法属留尼汪岛(Reunion Island, France)召开期间,法国国家科学研究中心的皮格努莱特(G. Pignolet),利用微波无线传输电能点亮40m外一个200W的灯泡。其后,据研究者有关文章介绍2003年在岛上建造的10kW试验型微波输电装置(注:有些国内报道误作10万kW),已开始以2.45GHz频率向接近1km的格朗巴桑村(Grand-Bassin)进行点对点无线供电。

无线电力传输这种特殊的供电方式,是人类的梦想之一。世界上第一台交流电发电机的发明者尼古拉?特斯拉(Nikola Tesla)在19世纪末就进行过无线电力传输的实验,但最终未能成功。一百年后的今天,随着无源式RFID电子标签和各种非接触式无线充电(用于电动牙刷、剃须刀等低功率家电)技术的实用化,以及无线网络技术的大发展,无线电力传输已经引起人们的极大兴趣。本世纪以来,能点亮灯泡的无线供电技术,毫无疑问也点亮和刷新了人们对“无线”未来生活的无限憧憬。

对于在空间实现无线电力传输/供电的形式,总起来看大致有三类:第一类是通

过电磁感应“磁耦合”进行短程传输;第二类是将电能以电磁波“射频”或非辐射性谐振“磁耦合”等形式中程传输;第三类是将电能以微波或激光形式远程传输——发射到远端的接收天线,然后通过整流、调制等处理后使用。下面将举例简要介绍这些方面研究开发情况或相关信息,供读者参考。

短程无线供电技术

现在已经广泛应用的变压器是基于电磁感应原理来工作的:由一个磁芯和二个线圈(初级线圈、次级线圈)组成;当初级线圈两端加上一个交变电压时,磁芯中就会产生一个交变磁场,从而在次级线圈上感应一个相同频率的交流电压,电能就从输入电路传输至输出电路。现在已经商品化的非接触式充电系统,其电能发射端的线圈(连接电源)与接收端的线圈(在电子产品中),处于两个分离的装置中,电能通过感应线圈传送,这类似一个线圈间耦合不紧密的变压器。最早使用变压器原理进行无线供电的产品是一些电动牙刷、电胡刀和无绳电话等,下面介绍一些相关产品及其构造或原理。

无接点充电插座

因电动牙刷难免经常接触到水,采用无接点充电方式,可使得充电接触点不暴露在外,增强了产品的防水性,利于整体水洗、清洁方便。在充电插座和牙刷中各有一个线圈,当牙刷放在充电座上时就有磁耦合作用,利用电磁感应的原理来传送电力,感应电压整流后就可对牙刷内部的充电电池充电。

苹果公司、摩托罗拉公司、LG以及Panasonic联手NTT DoCoMo都在开发各

自的无线充电器。而对用于手机的无接点充电器而言,只要在充电座和手机中安装发射和接收电能的线圈,便可实现无接点充电——这不仅将摆脱线缆的束缚而且还将消除接口差异的限制,因此无线充电器设计更加人性化并且减少资源浪费。

“免电池”无线鼠标

鼠标的工作需要电力支持,有线鼠标通过与电脑的连接线来获得电力,而无线鼠标一般采用电池供电。电脑鼠标从易招致污垢的机械鼠标到无线光电鼠标,使用的舒适度已有很大提高。而老牌鼠标厂家双飞燕公司从2004年开始推出的“免电池”无线鼠标(需要在专门配备的鼠标垫上操作)——这里的鼠标和配垫都有“奥秘”——两者内部都安装了电磁感应线圈,鼠标垫通过连接电脑的USB接口即可获得电能,并由其感应线圈向鼠标内的感应线圈输送电能,可以给鼠标进行无线供电并进行信号感应,这里也涉及到了人们常讲的“RFID(无线射频识别)”技术。

通用型无线供电“垫”

2003年英国剑桥SplashPower公司发明了无线充电(wireless recharging system)技术,也是根据电磁感应进行电力传输的,电能接收器“SplashModule”(厚不足1mm)可配置于充电终端——手机、笔记本电脑,电能发送器则配置成充电器,2005年初这种商业化的无线充电器“SplashPads”(厚约

6mm、大小如鼠标垫)上市,只要便携终端安装有电能接收器即可放到上面充电。

类似的产品还有美国WildCharge公司开发的无线充电系统,充电板的外观像一

个鼠标垫,能够放置在桌椅等任何平坦表面,可提供高达90W的功率,足以同时为多数笔记本电脑以及各种小型设备充电。香港城市大学的许树源教授也曾成功研制出一种“无线电池充电平台”,可将数个电子产品放在一个充电平台上充电,充电时间与传统充电器无异。2007年微软亚洲研究院披露新成果——设计和实现了一种通用型“无线供电桌面(Universal Wireless Power Surface)”,如果随意将笔记本、手机等移动设备放置在桌面上,即可自动开始充电或供电。

多功能家用电器无线供电“膜片”

2006年日本东京大学产学研国际中心的樱井贵康教授主持开发出一种家用电器无线供电方式,用一片图书大小的柔软塑料膜片就可对家电进行无线供电——该特制塑料膜上面印刷有半导体感应线圈,厚度约1mm、面积约20cm2、重约50g,可以贴在桌子、地板、墙壁上,可为圣诞树上的LED、装饰灯、鱼缸水中的灯泡或小型电机供电。使用前家用电器需要装上可接收电能的感应线圈,然后放到相应位置即可得到无线供电。

据报道这种薄膜电源由四层塑料薄膜组成,从下到上依次是电导可控的有机晶体管,感测兼容电子设备接近的铜线圈、接通或断开电源的MEMS开关、传送电能的铜线圈。当电器进入薄膜2.5cm范围内,最靠近的MEMS开关接通电源,电感线圈就利用电磁感应向设备供电。试验验证,扣除发热损耗的情况下能量转换率可达62.3%,可转送30W电力(如果加大膜片尺寸可达100W)。据称该无线供电膜片将自行判断电器所在位置,在居室空间的较大范围内可随意放置。在无电源线的吸尘器、笔记本电脑以及家用机器人等的应用方面有广阔前景。

植入式医学器件的充电技术

目前,心脏调节器、心脏除颤器等单植入式医疗装置市场已达数十亿美元,这些植入装置需要电池供电,当电池将耗尽时,如果能通过无线供电方式充电则将避免动手术等大麻烦。

日本东北大学小柳光教授,在2007年SSDM国际会议上,发表过使用电磁感应型无线供电技术成果,他主持试制出可从外部向植入眼球的人工视网膜用

LSI(Large-Scale Integration大规模集成电路)进行无线供电的系统。另外,据2007年7月多家媒体报道,英国南安普敦大学的研究者成功地研发出一款能将振动转化为电能的“迷你发电机”,可望将来能凭借心脏病人的心跳为自己的心脏起搏器供电——避免更换电池时动手术。据说这项技术也可能应用于手机、MP3等移动装置——仅靠人类的心跳就能无线充电。

中程无线供电技术

我们了解频率介于75kHz和约10GHz之间的电磁波俗称“无线电波”,可以用来传送广播和电视节目、进行通信和传真,但是对其传输电能的本领比较陌生。通常电磁波在自由空间传输能量的过程中会向四面八方散发、不易集中、定向性差,因而供电效率是个问题;另外,还有对空间造成电磁“污染”的担忧。有人认为电磁波可以无线传输较长的距离,但输送能量有限,存在传输功率比较低(甚至只有几微瓦到几毫瓦)的问题。Powercast公司的相关研究是利用电磁波损失小的天线技术,借助二极管、非接触IC卡和无线电子标签等,实现效率较高的无线电力传输。

Jennifer Chu在《科技评论》中提到,MIT的索尔贾希克曾考虑使用电磁波,但难以避免有大部分能量在传输过程中损耗,而激光等传输方法也存在难题,最终提出了“电磁共振耦合”概念,与电磁感应方法相比,虽然采用的磁场弱,但可以实现更长距离的传输;与电磁波传播方式相比,电磁共振方式的能量流失少。

Powercast无线充电器

2007年3月“Business 2.0”等媒体报道,美国宾夕法尼亚州的Powercast公司开发无线充电技术,可为各种耗电量相对较低的电子产品充电或供电,诸如手机、MP3、随身听、温度传感器、助听器、汽车零部件,甚至体内植入式医疗装置等。

Powercaster公司表示开发工作早在2003年就开始了,该技术已获得FCC的批准,其中整个系统主要包含两个模块:一个模块是“Power Caster”发射器,可插在电源插座上;一个模块是“Powerharvester”接收器(硬币大小),可嵌入电子产品里。发送器这边利用安全的超高频915MHz频段把能量发送出去,而接收器在距离发送器将近一米范围内都可以接收到发射的电磁波而实现充电——据称约有70%的电磁信号能量转换为直流电能。

Powercast已经开始商业化运作,与荷兰菲利浦公司等百家以上的公司签订了合作协议,计划到2008年年底将交付数百万个无线充电器。基于此,飞利浦公司还曾准备推出具有无线充电功能的无线键盘和鼠标。报道称该项技术之所以会得到多家厂商的青睐,原因在于它独特的电磁波接收装置,能够根据不同的负载、电场强度来做调整,同时还能维持稳定的直流电压。

MIT隔空无线点灯实验

在文章开始提到的MIT的索尔贾希克研究团队认为,他们发现的是一种全新的无线供电技术——非辐射电磁能谐振隧道效应,称作“Witricity”无线供电技术。采用“不发出电磁波的天线(Wireless Non-radiative Power Transfer)”实现非幅射共振能量传输。MIT的研究者用两个直径60cm的特殊铜线圈做实验,作为送电方的一个线圈接在电源上,作为受电方的另一个线圈置于2m外并连接一个灯泡。当送电方的接通电源后,两个线圈都以10兆赫兹的频率振动,从而产生强大的电磁场,通过“电振”电能被传递了,隔空供电使灯泡发光。在电源与灯泡中间放置木料、金属或其他电器等,灯泡仍会发亮。研究人员表示,没有发现这一系统会影响人体健康,现在的电磁辐射水平大概和核磁共振仪类似,应该是在安全范围之内。

该无线供电技术也称为共振感应耦合技术,关键在于利用了非辐射性磁耦合——两个相同频率的谐振物体产生很强的相互耦合,采用单层线圈,两端各放置一个平板电容器,共同组成谐振回路,减少能量浪费。基于普通电磁感应耦合的非接触电力传输,则是利用数百圈紧密缠绕的线圈,但只能在数毫米的范围才得到60%以上的传输效率。而该系统只是缠绕了5圈粗铜线作为天线的线圈,在进行2m传输时效率约为40%,距离为1m时效率竟高达约90%。可见这种融合了电磁共振的无线供电技术别具一格。

关于这项技术离实用化还有多少距离的问题,该研究团队承认技术还需改进才能走进家庭。一方面是输电效率必须提高一倍才有望取代化学电池;再是铜线圈需要最小化才可实用——目前铜线圈直径为0.6m,要给整个房间的电器无线充电,预计直径需达2.1m;此外,电磁能发射器工作的有效距离最远仅为2.74m,要想提高这一有效距离,电脑等设备还必须同样配置一个带有铜丝线圈的接收器。目

前该团队正设法改进,希望电器离电源的有效供电距离能达到4m~5m,铜线圈可缩小到安装在笔记本电脑里的程度,输电效率也要大幅提高。如果这样,手机、笔记本电脑就可以在配置有发射器的屋子里自动充电,甚至无需电池或无需通过相连电源就可以直接使用。

远程无线供电技术

从科学技术与实际应用相结合的角度来讲,无线供电和有线供电将会各有千秋。如果作为地面长距离输电或者所有家用电器的长期供电,无线供电可能未必实用。除铺设输电线路困难的地区之外,但有一个特殊科技领域的发展非常倚重无线电力传输技术,那就是太空领域了,比如人造卫星、航天器之间的能量传输等,而首当其冲的是未来太空太阳能发电站“隔空”给地球无线供电的研究摆在人们

面前。

在太空的太阳光线没有地球大气层的影响,辐射能量十分稳定,是“取之不尽”

的洁净能源。如果在静止轨道上建设太阳能电站,一年有99%的时间是白天,其利用效率比在地面上要高出6倍~15倍。随着全球环境污染和能源短缺问题日趋紧张,向太空要能源的需求愈发迫切。美国五角大楼国家安全太空办公室(NSSO)在2007年10月的报告中则明确指出,要立即着手“向上钻取能源”的工作,建议美国政府在未来10年投入100亿美元建造一颗能将10GW太阳能传回地球的试

验卫星。

太空太阳能电站是利用卫星技术,在太空把太阳能转化成电能,然后以微波和激光等方式传回地球供人类使用的系统。该系统主要由两大部分组成:太空部分——太阳能发电卫星——由火箭将太阳能发电卫星发射到空间轨道上形成,在太空将太阳能转化成电能;地面部分――接收电站——接收太空发电卫星通过微波或激光等方式传输到地面的电能。

在外太空进行试验发电的国家有美、日、法、德、俄等。来自美国国防部的一份报告称,建立空间太阳能电站的构想无论在技术方面还是在经济方面都是可行的。太阳光是永恒不变的,太阳所释放的能量相当于当前全球所消耗能量的10万亿倍,美国国家航天学会副主席马克?霍普金斯(Mark Hopkins)说:“我们只需要开发其中一少部分,就足以应付我们当前和未来许多年的能源需求。”

根据美国科学家预测,到2025年,美国有可能在太空建造100座太阳能电站,将会满足美国全国30%的电力。而日本从20世纪80年代也已展开太空太阳能相关研究,目标是在2030年前向太空发射一颗对地静止卫星,这颗卫星将为地球上50万户家庭提供10亿W电能。目前,日本宇宙航空研究开发机构的研究人员将微波和激光看作是传输太阳能的可能选择。对于两种无线传输的情况以下进行简单介绍。

关于微波传输电能

微波是波长介于无线电波和红外线辐射之间的电磁波,目前已广泛应用于微波炉、气象雷达、导航和移动通信。微波送电是全世界的研究热点,据报道1967年美国空军同雷神公司合作进行了世界上首次电力微波传输试验,成功地通过微波向模拟直升机提供电力。1994年,科学家利用微波将5kW的电力送达42m远也取得成功。前面提到的法国皮格努莱特利用微波进行的无线输电试验——是把一部发电机发出的电能,先通过磁控管转变为微波,再由发射器将微波束送出,40m外的接收器接收后,由变流机将微波转换为电流,然后将一个200W的灯泡点亮。在留尼汪岛上的格朗巴桑村位于千米深的峡谷底,过去居民利用安装在房顶上的太阳能电池,但因日照时间短等原因电力不够用——2003年无线供电技术使其成为世界上第一个利用微波技术供电的乡村——至于该技术的实用化商

业推广不知何时实现——尚未见到最新的进展报道。

目前微波频率采用的2.45GHz是分配给工业、科学和医疗使用的频率,不会对通讯造成影响,所到之处的能量密度也不会对生物造成伤害。家用微波炉的普及,表明了微波技术实用化的成熟。研究者已确认类似家用微波炉的工作频率

2.45GHz的磁控管用于能量的微波传输,可轻易穿过大气层,由地面接收设备(由盘式天线、低压电流二极管和电子束回旋加速器共同组成)获取能量后转成高压直流电源。

关于激光传输电能

激光方向性强、能量集中,利用激光可以携带大量的能量,可以用较小的发射功率实现较远距离的输电。有关研究选择激光的优势在于,所需的传输和接收设备是微波所需的1/10,不存在干扰通信卫星的风险——使用微波却存在这种问题。不足点之一是障碍物会影响激光与接收装置之间的能量交换,使用激光不能像微波那样可以闯过云层,射束能量可能会在中途丧失约一半。

结语

从上世纪末开始,电子信息技术的发展突飞猛进,当前还呈现出移动和无线通信网络日益融合的趋势,凭借新一代无线网络技术人们可以“随时、随地”联网,可以用Bluetooth技术等进行无线传输数据。而无线供电技术,将使得手机、笔记本电脑等移动产品“隔空”充电的实用化指日可待——不难猜想这该省去多少麻烦——这将是生活空间无线技术的又一轮革命。

为了摆脱地球环境和能源危机,建立太空太阳能发电站作为获取新能源的途径,无线电力传输技术将发挥非常关键的作用。我国在未来太空的开发和利用上绝对是不甘心落后的——“神七”多人航天和“太空漫步”试验的成功,预示着我国已具备建设太空太阳能电站所需空间工业发展的基础和潜力。随着太空科技领域的发展必将进一步促进无线电力传输技术的迅速发展,人类利用太空太阳能的日子将不遥远。无线电力传输技术最终将创造出天地间电力“传情”的神话。

浅谈无线电力传输

浅谈无线电力传输 张业邹代宇陈昊 内容摘要:无线电力传输技术是一项新兴的科技,这项技术未来将很大程度的造福人类。本文将对无线电力传输技术的历史,基本原理,研究现状以及未来前景进行介绍,让人们更好地认识这门新兴技术。 关键词:无线电力传输,电磁感应,耦合,共振,无线充电,改变世界。 一、无线电能传输的发展历史 1820年:安培,安培定理表明电流可以产生磁场。1831年:法拉第,法拉第电磁感应定律是电磁学的一个重要的基本规律。1864年:麦克斯韦建立了统一的电磁场方程,用数学的方法描述电磁辐射。1864年:赫兹证实了电磁辐射的存在。赫兹产生电磁波的设备是VHF和UHF 波段的放电发射机。1891年:特斯拉(NikolaTesla)改善了赫兹的微波发射器的射频功率供应,并申请专利。1893年:特斯拉在芝加哥的哥伦比亚世界博览会展示了他的无线传输的荧光照明灯。1894年:勒布朗(Hutin&LeBlanc)相信可以感应传输电能,并申请了关于一个能传输3KHz电能的系统的美国专利。1894年:特斯拉分别在纽约的第五大道南35号的实验室和休斯敦街46号的实验室通过无线方式点亮了一个单极白炽灯,实验手段用到电力感应、无线共振感应耦合等技术。1894年:钱德拉玻(JagdishChandraBose)使用电磁波信号远距离点燃火药和

触响铃铛,表明不用电线也能传递能量。1895年:钱德拉玻无线传输信号将近一英里远的距离。1896年:特斯拉发射了约48公里(30英里)距离的信号。1897年:马可尼(GuglielmoMarconi)使用超低频无线电发射器传送6公里的摩尔斯电码信号。1897年:特斯拉申请了无线传输的专利。自此,无线电力传输技术真正走上了历史的舞台。 一、无线电能传输的基本原理 无线输电技术根据其应用场合的变化有不同的原理,技术方案也不尽相同。 1.电磁感应原理 此原理与电力系统中常用的变压器原理类似。在变压器的原边通入交变电流,副边会由于电磁感应原理感应出电动势,若副边电路连通,即可出现感应电流,其方向的确定遵从楞次定律,大小可由麦克斯韦电磁理论解出。电力系统中的电压、电流互感器也是采用了类似的原理。相对于无线输电而言,变压器的原边相当于电能发射线圈,副边相当于电能接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。虽然电磁感应原理在电力系统中应用的初衷并不侧重于电能的传输,而是利用能量的转化改变电压、电流的数量级,但其对无线输电确实产生了一定的启发作用, 尤其是电能的小功率、短距离传送。目前使用电磁感应传递电能的主要有电动牙刷, 以及手机、相机、MP3等小型便携式电子设备,由充电底座对其进行无线充电。电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。这种原理的无

高效无线电力传输系统

高效无线电力传输系统 摘要——本文提出了基于自动引导车辆的无线电力传输系统的概念,该系统在车上装有充电电池,并在特定的地方进行充电。当给车辆充电时,要接近蓄电池充电器进行自动充电,因此,蓄电池充电器的初级变压器与车上的次级变压器之间需要较大的间隙,用以防止碰撞损坏。这样的话就要设法预防由于这个较大距离产生的变压器耦合率的降低,传统的无线电力传输技术由于电力需要通过拾波电圈从电线获得,就要装备一个大尺寸的变压器,并且当距离超过车行驶的长度铜的损失也会加大。先进的系统采用一个高频率的应用软开关方法变极器减小变压器尺寸,变压器间隙每10mm耦合率0.88,并且可达到91%的运行效率。 1.引言 最近,研究者对基于诸如自动引导车辆等运动机械的无线电力传输系统进行了测试,自动引导车辆通常使用带台车的供电系统,但好的金属粒子是通过供电时的摩擦产生的,由于无线电力传输系统不产生摩擦,其严格要求在清洁的室内或医院里,并且因为没有磨损从而该系统有减低维修频率的有点。 传统的带有无线电力传输系统的自动引导车辆需要一条与轨道平行的电线并且通过拾波电圈获得电能,但是因为拾波电圈在结构上与变压器的第一圈相似,所以为了在次级变压器端(车辆端)获得足够的电能,在初级变压器一端(电线端)需要超额的电流,特别是当车辆行驶一段长距离,铜损失不能被忽略,并且由于发生磁通量的大量泄漏,耦合率不足,所以拾波线圈也需要大型的变压器和较大的电能供应设备。 本文提出了基于自动引导车辆的无线电力传输系统的概念,在无线变压器见有10mm间隙的情况下,得到不同变压器结构的仿真和实验结果,从这些结果中给出了一种高耦合率的变压器结构,此外采用了0V变换方式的回荡变极器作为供电设备(蓄电池充电器)的变极器,选取100kHz变换频率以减小变压器尺寸。对充电器和变压器的实验评价显示该提出的系统可以高效率运行。 2.无线电力传输系统的概念 图1.表示基于自动引导车辆的无线电力传输系统的新概念,该系统的充电电池装载在车

无线电能传输实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术 (Wireless Power Transfer, WPT )也称之为非接触电能传输技术(Contactless PowerTransmission, CPT ),是一种 借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“0 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体 学习参之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。

磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。 基于磁耦合谐振技术的无线电能传输技术主要利用的是近场磁耦合共振技术,共振系统由多个具有相同本征频率的物体构成,能量只在系统中的物体间 传递,与系统之外的物体基本没有能量交换,在达到共振时,物体振动的幅度达到最大。 基于磁耦合谐振技术的无线电能传输系统一般由高频发射源、发射系统、接收系统、负载等部分组成,其中发射系统和电磁接收系统,是无线电能传输系统的关键部分。 其典型模型如下图所示。由下图可知发射系统包括励磁线圈和发射线圈,它们之间是通过直接耦合关系把能量从励磁线圈传到发射线圈,励磁线圈所需能量直接从高频电源处获得。电磁接收系统包括接收线圈和负载线圈,它们之间也是通过直接耦合关系把能量从接收线圈传到负载线圈。发射线圈与接收线圈之间通过空间磁场的谐振耦合实现电能的无线传输。 学习参

谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System 谐振耦合式无线电力传输系统建模 This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators. 这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。 This example requires the following product: 这个例子需要以下产品: Partial Differential Equation Toolbox? Design Frequency and System Parameters设计频率和系统参数 Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields. 选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。 fc=30e6; fcmin = 28e6; fcmax = 31e6; fband1 = 27e6:1e6:fcmin; fband2 = fcmin:0.25e6:fcmax; fband3 = fcmax:1e6:32e6; freq = unique([fband1 fband2 fband3]); pt=linspace(-0.3,0.3,61); [X,Y,Z]=meshgrid(pt,0,pt); field_p=[X(:)';Y(:)';Z(:)']; The Spiral Resonator螺旋谐振器 The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example. 螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。 Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles. 创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。 Rin=0.05; Rout=0.15; N=6.25; [p,t]=createSpiral(Rin,Rout,N);

无线传输技术及应用.

无线传输技术及应用 本选修课根据社会的实际需要,无线传输技术远程操作方便的特点,选择了 TC35i无线传输方案。 一.课题用途: 在工业方面:操作员用手机和电脑远距离监测、操作和控制工厂的设备。在农业方面:进行植物生长发育的远程控制。在生活方面:进行远程的LED宣传语控制。 二.课题方案: 用传感器接收要测的数据,传到单片机上,通过TC35i通信模块传输数据到操作人员的手机或者电脑上,操作人员也可以通过现场的上位机进行监测和操作。 三.无线通信模块: 3.1 TC35I介绍

TC35i新版西门子工业GSM模块是一个支持中文短信息的工业级GSM模块, TC35i由供电模块(ASIC)、闪存、ZIF连接器、天线接口等6部分组成。作为 TC35i的核心基带处 理器主要处理GSM终端内的语音和数据信号,并涵盖了蜂窝射频设备中的所有模拟和数字功能。 TC35i模块工作在EGSM900和GSM1800双频段,电源范围为直流3.3~4.8V ,电流消耗—休眠状态为3.5mA,空闲状态为25mA,发射状态为300mA(平均),2.5A 峰值;可传输语音和数据信号, 功耗在EGSM900(4类)和GSM1800(1类)分别为 2W和1W ,通过接口连接器和天线连接器分别连接SIM卡读卡器和天线。SIM电压为3V/1.8V,TC35i的数据接口(CMOS电平)通过AT命令可双向传输指令和数据,可选波特率为300b/s~115kb/s , 自动波特率为1.2kb/s~115kb/s。它支持Text 和PDU格式的SMS(Short Message Service,短消息),可通过AT命令或中断信号实现重启和故障恢复。其内部结构如图所示: TC35i模块内部结构图 3.2 TC35i硬件设计 1.发射端 发射端的模块TC35i模块有40个引脚,通过一个ZIF(Zero Insertion Force,零阻力插座)连接器引出。这40个引脚可以划分为5类,即电源、数据输入/输出、SIM卡、音频接口和控制。TC35i的第1~5引脚是正电源输入脚采用+4.2V,第6~10引脚是电源地。15脚是启动脚IGT,它与89C51的P1.3口相接,给IGT加一个大于100ms的低脉冲, 使TC35i进入工作状态。18脚RxD0通过2.2K电阻隔离和单片机的第11脚TXD相连;19脚TxD0为TTL的串口通讯脚,通过2.2K 电阻隔离和单片机的第10脚RXD相连。TC35i使用外接式SIM卡, 24~29为SIM卡引脚,SIM卡同TC35i是这样连接的:SIM上的CCRST、CCIO、CCCL、CCVCC和CCGND通过SIM卡阅读器与TC35i的同名端直接相连,ZIF连接座的CCIN引脚用来检测SIM卡是否插好,如果连接正确,则CCIN引脚输出高电

无线电能传输

Frequency dependence of magnetic flux profile in the presence of metamaterials for wireless power transfer Boopalan G School of Electronics Engineering VIT University Vellore, Tamil Nadu, India boopalan@vit.ac.in Subramaniam C K School of Advance Sciences VIT University Vellore, Tamil Nadu, India subramaniam@vit.ac.in Abstract— We discuss the change in the magnetic flux profile by introducing a negative refractive index material (metamaterial) in between the source and receiver. The environment parameters, ε and μ , has a significant effect on the propagation of electromagnetic wave. The behavior of Transverse Magnetic (TM) wave when the medium in the path of propagation is changed to negative permittivity and permeability is simulated and discussed. The effect of size, shape and anisotrophy of the metamaterials, for near-field regions, on the magnetic flux density has been studied using finite element analysis. An enhancement in the magnetic flux density when a metamaterial is introduced in between the source and receiver was observed. The results show that the static and quasi-static behavior of the system is same. Keywords—metamaterials, quasi static, magnetic flux transverse magnetic I.I NTRODUCTION The idea of charging on the go is an exciting option for various high power applications like Electric Vehicle. Wireless power charging can be done by radiative or non-radiative processes. Use of microwave and optical frequencies falls into the radiative category while non-radiative process refers to the near-field domain. This concept was put forward by Nikola Tesla when he invented an apparatus for transmitting electrical energy wirelessly [1]. Later, with the advent of microwave transmission technology in 1960’s researchers dreamed power transfer from satellite space station to earth [2]. For short distances inductive coupling is very convenient [3-4]. The enhancement in coupling efficiency is obtained by replacing coils with resonators [5-7]. The efficiency can further be improved by introducing a negative refractive index material between the source and the receiver [8-12]. The negative refractive index material or metamaterial has the unique property of enhancing the evanescent as well as non-evanescent waves [10]. In this paper we present the magnetic flux density variations for quasi-static scenarios when a metamaterial is introduced in between the source and the receiver. The model used for simulation is a 2-dimensional one as we are interested only in the profile in that direction which is in the direction of propagation. II.T HEORY Our system consists of a source, receiver and a metamaterial as shown in fig. 1. The source is a circular loop of radius ‘a’ located in free space. The receiver is a point of interest ‘P’ where the magnetic flux density enhancement is observed. The metamaterial in between the source and the receiving point is a rectangular block which enhances the magnetic flux density at the point ‘P’. The transmitter is a single turn coil carrying current ‘I’ which in turn generates the magnetic field H in the surrounding medium. The magnetic field H at a distance ‘z’ from the center of the coil is given by I (1) The coil is fed with a current of ‘I’ amperes as given by the equation below I . (2) Fig. 1. Schematic of Wireless Power transfer y x z

无线电能传输系统报告.doc

摘要 随着电子产品的快速发展,越来越多的电源连接线开始困扰人们的生活,为改善传统导线电路电能传输的弊端,给出了一种基于近距离无线电能传输原理的传输系统,而电磁谐振耦合无线电能传输技术正可以很好解决对距离有较高要求的这类问题。 本设计主要包括发射模块、传输模块和接收模块三大部分。首先由有源晶振产生1MHZ的方波,通过驱动IR2110及MOS管提高了交流信号,加强后的信号源经发送线圈通过磁耦合谐振感应到接收线圈,再经过半波整流和滤波后得到稳定直流电压,带动负载工作,即实现了无线电能的传输。在本实验中,我们采用单片机STC89C52控制液晶屏LC1602来显示负载短的的实时电压和电流值。 关键字:无线电能有源晶振驱动电路谐振半波整流 Abstract In this paper, With the rapid development of electronic products, more and more power cables on people's lives, to improve the disadvantages of traditional power transmission conductor circuit, presents a transmission system based on can close radio transmission principle, and the electromagnetic resonance coupling can radio transmission technology is very good to solve this kind of problem have higher request for the distance. This design mainly includes the transmitting module, transmission module and receiving module three parts. First 1 MHZ square wave generated by the active crystals, driven by IR2110 and MOS tube improve the signal communication, strengthen the signal source approved by the sending coil magnetic coupling resonant induction to the receiving coil, and after a half-wave rectifier and filter get steady dc voltage, drive the work load, which can realize the radio transmission. In this experiment, we adopt LC1602 STC89C52 MCU LCD screen to display the real-time voltage and current value of load short. Key words: radio can active vibration crystal driver circuit resonance half-wave rectifier

国外无线电力传输技术进展

86 上 海信息 化 无线电力传输(Wireless Power Transmission,WPT)也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。随着电力电子器件、功率变换和控制技术的发展,无线电力传输技术在转换率、低辐射等方面逐渐取得突破,无线电力传输在军事、通信、工业、医疗、运输、电力、航空航天、节能环保等领域呈现良好应用前景。 近年来,全球无线电力传输市场规模逐年递增,据IHS iSuppli数据显示,2010年无线充电设备市场收入达到1.2亿美元,到2015年将达到237亿美元。从2011 年开始,全球无线充电模块销量急剧增长,2019年将增长到9.23亿个(见表1)。手机、笔记本电脑等是无线电力传输的主要应用对象,厂商正将无线电力传输技术嵌入到包括智能手机、平板电脑、蓝牙耳机在内的终端。 十九世纪末,尼古拉?特斯拉发明了“特斯拉”线圈,使无线电力传输成为可能。近年来,无线电力传输技术发展迅猛,在军事、通信、工业等各大领域都拥有十分广阔的应用前景。对于消费者来说,无线充电的意义还不仅仅是带来充电方式的便捷化,随着无线充电技术从手机、平板等小功率设备向笔记本电脑、智能电视甚至电动汽车等大型设备的拓展,可以说,无线电力传输技术必将为人们的日常生活带来更多的惊喜。 文/陈 骞 美日两国处于领先地位 美国、日本等国众多企业或研究机构竞相研发无线电力传输技术,探索无线电力传输系统在不同领域的应用,致力于将其实用化,目前,已获得了一定的技术突破,相应产品也陆续面世。 美国电子信息企业对短距离电力传输技术给予极大投入。Power Cast 公司利用电磁波损失小的天线技术,借助二极管、非接触IC 卡和无线电子标签等,实现了效率较高的无线电力传输,将无线电波转化成直流电,并在约1 米范围内为不同电子装置的电池充电。Palm 公司将无线充电应用在手机上,推出充电设备“触摸石”,利用电磁感应原理为手机进行无线充电。Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成。Fulton 公司开发的eCoupled 无线充电技术,充电器能够自动地通过超高频电波寻找待充电电器,动态调整发射功率。Visteon 公司计划为摩托罗拉手机和苹果的iPod 生产eCoupled 无线充电器。Power 公司开发的电波接收型电能储存装置以美国匹兹堡大学研发的无源型 RFID 技术为基础,通过射频发射 装置传递电能。WildCharge 公司开发的无线充电系统,充 电板的外观像一个鼠标垫,能够放置在桌椅等任何平坦表 数据来源:IHS iSuppli 单位:百万个 表1 全球无线充电应用数量 Oversea View 他山之石

基于GSM无线传输技术的远程手机遥控系统.

基于GSM无线传输技术的远程手机遥控系统【摘 科技纵横

要】本系统实现了以GSM短消息AT命令。表1 部分AT指令分析

对于TC35i模块控制,IGT信号非常的重要,只有正确的IGT信号才可以使 TC35i模块正常的运行。模块的时序如图3所示。 为载体的控制信号传送,用户通过手机发送短信息命令“开”或“关”就可以通过GSM网络远程控制一个家电的开关(本文中用饮水机模拟),若短信命令不正确,则报错指示灯亮。并且,通过GSM模块与车载GPRS模块的相连,可以实现实时显示汽车位置的功能。 【关键词】GSM的无线传输技术AT指令 远程控制 1.GSM数据传输技术的发展现状GSM技术自从1982年开始提出、1992年正式问世以来,经过了十几年的发展,其技术也日趋成熟。因为GSM无线网络覆盖范围广,在信息传递方面性能稳定、可靠,所以把GSM无线网络作为信息传递的载体,与单片机结合起来构成应用系统有着强大的生命力和广阔的应用空间,特别是在远程数据传输、远程监控等领域更是受到电子设计应用工程师的关注。 2.研究的目的及意义 基于GSM网络的通用短信息控制系统由于结构简单、价格低廉、通用性、实用性强,能够直接或者在稍作改造后用于诸如:工厂、煤矿等需要远程自动控制的场合。该基于GSM网络的通用短信息控制系统能够在提高经济效益.减少工作人员劳动强度方面起到了较大的作用,能使需要该系统的工矿自动化水平提高。具有一定的社会和经济意义。 3.AT指令格式及分析3.1AT指令集简介 AT指令是调制解调器的控制命令,在调制解调器中几乎所有的操作都是通过AT 来完成的,AT是Attention的缩写,绝大多数指令是以AT作为前缀的,如拨号命令ATD设置波特率命令AT+IPR等,因此这些指令被称为AT指令,由这些指令所构成的指令集叫做AT指令集。 3.2AT指令的格式 在TC35i所支持命令集中根据命令名称可简单分为: (1)“ATXX”及少量“AT+XXX”为V.25标准命令集; (2)“AT+CXXX”为GSM标准所扩展的AT命令; (3)“AT^SXXX”为SIEMENS定义扩展的 注:,内存中消息的状态;[],电话本中与对应的字母数字域部分可选(短消息中一般此项为空);,对PDU方式指数据单元的字节数;,16进制表示的数据单元。 4.系统硬件设计 图3TC35i模块上电后各信号波形图 4.3串口模块的电路设计

2.4G超远距离无线传输方案随笔

超低成本的2.4G 超远距离超远距离无线遥控无线遥控无线遥控、、无线传输传输方案方案方案随笔随笔 在2.4G 的领域里面。大家比较熟悉的就是蓝牙和wifi 。物联网用的比较多的就是zigbee 。而在专业的领域用的比较多的就是nrf2401,cc2500等低成本芯片。就距离而言,相同的功率下100mw ,17Dbm 的增益下。蓝牙只有10米,wifi 大概20米。Zigbee 也不超过50米。nrf2401,CC2500不会超过100米。 其实目前2.4G 的传输距离为什么近,其最本质的原因是1:该公共频道带宽不足,手机,蓝牙,wifi 都占用这个频道。2:功率必须符合100mw ,增益在17dbm 以下,不然过不了FCC 、国家标准。也因此意味着你无法通过加大功率的办法来增加距离。有人会反问我:网络上有看过人家wifi 能传300km 的呢。是的,我也相信这是真的。只是这根本没有可比性,也没有实用价值。这好比你硬要在自行车上实现飞机那样的速度,你说可以吗?我的答案是完全可以。我需要增加最先进的动力设备,加最轻的机壳材料,加最好的传感器,把飞机上得所有东西放在自行车上。相信最后做出来的自行车飞机,那完全就不叫自行车了,也许最后我们连自行车的轮子都看不到了。更可悲的是这个产品的造价也许够人家飞机厂做几台这样的飞机出来了。 如果你得产品要获得出口到美国,中欧一些国家的话。使用2.4G 的公共频道是不需要申请的。但是辐射功率必须在100mv 以下。甚至有些国家还要求RF 发送的时间间隙要在3ms 以上。否则你的产品没办法在这些国家销售。中国的话没有强制的要求,但2016年之后中国也会出台相关的强制标准。 那是不是除了上面两个条件,就没有其他办法来增加传输的距离了呢?答案当然是可以。本文就针对该问题提出了一整套的解决方案。至于你能不能领悟到其中的奥秘,那就看你的造化了。 废话少说,我们转入正题。方案好不好,首先我们得要选一个好的硬件平台,就好像做饭一样,巧妇难为无米之炊,我们要做一个上好的牛扒,选对牛肉是关键。无线传输中,选对一个RF 芯片是非常重要的。 那如何选对一颗好的芯片呢,其实无线传输最重要的一个指标就是灵敏度和传输速率。理论上是灵敏度越高,传输距离会越远。传输速率越快,传输距离也会越远。简单的说,就是你灵敏度高了,同样的距离下,你很微弱的信号都能让对方接收到,然后你才有条件来作数据的转换,才能变成有效的信息。而传输的速率快,换句话说,同样的时间内,以1秒为一个单位,假设芯片A 一共发送10个包,其中在500米的地方只能成功收到2个包,再远就收不到了。假设芯片B 速率快,它在1秒内可以发送20个包,同样条件下在500米的地方能成功的收到4个包,这样的话芯片B 其实还能把距离再拉远一点,也许在700米的地方它还能成功收到2个包,那我们就说芯片B 的传输距离比芯片A 的要远。如果有个芯片灵敏度又高,速率又快,那就完美了。不过现实总是那么的残酷,鱼与熊掌不可兼得。我们做产品的首先考虑的还是性价比问题。这在低成本的产品中更为突出。所以我们都是在同价格中选功能,同功能中我们选性能。总之你如果能用最小的成本做最好的产品,那你就是厉害的了。你不能只出自行车的价格要求做出摩托车那样的速度,你也不能用摩托车的价格来跟汽车这样的产品。这个道理你懂的。

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于“共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,

远程无线视频传输设备

远程无线视频传输设备 Remote wireless video transmission equipment 设备概述:HY-A123是一款性价比很高的无线视频传输器,它具有传输距离远,载频高,抗干扰比较好,适合在跨河,道路上面,高楼层之间无线传输,所有设备采用电气接口,保证了良好的接触性.无线传输是在有线基础上延伸的,省去了开沟,挖地,布线等事情,节约了大量劳动力和时间. 设备特点: 工作频率: 2370MHz 2390MHz 2414MHz 2432MHz 2450MHz 2468MHz 2490MHz 2510MHz 通常工程当中,可同时使用8个频道设备经济型防水型微波图像传输系统,采用S波段(2370~2510MHz)频段的无线微波来传输监控视频信号。由于选用了较高的频率,而且采用FM(调频)工作方式,具有较强的抗干扰性能,图像十分清晰稳定。 设备本身具有防水性能,频点可调,应用方便,可有效躲开干扰频点;带宽大

(2.29—2.51GHz),可调范围大;功放小,对人体伤害小等特点,另外接口也透明,和有线监控接法非常的类似,接口都是常见的接头(BNC、AV),电源一般为220V交流电,也可根据客户要球定做12V电源以配合太阳能等供电。 为了适合各种场合,设备的工作频率通常由用户根据具体使用场合来确定。根据微波传输的特性,特别适合在空阔的场所进行远距离传输,比如海岸线,跨河跨江,不便架线的道路、油田、矿区、森林防火等以及小区楼层之间跨距较大时,本身在某些场所是对有线监控的一种扩充。 对需要控制云镜的球机,可以配合使用我公司的(无线指令控制器),放置在中心端,设备设计接口为RS485接口,可以连接DVR、工控机、电脑串口转换后的RS485接口、控制键盘、网络视频服务器等一切安防RS485接口设备,通信波特率一般为:1200bps、2400bps、4800bps、9600bps 发射机参数: 工作频段2370MHz~2510MHz(公共频段, 无需申请。) 发射功率3W (0.5W,1W,2W,可定制) 50Ω 输入阻抗 输入视频1V峰—峰值 输出功率1w~3w(功率可定制) 输入音频0.1~1.0峰峰值 传输距离(1W)600-1000米(2W)1-2公里 (3w)2~4公里(与天线增益有直接 关系) DC12V 工作电压 FM 调制方式 20MHz 调制带宽 PAL 视频制式 环境温度-20~+60°C

无线电力传输技术的发展

无线电力传输技术的发展 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。

无线电力传输系统

郑州大学毕业设计(论文)题目无线电力传输系统 院系电气工程学院 专业电气工程及其自动化 班级四班 学生姓名苏淑珍 学号20100240423 指导教师职称 2012年 4 月16 日

目前世界广泛采用的电力传输系统是靠金属等媒介等,例如铜,铝等,铺设管道极其麻烦,出现问题后解决费时间,而且价格昂贵由于电阻的存在消耗大量电能,利用无线电力传输系统,通过产生特定频率的震动以电磁波的形式发射,节约了铜铝等非可再生资源,而且节省了大量的能源,如果能大范围的实施,人们便可以利用廉价能源,很方面的解决生活问题。 本实验中用到了电磁场的传播问题,以及电磁的接受,利用共振产生巨大的电磁波,经大气离子层反射,传播能量。 其实所有的物质都是能源,物质和能源是一体的,只是如何利用的问题,例如风能核能太阳能水电站潮汐地热,地球本事就是一个巨大的能量场,我们应该积极开发新的能源,避免特定能能源的枯竭,从而保持地球能量场及磁场的平衡。 关键字:电磁场,磁共振,特斯拉线圈

摘要 1.绪论 1.1实现无线电力传输的目的和意义 1.2电力传输的发展和现状 1.3无线电力传输的内容,过程 1.4本文的主要工作 2.特斯拉线圈 2.1特斯拉线圈的物理结构 2.2特斯拉线圈共振的产生 2.3特斯拉线圈产生电能原理 2.4特斯拉线圈电磁波的发射 2.5本章小结 3.电磁波的传播和反射 3.1电磁波在大气的传播 3.2电磁波的稳定性 3.3大气离子层反射电磁波 3.4本章小结 4.电磁波的接受及控制 4.1电磁波的接受 4.2电磁波的控制 4.3电磁波转化为电能

5结论 参考文献

相关文档
最新文档