工作场所空气有毒物质测定 氧化物(臭氧)

工作场所空气有毒物质测定 氧化物(臭氧)
工作场所空气有毒物质测定 氧化物(臭氧)

工作场所空气有毒物质测定

氧化物(臭氧)

(本方法引用国标:GBZ/T160.32-2004)

1.范围

本标准规定了监测工作场所空气中氧化物浓度的方法。

本标准适用于工作场所空气中氧化物浓度的测定。

2.规范性引用文件

GBZ 159 工作场所空气中有害物质监测的采样规范

3.原理

臭氧的丁子香酚分光光度法空气中臭氧与丁子香酚(4-烯丙基-2-甲氧基苯酚)反应生成甲醛。甲醛与二氯亚硫酸汞钠及盐酸副玫瑰苯胺反应生成紫红色化合物;在560nm 波长下测量吸光度,进行定量。

4.仪器

4.1大型气泡吸收管。

4.2空气采样器,流量0~3L/min。

4.3具塞比色管,10ml。

4.4水浴。

4.5分光光度计。

5.试剂

实验用水为蒸馏水。

5.1盐酸,ρ20=1.18g/ml。

5.2丁子香酚,临用前,通过亚硫酸钠结晶柱(6mm×80mm)提纯。

5.3四氯汞钠溶液:溶解18g氯化汞和5.8g氯化钠于1000ml水中。

5.4二氯亚硫酸汞钠溶液:溶解0.06g无水亚硫酸钠于50ml四氯汞钠溶液中,须在24h 内使用。

5.5盐酸副玫瑰苯胺溶液:溶解0.16g盐酸副玫瑰苯胺于24ml盐酸中,加水至100ml。

5.6标准溶液:取2.8ml甲醛(含量36%~38%),用水稀释至1000ml。用下法标定后,稀释成0.10mg/ml标准贮备液。置于冰箱内保存至少可稳定3个月。临用前,稀释成5.0μg/ml甲醛标准溶液。或用国家认可的标准溶液配制。

标定方法:取20.0ml甲醛溶液于250ml碘量瓶中,加入20.0ml0.050mol/L碘溶液溶解12.7g升华碘和30g碘化钾于水中,并稀释至1000ml。加15ml1mol/L氢氧化钠溶液,放置15min。加20ml0.5mol/L硫酸溶液,放置15min。以0.100mol/L硫代硫酸钠溶液滴定至溶液呈淡黄色时,加入1ml淀粉溶液(10g/L),继续滴定至无色。同时以水代替甲醛溶液滴定,作为空白。按式(1)计算甲醛的量:

1.5(V1-V2)

甲醛= ———————— (1)

20.0

式中:V1-滴定空白时硫代硫酸钠溶液的用量,ml;

V2-滴定甲醛溶液时硫代硫酸钠溶液的用量,ml;

1.5-1ml碘溶液(0.050mol/L)相当于甲醛量,mg。

6.样品的采集、运输和保存

现场采样按照GBZ 159执行。

在采样点,串联2只大型气泡吸收管,前管装1ml丁子香酚,后管装10.0ml水;以2L/min 流量采集15min空气样品。

采样后,立即封闭吸收管的进出气口;置于清洁的容器中运输和保存。样品应尽快测定。

7.分析步骤

7.1对照试验:将装10.0ml水的大型气泡吸收管带至采样点,除不连接空气采样器采集空气样品外,其余操作同样品,作为样品的空白对照。

7.2样品处理:用后面吸收管中的水洗涤进气管内壁3次;取5.0ml样品溶液于具塞比色管中,供测定。若样品液中待测物的浓度超过测定范围,可用水稀释后测定,计算时乘以稀释倍数。

7.3标准曲线的绘制:在6只具塞比色管中,分别加入0.00、0.10、0.20、0.40、1.00、2.00ml甲醛标准溶液,各加水至5.0ml,配成0.0、0.50、1.00、2.00、5.00、10.0μg甲醛标准系列。向各标准管中加入0.5ml二氯亚硫酸汞钠溶液,摇匀,加入0.5ml盐酸副玫瑰苯胺溶液,摇匀;在30℃水浴中加热20min后,于560nm波长下测量吸光度,每个浓度重复测定3次,以吸光度均值对相应的甲醛含量(μg)绘制标准曲线。

7.4样品测定:用测定标准系列的操作条件测定样品溶液和空白对照溶液,测得的样品吸光度值减去空白对照吸光度值后,由标准曲线得甲醛的含量(μg)。

8.计算

8.1按式(2)将采样体积换算成标准采样体积:

293 P

Vo=V×—————×———— (2)

273+t 101.3

式中:Vo—标准采样体积,L;

V—采样体积,L;

t—采样点的温度,℃;

P—采样点的大气压,kPa。

8.2按公式(3)计算空气中臭氧的浓度,

2m

C=——————×2.46 (3)

Vo

式中:C-空气中臭氧的浓度,mg/m3;

m-测得的样品溶液中甲醛的含量,μg;

2.46-换算系数;

Vo-标准采样体积,L。

8.3时间加权平均容许浓度按GBZ 159规定计算

9.说明

9.1本法的检出限为0.06μg/ml;最低检出浓度为0.02mg/m3(以采集30L空气样品计)。测定范围为0.06~2μg/ml,平均相对标准偏差为4%。

9.2本法的平均采样效率>90%;采样流量对测定结果有影响。

9.3亚硫酸钠在四氯汞钠溶液中的含量对显色影响很大。50ml四氯汞钠溶液中无水亚硫酸钠含量在0.05~0.07g之间,显色较稳定,灵敏度较高。

9.4显色温度对显色影响较大。应控制在30±1℃。

9.5 2.46=1.54×48/30,48为臭氧的分子量,30为甲醛的分子量;1.54为换算成中性碘化钾方法测定臭氧结果的系数。

9.6共存的氧化氮不干扰测定;若有甲醛共存时,可多串联1只吸收管以测定甲醛,由测定结果中减去。

环境空气中臭氧的测定

环境空气中臭氧的测定(HJ 504-2009) —靛蓝二磺酸钠分光光度法 一、实验目的 1、掌握靛蓝二磺酸钠分光光度法测定环境空气中臭氧含量的原理和方法; 2、熟练掌握滴定操作; 3、熟练掌握采样仪器和分光光度计的操作。 二、实验前准备 1、试剂 (1)溴酸钾标准贮备溶液[c(1/6 KBrO3)=0.100 0 mol/L]准确称取1.391 8 g 溴化钾(优级纯,180℃烘 2 h),置烧杯中,加入少量水溶解,移入500ml 容量瓶中,用水稀释至标线。 (2)溴酸钾-溴化钾标准溶液[c(1/6 KBrO5)= 0.010 0 mol/L]吸取10.00 ml溴酸钾标准贮备溶液于100 ml 容量瓶中,加入1.0g溴化钾(KBr),用水稀释至标线。 (3)硫代硫酸钠标准贮备溶液[c(Na2S2O3)= 0.1000 mol/L]。(4)硫代硫酸钠标准工作溶液[c(Na2S2O3)= 0.00500 mol/L]临用前,取硫代硫酸钠标准贮备溶液用新煮沸并冷却到室温的水准确稀释 20 倍。 (5)硫酸溶液,1+6。 (6)淀粉指示剂溶液[ρ =2.0 g/L]称取0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100 ml 沸水,煮沸至溶液澄清。

(7)磷酸盐缓冲溶液,[c(KH2PO4-Na2HPO4)=0.050 mol/L]称取6.8 g磷酸二氢钾(KH2PO4)、7.1 g无水磷酸氢二钠(Na2HPO4),溶于水,稀释至1000 ml。 (8)靛蓝二磺酸钠(C16H8O8Na2S2)(简称 IDS),分析纯、化学纯或生化试剂。 (9)IDS 标准贮备溶液:称取0.25g靛蓝二磺酸钠溶于水,移入500 ml棕色容量瓶内,用水稀释至标线,摇匀,在室温暗处存放24 h后标定。此溶液在20℃以下暗处存放可稳定2周。 标定方法:准确吸取20.00 ml IDS 标准贮备溶液于250 ml碘量瓶中,加入20.00 ml溴酸钾-溴化钾溶液再加入50 ml水,盖好瓶塞,在 16℃±1℃生化培养箱(或水浴中放置至溶液温度与水浴温度平衡时[注1],加入5.0 ml硫酸溶液,立即盖塞、混匀并开始计时,于 16℃±1℃暗处放置35 min±1.0 min后,加入1.0 g碘化钾,立即盖塞,轻轻摇匀至溶解,暗处放置5min,用硫代硫酸钠溶液滴定至棕色刚好褪去呈淡黄色,加入5ml淀粉指示剂溶液,继续滴定至蓝色消退,终点为亮黄色。记录所消耗的硫代硫酸钠标准工作溶液的体积[注2]。注1:达到平衡的时间与温差有关,可以预先用相同体积的水代替溶液,加入碘量瓶中,放入温度计观察达到平衡(HJ 504—2009)所需要的时间。 注2:平行滴定所消耗的硫代硫酸钠标准溶液体积不应大 0.10 ml。每毫升靛蓝二磺酸钠溶液相当于臭氧的质量浓度ρ(μg/ml)计算: ρ =(C?V?-C?V?/V)×12.00×1000

汽车内饰材料中有毒有害物质检测研究进展

化学分析计量 CHEMICAL ANALYSIS AND METERAGE 第23卷,第4期2014年7月 V ol. 23,No. 4 Jul. 2014 95 doi :10.3969/j.issn.1008–6145.2014.04.029 汽车内饰材料中有毒有害物质检测研究进展 徐晓萍1, 曹丽华2, 贾涛1 (1.江苏省理化测试中心, 南京 210042; 2.南京出入境检验检疫局检验检疫技术中心, 南京 211106) 摘要 根据欧盟ELV 指令及GB /T 27630–2011 《乘用车内空气质量评价指南》的要求,对汽车内饰材料中4项重金属(铅、镉、汞、六价铬)、VOC 类物质及多环芳烃类物质的不同检测技术及方法进行了综述并评价。对未来汽车内饰材料中有毒有害物质检测方法进行了展望。 关键词 汽车内饰材料;重金属;VOC ;多环芳烃;检测方法 中图分类号:O652.7 文献标识码:A 文章编号:1008–6145(2014)04–0095–04 Research Progress in Determination of Hazardous Substances in the Vehicle Interior Decoration Materials Xu Xiaoping 1, Cao Lihua 2, Jia Tao 1 (1.Physics & Chemistry Test Center of Jiangsu Province, Nanjing 210042, China;2. Nanjing Entry–Exit Inspection and Quarantine Technical Center, Nanjing 211106, China) Abstract According to the requirements of EU ELV directive and GB /T 27630–2011,testing methods for the four heavy metals such as lead, cadmium, mercury and six valence chromium ,VOC and polycyclic aromatic hydrocarbons in vehicle interior decoration materials were summarized and evaluated. The development trend of the methods for determination of hazardous substances were described. Keyword vehicle interior decoration material; heavy metal; VOC; polycyclic aromatic hydrocarbons; detection method 随着人们生活水平的提高,越来越多的家庭购置汽车作为代步工具,但汽车内空气质量一直令人担忧。欧盟于2000年发布了2000/53/EC 指令(简称ELV 指令),该指令要求对汽车产品中4种有毒有害的重金属元素(铅、汞、镉、六价铬)提出了明确的限值要求(铅、汞、六价铬为0.1%,镉为0.01%)[1] 。我国于2006年颁布《汽车产品回收利用技术政策》,其中提出了汽车回收再利用及禁用有毒有害物质的相关要求;2005年以信息产业部为首的七部委开始联合制订《中国电子信息产品污染控制管理办法》(俗称中国RoHS ),并于2007年3月正式实施。2012年3月,国内开 始实施GB /T 27630–2011[2] ,该指南根据车内空气中挥发性 有机物的种类、来源和对车辆主要内饰材料本身挥发特性的分析,确定了8种主要被控制物质,规定了车内空气中苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、乙醛、丙烯醛的浓度要求。 2013年3月19日,央视《每周质量报告》推出特别节目——3.15特别行动,关注车内空气污染问题。节目中报道了宝马、奔驰、奥迪等豪华品牌汽车使用沥青阻尼片导致车内空气质量严重污染问题。之后央视《新闻30分》报出了其联合一家汽车网站进行的联合检测结果:多款在中国市场生产及进口的汽车产品中含有强致癌物多环芳烃,而同款车型在德国销售的车辆配件却未检出多环芳烃。媒体已于2013年9月发布《“健康汽车”检测报告》,报告显示,11 款主流车型内饰中有致癌物——多环芳烃,此次检测选取了市场上在售的32个品牌、44款车型作为检测对象,主要检测汽车内与人体接触的汽车座椅、头枕、方向盘等内饰中的多环芳烃含量。这是国内首次针对车内强致癌物质——多环芳烃进行的全面检测试验。多环芳烃(PAHs )是强致癌物质,可通过接触导致人体致癌。在目前已知的500多种致癌物中,有200多种与多环芳烃有关,已成为癌症的代名词。而国内唯一对车内空气质量有所限定的国标GB /T 27630–2011《乘用车内空气质量评价指南》却未涵盖这项致癌物。缺乏标准限值的污染物将很有可能造成污染物“黑洞”。据了解,目前我国汽车内饰领域没有多环芳烃的相关含量标准,而欧美很多国家对多环芳烃在汽车等工业制成品中的含量进行严格限量规定。鉴于国内外相关政策的要求,今后对汽车产品中有毒有害物质进行检测将成为必然。 目前汽车内饰中有毒有害物质尚无统一检测标准。笔者针对汽车内饰材料中4项重金属、VOC 类物质及多环芳烃类物质不同检测技术及方法进行比较,这对完善汽车内饰材料的检测技术及方法具有实际意义。 联系人:徐晓萍;E-mail: yufish1983@https://www.360docs.net/doc/c412744980.html, 收稿日期:2014–04–12

臭氧浓度检测方法

For personal use only in study and research; not for commercial use 臭氧浓度检测方法大致可分为“化学分析法”、“物理分析法”、“物理化学分析法”三类。 1.化学检测法 1.化学检测法 1.1 碘量法 碘量法是最常用的臭氧测定方法,我国和许多国家均把此法作为测定气体臭氧的标准方法,我国建设部发布的《臭氧发生器臭氧浓度、产量、电耗的测量》标准CJ/T 3028.2 — 94 中即规定使用碘量法。其原理为强氧化剂臭氧(O 3 )与碘化钾(KI )水溶液反应生成游离碘(I 2 )。臭氧还原为氧气。反应式为:O 3 + 2KI + H 2 O → O 2 + I 2 + 2KOH 游离碘显色,依在水中浓度由低至高呈浅黄至深红色。 利用硫代硫酸钠(NaS 2 O 3 )标准液滴定,游离碘变为碘化钠(NaI ),反应终点为完全褪色止。反应式为: I 2 + 2Na 2 S 2 O 3 → 2NaI + NaS 4 O 6 两反应式建立起O 3 反应量与NaS 2 O 3 消耗量的定量关系为1molO 3 :2mol NaS 2 O 3 ,则臭氧浓度 C O3 计算式为: C O3 =40x3x1000/1000 (mg/L ) 式中: C O3 ——臭氧浓度,mg/L ; A Na ——硫代硫酸钠标准液用量,ml ; B ——硫代硫酸钠标准液浓度,mol/L ; V 0 ——臭氧化气体取样体积,ml 。 操作程序及方法参照标准CJ/T3028.2 — 94 。 测定标准型发生器浓度很方便。臭氧化气体积用流量计计数,NaS 2 O 3 浓度一般配制为0.100mol/L ,测定精度可达± 1% 。 测定空气中臭氧浓度时,应用在气采样器抽气定量。为保证测定精度,NaS 2 O 3 配为0.10mol/L 。 测定水溶臭氧浓度亦可用此公式计算,只是V 0 代表采水量,取1000ml 。NaS 2 O 3 浓度为0.10mol/L 。 碘量法优点为显色直观。不需要贵重仪器。缺点是易受其氧化剂如NO 、CI 2 等物质的干扰,在重要检测时应减除其它氧化物质的影响。 1.2 比色法 比色法是根据臭氧与不同化学试剂的显色或脱色反应程度来确定臭氧浓度的方法。按比色手段分为人工色样比色与光度计色 . 此法多用于检测水溶解臭氧浓度 . 国内检测瓶装水臭氧溶解浓度有使用碘化钾、邻联甲胺等比色液的。其方式是利用检测样品显色液管相比较,确定测样臭氧溶解度值(0.05~0.08mg/L ), 要求精确的,则利用分光光度计检测。 国外利用此法做成仪器,配制标准工具与药品作为现场抽检使用,很方便。如美国HACH 公司、日本荏原公司的DPD (二己基对苯二胺)比色盘,范围为0.05~2mg/L 。美国HACH 公司微型比色仪,利用靛蓝染料脱色反应。在600nm 波长比色,0.05~0.75nm/L 浓度数字显示,精度± 0.01nm/L 。受其它氧化剂干扰少。 1.3 检测管 将臭氧氧化可变化试剂浸渍在载体上,作为反应剂封装在标准内径的玻璃管内做成测管,使用时将检测管两端切断,把抽气器接到检测管出气端吸取定量臭氧气体,臭氧浓度与检测管内反应剂柱变色长度成正比,通过刻度值读取浓度值。 德国、日本和我国都生产臭氧检测管,浓度范围分为高(1000ppm )、中(10ppm )、低(3ppm )

工作场所空气有毒物质测定铬及其化合物GBZT160.7-2004

C 52 GBZ xx国家职业卫生标准 GBZ/T 160.7-2004———————————————————————— 工作场所空气有毒物质测定 铬及其化合物 in the air of workplace 2004年5月21日发布 2004年12月1日实施————————————————————————xx卫生部发布 GBZ/T 160.7-2004 前言 为贯彻执行《工业企业设计卫生标准》(GBZ 1)和《工作场所有害因素职业接触限值》(GBZ 2),特制定本标准。本标准是为工作场所有害因素职业接触限值配套的监测方法,用于监测工作场所空气中铬及其化合物[包括铬酸盐(Chromates)、重铬酸盐(Dichromates)和三氧化铬(Chromium trioxide)等]的浓度。本标准是总结、归纳和改进了原有的标准方法后提出。这次修订将同类化合物的同种监测方法和不同种监测方法归并为一个标准方法,并增加了长时间采样和个体采样方法。 本标准从 2004年12月1日起实施。同时代替GB/T 16019- 1995、GB/T 16020-1995。 本标准首次发布于1995年,本次是第一次修订。

本标准由全国职业卫生标准委员会提出。 本标准由xx卫生部批准。 本标准起草单位: 中国疾病预防控制中心职业卫生与中毒控制所、江西省劳动卫生职业病防治研究所和广东省职业病防治院。 本标准主要起草人: 徐伯洪、钱位成、叶能权和黄振侬。GBZ/T 160.7-2004工作场所空气有毒物质测定 铬及其化合物 1范围 本标准规定了监测工作场所空气中铬及其化合物浓度的方法。 本标准适用于工作场所空气中铬及其化合物浓度的测定。 2规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBZ 159工作场所空气中有害物质监测的采样规范 第一法火焰原子吸收光谱法 3原理 空气中铬及其化合物用微孔滤膜采集,消解后,在 357.9 nm波长下,用乙炔-空气火焰原子吸收光谱法测定。

国家环境监测网环境空气臭氧自动监测现场核查技术规定试

国家环境监测网环境空气臭氧自动监测现场核查技术规定 (试行) 1适用范围 本规定规定了开展环境空气臭氧自动监测现场比对的方法和要求。 本规定适用于国家和地方各级环境监测站对辖区内环境空气臭氧自动监测质量进行现场核查。 2规范性引用文件 本规定内容引用了下列文件中的条款,凡是不注明日期的引用文件,其有效版本适用于本规定。 HJ 590 环境空气臭氧的测定紫外光度法 HJ 193-2005 环境空气质量自动监测技术规范 3术语和定义 下列术语和定义适用于本规定。 3.1 臭氧标准参考光度计,Standard Reference Photometer,SRP NIST与EPA于1981年合作开发的标准参考光度计,作为臭氧参考标准。 主要性能指标: 测量范围:0-1000 nmol/mol; 测量不确定度:±1 nmol/mol(0-100 nmol/mol)、±1%(100-1000 nmol/mol)。 3.2 臭氧传递标准 指经过臭氧标准参考光度计(SRP)量值传递(可经过一级或多级传递)后,可用来进行现场环境臭氧分析仪的比对和向现场的环境臭氧分析仪传递准确度的臭氧校准仪。 4方法原理 采用经量值溯源的臭氧传递标准,对正常工作状态的国家网环境空气自动监测子站的臭氧分析仪进行现场比对,以分析仪测定值与传递标准设定值的相对误差评价子站臭氧分析仪的准确度。

5试剂和材料 5.1 采样管线及接头,采样管线采用不与臭氧发生化学反应的聚四氟乙烯材料,接头包括三通、两通等常用接头。 5.2 臭氧传递标准运输箱,减少仪器运输过程中的物理震动、位移等。 6仪器和设备 6.1 臭氧传递标准 可根据比对实施者的实验室条件,选择下列传递标准之一用于现场比对用。 6.1.1 臭氧校准仪 经过臭氧标准参考光度计(SRP)直接校准过的臭氧校准仪。 6.1.2 多种气体校准仪 经过臭氧校准仪校准过的多种气体校准仪。与零气源连接后,能够产生稳定的接近系统上限浓度的臭氧(0.5 μmol/mol或1.0 μmol/mol),能够准确控制进入臭氧发生器的零空气的流量,至少可以对发生的初始臭氧浓度进行4级稀释。 6.2 空气压缩机 可以使用环境空气子站的空气压缩机,也可以使用比对实施者单独携带的空气压缩机,能稳定输出压力为20~30psi的气体。 6.3 零气发生装置 能产生符合分析校准程序要求的零空气。由核查实施者单独携带至现场,用于现场核查时向传递标准和分析仪通入零空气。 注:零空气质量的确认参见HJ 590附录A。 7现场比对 7.1 将臭氧传递标准运输至监测现场,连接好臭氧传递标准与臭氧分析仪之间的电线、气体管路和通讯线路。打开电源,开机预热至少2小时。 7.2打开空气压缩机和零气发生装置,调节压力使其稳定输出20~30psi的零空气。 7.3 在0~500 nmol/mol量程范围内,设置臭氧传递标准产生零点、精密度点(100 nmol/mol)、跨度点(400 nmol/mol)、日常监测浓度点的臭氧,依次通入臭氧分析仪30分钟,仪器自动记录分钟数据。 注:取子站最近一年臭氧小时值的平均值作为日常监测浓度点。

室内空气中臭氧的测定方法

空气中臭氧的测定方法主要有靛蓝二磺酸钠分光光度法、紫外光度法和化学发光法。 G.1靛蓝二磺酸的分光光度法 G.1.1 相关标准和依据 本方法主要依据GB/T15437 《环境质量臭氧的测定靛蓝二磺酸的分光光度法》。 G.1.2 原理 空气中的臭氧,在磷酸盐缓冲溶液存在下,与吸收液中蓝色的靛蓝二磺酸钠等摩尔反应,褪色生成靛红二磺酸钠。在610nm处测定吸光度,根据蓝色减褪的程度定量空气中臭氧的浓度。 G.1.3 测定范围 当采样体积为30L时,最低检出浓度为0.01mg/m3。当采样体积为(5~30)L,时,本法测定空气中臭氧的浓度范围为0.030~1.200 mg/m3。 G.1.4 仪器 G.1.4.1 采样导管:用玻璃管或聚四氟乙烯管,内径约为3mm,尽量短些,最长不超过2m,配有朝下的空气入口。 G.1.4.2 多孔玻板吸收管:10mL。 G.1.4.3 空气采样器。 G.1.4.4 分光光度计。 G.1.4.5 恒温水浴或保温瓶。 G.1.4.6 水银温度计:精度为±5℃。 G.1.4.7 双球玻璃管:长10cm,两端内径为6mm,双球直径为15mm。 G.1.5 试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂和重蒸馏水或同等纯度的水。G.1.5.1 溴酸钾标准贮备溶液C(1/6KBrO3)=0.1000mol/L:称取1.3918g溴酸钾(优级纯,180℃烘2h )溶解于水,移入500mL容量瓶中,用水稀释至标线。 G.1.5.2 溴酸钾—溴化钾标准溶液C(1/6KBrO3)=0.0100mol/L:吸取10.00mL溴酸钾标准贮备溶液于100mL 容量瓶中,加入1.0g溴化钾(KBr),用水稀释至标线。 G.1.5.3 硫代硫酸钠标准贮备溶液C(Na2S2O3)=0.1000mol/L。 G.1.5.4 硫代硫酸钠标准工作溶液C(Na2S2O3)=0.0050mol/L:临用前,准确量取硫代硫酸钠标准贮备溶液用水稀释20倍。 https://www.360docs.net/doc/c412744980.html, G.1.5.5 硫酸溶液:(1+6)(V/V)。 G.1.5.6 淀粉指示剂溶液,2.0g/L :称取0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,煮沸至溶液澄清。 G.1.5.7 磷酸盐缓冲溶液C(KH2PO4—Na2HPO4)=0.050mol/L:称取6.8g磷酸二氢钾(KH2PO4)和7.1g无水磷酸氢二钠(Na2HPO4),溶解于水,稀释至1000mL。 G.1.5.8 靛蓝二磺酸钠(C6H18O8S2Na2 简称IDS),分析纯。 G.1.5.9 IDS标准贮备溶液:称取0.25g靛蓝二磺酸钠(IDS),溶解于水,移入500mL棕色容量瓶中,用水稀释至标线,摇匀,24h后标定。此溶液于20℃以下暗处存放可稳定两周。标定方法:吸取20.00mL IDS标准贮备溶液于250mL碘量瓶中,加入20.00mL溴酸钾—溴化钾标准溶液,再加入50mL水,盖好瓶塞,放入16℃±1℃水浴或保温瓶中,至溶液温度与水温平衡时, 42 加入5.0mL(1+6)硫酸溶液,立即盖好瓶塞,混匀并开始计时,在16℃±1℃水浴中,于暗处放置35min±1min。加入1.0g碘化钾(KI)立即盖好瓶塞摇匀至完全溶解,在暗处放置5min

有毒有害易燃易爆物质及氧气的检测技术

有毒有害、易燃易爆物质及氧气的检测技术正常作业环境中以及检修时的有害气体、氧含量的监测对石油 及化工生产的安全是至关重要的。 作业环境中,常常会由于泄漏、挥发或其他多种原因产生可燃 气体(蒸气)、有毒气体(蒸气),它们统称为有害气体;因此,对作 业环境中的有害气体浓度进行监测,是预防火灾、爆炸、中毒事故 的重要措施。 在生产装置的检修、维护过程中,有时需要动火或进行产生火 花的作业;有时需要作业人员进入设备内部工作。在诸如此类情况下,进行设备内外害气体的监测以及进行氧含量的监测更为重要。 一、作业环境气体检测内容 (一)可燃气体的检测 对环境空气中可燃气的监测,常常直接给出可燃气环境危险度,即该可燃气在空气中的含量与其爆炸下限的百分比来表示:[%LEL];

所以,这种监测有时也被称作“测爆”,所用的监测仪器也称“测 爆仪”。 空气中可燃气体浓度达到其爆炸下限值时,我们称这个场所可 燃气环境爆炸危险度为百分之百,即100%LEL。如果可燃气体含量 只达到其爆炸下限的百分之十,我们称这个场所此时的可燃气环境 爆炸危险度为10%LEL。 (二)有毒气体的检测 毒性危险较大的地方要进行有毒气体自动监测,在达到目标规 定的最大容许浓度(致人中毒的浓度前)即可发出警报,以便采取相 应对策。另外,进入设备检修,或进入隔离生产间、地沟、地下室、贮存室等容易产生有毒气体的地方操作,对有毒气体进行监测是必 不可少的安全措施。 (三)氧气含量的检测 空气中缺氧会对人体产生影响,到一定程度还可能发生死亡事故;当可燃气或易燃液体的蒸汽中氧含量过高,易引起爆炸。因此 应对以下情况检测氧含量。

臭氧浓度测定方法(精)

臭氧浓度测定方法: A.碘量滴定法: A-1测定原理 利用碘化钾与臭氧反应而析出游离碘,,以硫代硫酸钠标准溶液进行滴定,然后计算出臭氧量,其反应式为: O2+2KI+H2O -> I2+2KOH+O2↑ I2+2Na2S2O2 ->2NaI+Na2S4O4 A-2 测定方法 将1%碘化钾(KI)水溶液盛于吸收瓶中,再将吸收瓶连接在由老化试验箱至取样真空泵之间,吸取一定容积的含臭氧空气后,移入滴定瓶中,并加入0.4%体积(为吸收液体积的百分数)的1N硫酸(或10%之乙酸)进行酸化,然后以0.001N的(硫代硫酸钠)标准液滴定,至溶液呈黄色时,加入2滴1%淀粉液指示剂,继续滴定至溶液蓝色刚消失即为终点 A-3 臭氧浓度的计算 据上述化学反应式,在标准状况下,1克当量硫代硫酸钠(Na2S2O2)的臭气体积当量为11.2,故臭氧量U(单位:L)为: U=(11.2/1000)*N*B 通过碘化钾(KI)吸收液的含臭氧空气量V0(单位:L)在标准状态下为: V0=(27.3/760)*((p*V)/T) 由此可得到臭氧浓度(O2)的计算式为: (O2)=U/ V0=3118000*(N*B*T)/(p*V) 式中: (O2)=试验的臭氧浓度,pphm N =硫化硫酸钠标准溶液的当量浓度 B =硫代硫酸钠标准溶液的消耗量,ml T =试验温度,K(273+试验温度o C) P =吸收瓶中的气压(P大气压-P真空度),mmHg柱 V =通过吸收液的含臭氧空气的总量,L B.紫外线吸收法: 原理为臭氧对波长λ=254nm紫外光具有最大吸收系数,在此波长下紫外光通过臭氧层 会产生衰减,符合兰波特-比尔(Lambert--Beer)定律:I=Io-KLC :Io-无臭氧存在时入射 光强度;I-光束穿透臭氧后的光强度;L-臭氧样品池光程长度;C-臭氧浓度;K-臭氧对光 波长吸收系数。 根据该公式,在K、L值已知条件下,通过检测I/Io值即可测出臭氧浓度C值来。 紫外吸收法已被美国等国家作为臭氧分析的标准方法。 可连续在线检测,数字显示并可记录打印。优点为检测精度高,稳定性好,其它氧化剂干 扰小。缺点为价格较高。 标准件追溯至美国,本公司使用之检测仪追溯至美国NIST实验室。

电子信息产品中有毒有害物质的限量要求

前言 为了配合信息产业部联合国家七部委制定的《电子信息产品污染控制管理办法》(信 息产业部第39 号令)的实施,特制定本标准。本标准在考虑了电子信息产品的生产者从源头控制有毒有害物质污染的需要的同时,又考虑到监督检查机构实施监管或测试的可行性,与国际相关标准衔接的要求,结合行业的现状、经济与技术上的可行性等等,制定出限制使用的有害物质合理的限值指标。 本标准由中国电子技术标准化研究所归口。 本标准主要起草单位:信息产业部电子第五研究所。 本标准参予起草单位:详见附录A 本标准主要起草人:黄建忠、王晓晗、罗道军。 SJ/T ××××-×××× II 引言 目前许多电子信息产品由于功能和生产技术的需要,仍含有大量如铅、汞、镉、六价铬、多溴联苯、多溴二苯醚等有毒有害物质或元素。这些含有毒有害物质的电子信息产品在废弃之后,如处置不当,不仅会对环境造成污染,也会造成资源的浪费。因此,以有害物质或元素的减量化、替代为主要任务的电子信息产品污染控制工作已经提到政府主管部门的议事日程。 为了达到资源节约、环境保护的目的,信息产业部等国务院七部门“从源头抓起,立 法先行”,制定了《电子信息产品污染控制管理办法》,以立法的方式,推动电子信息产品污染控制工作。旨在从电子信息产品的研发、设计、生产、销售、进口等环节限制或禁止使用上述六种有害物质或元素。 为达到限制有毒有害物质的目标同时又能使电子信息产业得到健康的发展,就必须根 据实施成本、技术可行性、实施限制有害物质的效果以及国际环境等,制定一个合理的有毒有害物质的限量技术要求。 SJ/T ××××-×××× 1 电子信息产品中有毒有害物质的限量要求 1 范围 本标准规定了电子信息产品中含有毒有害物质的最大允许浓度。 本标准适用于《电子信息产品污染控制管理办法》中规定的进入污染控制重点管理 目录的电子信息产品。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件, 其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 SJ/T ××××-××××电子信息产品中限用物质的检测方法 3 术语和定义 下列术语和定义适用于本标准。 3.1 物质substance 自然界中存在的由化学元素组成的单质或化合物。 3.2

有毒有害、易燃易爆物质检测技术(新编版)

有毒有害、易燃易爆物质检测 技术(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0172

有毒有害、易燃易爆物质检测技术(新编 版) 石油化工企业有毒有害、易燃易爆物质种类繁多,对作业环境的有害物质进行准确、及时的检测、检验,是预防和控制石油化工企业中毒及火灾爆炸事故的有效手段。下面仅对石油化工企业常见的几种危险化学品的检测技术进行介绍。 一、苯 1.理化性质 无色透明液体,有强烈芳香味;不溶于水,溶于醇、醚、丙酮等多数有机溶剂;相对密度(水=1):0.88、(空气=1):2.77;闪点(℃):-11;爆炸极限(V/V%):1.2~8.0。 2.检测方法 用大注射器采集空气中的苯直接进样,经聚乙二醇6000柱分离

后,用氢焰离子化检测器检测,以保留时间定性,峰高定量。 3.技术手段 仪器:气相色谱仪(氢焰离子化检测器);色谱柱:2m×4mm不锈钢柱,聚乙二醇6000:6201担体=5:100;柱温90℃;检测室温度120℃;气化室温度150℃;载气(氮气)69mL/min;标样:苯,色谱纯。 取一定量的苯绘制标准曲线、采样、样品分析。 4.检测结果 X=(C/V0)×1000 式中X——空气中苯的浓度,mg/m3 ; C——由标准曲线上查出的正戊烷的含量,μg; V0——标准状况下的样品体积,ml。 5.允许国家标准含量 国家规定苯含量0.40mg/m3 。

工作场所空气有毒物质测定氯化物

工作场所空气有毒物质测定氯化物 标准号:GBZ/T 160.37-2004 替代情况:替代 GB/T 16029-1995;GB/T 16109-1995 发布单位:中华人民共和国卫生部 起草单位:四川省疾病预防控制中心、江苏省扬州市疾病预防控制中心 发布日期:2004-05-21 实施日期:2004-12-01 点击数:2441 更新日期:2010年05月18日 1 范围 本标准规定了监测工作场所空气中氯化物浓度的方法。 本标准适用于工作场所空气中氯化物浓度的测定。 2 规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准 GBZ 159 工作场所空气中有害物质监测的采样规范

3 氯气的甲基橙分光光度法 3.1 原理 空气中氯气用大型气泡吸收管采集,在酸性溶液中,氯置换出溴化钾中的溴,溴破坏甲基橙分子结构使褪色;根据褪色程度,于515nm 波长处测量吸光度,定量测定。 3.2 仪器 3.2.1 大型气泡吸收管。 3.2.2 空气采样器,流量0~1L/min。 3.2.3 具塞比色管,10ml。 3.2.4 分光光度计。 3.3 试剂 实验用水为无氯蒸馏水。 3.3.1 吸收液:称取0.1000g 甲基橙,溶于约100ml 40~50℃水中,冷却后加入20ml 95%(V/V)乙醇,用水定量转移入1000ml 容量瓶中,并稀释至刻度。1ml 此溶液约相当于24g氯。 标定方法: 量取5.0ml 此溶液于100ml 锥形瓶中,加入0.1g 溴化钾,20ml 水和5ml 硫酸溶液(2.57mol/L);用5ml 微量滴定管逐滴加入氯标准溶

臭氧检测方法

臭氧检测方法 Hessen was revised in January 2021

一、水样中臭氧浓度的检测方法 1)靛蓝法(比色法) 特点:测定简便、迅速、选择性强,抗干扰能力优于其它方法。为目前欧洲 的标准方法。 测定原理:将含臭氧的水样和酸性靛兰试剂混合,臭氧会使蓝色脱色。脱色 程度用波长 610 nm的吸光度测定,和空白样品比较,减少值和臭氧浓度成 比例。 试验方法: 分别移取靛蓝二磺酸钠溶液 mL于3个50 mL比色管中,分别加入pH=2的磷酸盐缓冲液5mL,加臭氧水样5mL(将移液管插入比色管 中液面以下,注入待测臭氧水样),用水稀释至50mL,再以水作参 比,在波长610 nm处,用1cm比色皿测其吸光度(A 1 );用同样的方 法,不加臭氧水样作空白试验,测量其吸光度(A )。 靛蓝二磺酸钠的摩尔吸光率(ε)为×104L mol-1cm-1(定值); 靛蓝法测定臭氧按公式计算: 式中:ρ为臭氧质量浓度,g/L;A 0为空白的吸光度;A 1 为样品的吸光 度;48是臭氧的摩尔质量,g/mol;b为比色皿厚度,1cm;V 水样 为水样的体积,mL。 所用溶液配制: ①靛蓝二磺酸钠标准储备液:L,准确称取的靛蓝二磺酸钠溶于水,移 入1L的棕色容量瓶中,用水稀释至标线,摇匀。 ②pH=2的磷酸盐缓冲液:称取磷酸二氢钾和无水磷酸氢二钾溶于水, 稀释至1L。 ③试验用水均为蒸馏水。 2)碘量法(滴定法) 特点:美国等国家的标准方法,操作简便,不需要贵重仪器,但由于测定时 间的不同 , 容易产生误差。 原理:臭氧(O3)是一种强氧化剂,与碘化钾(KI)水溶液反应可游离出 碘,在取样结束并对溶液酸化后,用L硫代硫酸钠(Na2S2O3)标准溶液并以 淀粉溶液为指示剂对游离碘进滴定,根据硫代硫酸钠标准溶液的消耗量计算 出臭氧量。 试验方法: 移取臭氧水样50 mL于250mL碘量瓶中,加入200 g/L的碘化钾溶 液5mL,用(1+5)硫酸5mL进行酸化,摇匀,加盖避光静止 5min,用已标定的硫代硫酸钠标准溶液滴定至溶液呈浅黄色,加入 10g/L淀粉溶液1mL,继续滴定至蓝色消失,记录消耗的硫代硫酸 钠标准溶液的体积(V),按公式计算臭氧浓度:

有毒有害、易燃易爆物质检测技术详细版

文件编号:GD/FS-6713 (解决方案范本系列) 有毒有害、易燃易爆物质检测技术详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

有毒有害、易燃易爆物质检测技术 详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 石油化工企业有毒有害、易燃易爆物质种类繁多,对作业环境的有害物质进行准确、及时的检测、检验,是预防和控制石油化工企业中毒及火灾爆炸事故的有效手段。下面仅对石油化工企业常见的几种危险化学品的检测技术进行介绍。 一、苯 1.理化性质 无色透明液体,有强烈芳香味;不溶于水,溶于醇、醚、丙酮等多数有机溶剂;相对密度(水=1):

0.88、(空气=1):2.77;闪点(℃):-11;爆炸极限(V/V%):1.2~8.0。 2.检测方法 用大注射器采集空气中的苯直接进样,经聚乙二醇6000柱分离后,用氢焰离子化检测器检测,以保留时间定性,峰高定量。 3.技术手段 仪器:气相色谱仪(氢焰离子化检测器);色谱柱:2m×4mm不锈钢柱,聚乙二醇6000:6201担体=5:100;柱温90℃;检测室温度120℃;气化室温度150℃;载气(氮气)69mL/min;标样:苯,色谱纯。 取一定量的苯绘制标准曲线、采样、样品分析。

环境空气中臭氧的测定

环境空气中臭氧的测定(HJ 504-2009 ) —靛蓝二磺酸钠分光光度法 一、实验目的 1、掌握靛蓝二磺酸钠分光光度法测定环境空气中臭氧含量的原 理和方法; 2、熟练掌握滴定操作; 3、熟练掌握采样仪器和分光光度计的操作。 二、实验前准备 1、试剂 (1)溴酸钾标准贮备 溶液[c(1/6 KBr03)=0.100 0 mol/L]准确称取 1.391 8 g溴化钾(优级纯,180C烘2 h ),置烧杯中,加入少量水溶解,移入 500ml容量瓶中,用水稀释至标线。 (2)溴酸钾-溴化钾标准溶液[c(1/6 KBrO5)= 0.010 0 mol/L]吸取 10.00 ml溴酸钾标准贮备溶液于100 ml容量瓶中,加入1.0g溴化钾(KBr),用 水稀释至标线。 (3)硫代硫酸钠标准贮备溶液[c(Na2S2O3)= 0.1000 mol/L]。 (4)硫代硫酸钠标准工作溶液[c(Na2S2O3)= 0.00500 mol/L]临用前,取硫代硫酸钠标准贮备溶液用新煮沸并冷却到室温的水准确稀释 20 倍。 (5)硫酸溶液,1+6。 (6)淀粉指示剂溶液[p =2.0 g/L]称取0.20g可溶性淀粉,用少量

水调成糊状,慢慢倒入100 ml沸水,煮沸至溶液澄清。 (7)磷酸盐缓冲溶液,[c(KH2PO4-Na2HPO4)=O.O50riol/L]称取 6.8 g 磷酸二氢钾(KH2PO)7.1 g无水磷酸氢二钠(Na2HPC)溶于水,稀释至1000 ml。 (8)靛蓝二磺酸钠(C16H8O8Na2S2(简称IDS),分析纯、化学纯或生化试剂。 (9) IDS标准贮备溶液:称取0.25g靛蓝二磺酸钠溶于水,移入500 ml棕色容量瓶,用水稀释至标线,摇匀,在室温暗处存放 24 h后标定。此溶液在20C以下暗处存放可稳定2周。 标定方法:准确吸取 20.00 ml IDS 标准贮备溶液于250 ml碘量瓶中,加入20.00 ml溴酸钾-溴化钾溶液再加入50 ml水,盖好瓶塞,在16 C 士 1 C生化培养箱(或水浴中放置至溶液温度与水浴温度平衡时[注1],加入5.0 ml 硫酸溶液,立即盖塞、混匀并开始计时,于16 C 士 1C暗处放置35 min 士1.0 min后,加入1.0 g碘化钾,立即盖塞,轻轻摇匀至溶解,暗处放置 5 min,用硫代硫酸钠溶液滴定至棕色刚好褪去呈淡黄色,加入5 ml淀粉指示剂溶液,继续滴定至蓝色消退,终点为亮黄色。记录所消耗的硫代硫酸钠标准工作溶液的体积[注2]。注1:达到平衡的时间与温差有关,可以预先用相同体积的水代替溶液,加入碘量瓶中,放入温度计观察达到平衡(HJ 504—2009)所需要的时间。 注2:平行滴定所消耗的硫代硫酸钠标准溶液体积不应大0.10 ml。 每毫升靛蓝二磺酸钠溶液相当于臭氧的质量浓度P(血/ml)计算:

GBZT160.3-2004工作场所空气有毒物质测定铍及化合物

工作场所空气有毒物质测定铍及其化合物 标准号:GBZ/T 160.3-2004 替代情况:替代GB/T 16023-1995 发布单位:中华人民共和国卫生部 起草单位:湖南省劳动卫生职业病防治研究所 发布日期:2004-05-21 实施日期:2004-12-01 点击数:366 更新日期:2010年08月03日 1范围 本标准规定了监测工作场所空气中铍及其化合物浓度的方法。 本标准适用于工作场所空气中铍及其化合物浓度的测定。 2规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBZ159工作场所空气中有害物质监测的采样规范 桑色素荧光分光光度法 3原理 空气中铍及其化合物用微孔滤膜采集,消解后,铍离子与桑色素反应生成黄绿色荧光络

合物;测量荧光强度,进行定量。 4仪器 4.1微孔滤膜,孔径0.8μm。 4.2采样夹,滤膜直径40mm。 4.3小型塑料采样夹,滤膜直径25mm。 4.4空气采样器,流量0~3L/min和0~10L/min。 4.5烧杯,50ml。 4.6电热板或电砂浴。 4.7离心管,5ml。 4.8具塞比色管,10ml。 4.9荧光分光光度计 仪器操作条件 激发光波长:415nm; 狭缝:10nm; 发射光波长:540nm; 狭缝:8nm。 5试剂 实验用水为去离子水,用酸为优级纯。 5.1高氯酸,ρ20=1.67g/ml。

水产食品有毒有害物质检测方法综述

水产品中常见污染物质及其检测方法的 研究 1、前言 水产品加工是指以海水、淡水产的鱼类、贝类、虾蟹类等水产品为主体,加工制造成各类食品、饲料和工业、医药等用品。我国是水产品生产、贸易和消费大国,渔业是农业和国民经济的重要产业,因此水产品的质量安全是国民健康消费的基础。目前我国水产品中存在的污染主要是:①微生物污染,主要是水产品自身所携带的病原菌和寄生虫;②化学有机物污染,主要是由于人类活动所造成的污染,如滥用药物、饲料以及污水排放等;③物理污染,主要是指一些重金属离子之类的。 2、污染介绍 2.1微生物污染 水产品的微生物污染可分为一次性污染和二次性污染。一次性污染是指鱼虾贝类遭受自然界微生物感染发病,从而导致鱼虾贝类自身的污染。二次性污染是指来自自然环境污染,其中包括鱼虾贝类捕获后的污染,二次污染的微生物主要包括病原微生物和腐败微生物。 2.1.1弧菌 副溶血性弧菌是引起食源性疾病的主要病原菌之一,也是我国沿海食物中毒和夏季腹泻的重要病原菌。 河流弧菌是一种嗜盐菌,广泛存在于河流或出海口水中,抵抗力较强,是世界范围内海水鱼类和贝类养殖的主要威胁之一,是引起鲍鱼死亡的主要病原菌。 霍乱弧菌是引起烈性传染病霍乱的病原体,自 1817 年以来,已发生过 7 次世界性霍乱大流行,主要发生在夏、秋季节。 创伤弧菌是人和动物共患病的重要致病菌,在医学界和鱼病学界都广为重视。按寄主范围和生化反应类型可划分为生物 1 型和生物 2 型两个生物型。 2.1.2沙门氏菌 沙门氏菌广泛存在于自然界中,是主要食源性病原微生物之一,在我国,以沙门氏菌引起的食物中毒占细菌性食物中毒的首位。动物性食品是引起沙门氏菌食物中毒的主要食品,鱼贝虾类水产品是其中之一。

快速检测有毒有害物质的十大技术正式样本

文件编号:TP-AR-L4252 快速检测有毒有害物质的十大技术正式样本 In TermS Of OrganiZatiOn Management, It IS NeCeSSary TO FOrm A Certain GUiding And PIanning EXeCUtable Plan, SO AS TO HeIP DeCiSiOn-MakerS TO CarrY OUt Better PrOdUCtiOn And Management FrOm MUItiPle Perspectives.

文件编号:TP-AR-L4252(示范文本) 编制: ______________ 审核: ______________ 单位: ______________

快速检测有毒有害物质的十大技术正 式样本 使用注恿:该解决方案资料可用在组织/机构/单位管理上,形成?定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 对有毒有害物质的正确检测在化学事故应急救援中显得十分重要,尤其是对那些发生化学事故后尚难断定的有毒有害化学物质,查明毒物的种类就更有意义。根据《简氏核生化防护年鉴》20xx年版提供的资料,目前国际上对有毒有害物质的现场快速检测总结起来有以下十种技术,即: 电离/离子迁移谱技术离子迁移谱技术使用的检 测器是一种典型的连续工作的检测器,它使用一只空气泵从环境中采样,采集的污染物通过离子化检测器中的一微弱电场并被离子化。气态毒物的电离在大气

为了减少检测中的干扰,在制造仪器时使用气相色谱技术中的火焰光度检测器就会大大降低误报的发生。 红外光谱学技术该技术是通过测定在特定波长范围内(4000'200厘米)样品吸收红外光的强度。红外吸收谱带的波长具有非常明显的特征,每个分子均具有独特的红外光谱。通过红外光谱可以解析分子结构的特征峰,从而检测出未知的有毒有害物质。目前,有两种红外光谱技术被运用到现场快速检测仪器中,一是光声红外光谱学技术。光声红外检测器是利用光声效应监测和测定有毒有害物质的蒸气,当一种气体吸收到红外辐射时,会引起温度升高,由此引起气体膨胀。如果调节红外辐射的强度,样品会膨胀和收缩。如设计有音频,可使用麦克风传输声音信号。光声红外气体检测器使用不同的过滤器,选择性地传输被监控的有毒有害物质吸收的特定光波长,用比较大

相关文档
最新文档