多波形函数信号发生器的设计

多波形函数信号发生器的设计
多波形函数信号发生器的设计

中文摘要

多波形函数信号发生器的设计

摘要:多波形信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。它根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。本设计主要是通过运算放大器,差分放大器来实现方波转换成三角波,再将三角波转换成正弦波。设计时主要通过EWB软件来实现仿真。

关键词:函数信号发生器、误差分析、正弦波、三角波、方波

英文摘要

Design of Function generator

Abstract

Multi-waveform signal generator is industrial production, product development, scientific research in areas such as the necessary tools, it generates sawtooth and sine wave, rectangular wave, triangle wave is the basic test signals commonly used. It according to different purposes, there have three or more of the function generator waveforms, the circuit device can be used in the separation device, the device can also be integrated to produce square wave, sine wave, triangle wave has a variety of programs, Have a sine wave such as the first, according to a cyclical and non-sine wave of a sine wave was determined by the function, and then through the shaping circuit into a square wave to sine wave, after integration into the circuit after the triangular wave. Can also have a triangular wave - square, triangle or square wave and then into a sine wave. This design mainly through operational amplifiers, differential amplifiers to achieve a square wave into a triangle, then triangle into a sine wave.Designed primarily to achieve through the EWB simulation software.

K eyword:square signalgenerator, error analysis, sine wave, rectangular wave, triangle wav

目录

1 引言.......................................................... - 4 - 2函数信号发生器设计要求及过程.................................. - 5 - 2.1函数信号发生器设计要求 (5)

2.2函数信号发生器电路设计的基本原理 (5)

2.3运算放大器的介绍 (6)

2.3.1迟滞电压比较器......................................... - 6 -

2.3.2 积分电路.............................................. - 8 - 2.4差分放大器的介绍 (9)

3总体电路设计 (10)

3.1方波—三角波产生电路的设计 (10)

3.2三角波—正弦波变换电路的设计 (14)

4.1EWB软件的简介 (18)

4.1.1 EWB软件的概述........................................ - 18 -

4.1.2 EWB软件的基本操作方法................................ - 18 - 4.2函数信号发生器的仿真过程及结果 (19)

4.2.1使用EWB对电路进行设计和实验仿真的基本步骤............ - 19 -

4.2.2方波—三角波信号发生器电路的装调及仿真结果............ - 19 -

4.2.3三角波—正弦波变换电路的装调和仿真.................... - 20 - 结论........................................................... - 23 - 参考文献(REFERENCES)......................................... - 24 - 致谢........................................................... - 25 -

多波形函数信号发生器的设计

1 引言

信号发生器是一种最悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。

自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,能产生正弦波、方波、锯齿波和三角波等几种简单波形。

函数信号发生器是一种常用信号源,它广泛地应用在电子技术实验、自动控制系统和其他科研领域。它能够产生正弦波、方波、三角波、锯齿波等多种波形,因其时间波形可用某种时间函数来描述而得名。函数信号发生器在电路实验和设备检测中具有十分广泛的应用。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

信号发生器的应用非常广泛,种类繁多。首先,信号发生器可以分通用和专用两大类,专用信号发生器主要为了某种特殊的测量目的而研制的,如电视信号发生器、脉冲编码信号发生器等。这种发生器的特性是受测量对象的要求所制约的。其次,信号发生器按输出波形又可分为正弦波信号发生器、脉冲波信号发生器、函数发生器和任意波发生器等。再次,按其产生频率的方法又可分为谐振法和合成法两种。一般传统的信号发

生器都采用谐振法,即用具有频率选择性的回路来产生正弦振荡,获得所需频率。但也可以通过频率合成技术来获得所需频率。利用频率合成技术制成的信号发生器,通常被称为合成信号发生器。

根据用途不同,有产生三种或多种波形的函数信号发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成电路(如单片集成电路函数信号发生器ICL8038)。本课题主要介绍由集成运算放大器与晶体差分放大器组成的方波—三角波—正弦波函数信号发生器的设计方法。

2函数信号发生器设计要求及过程

2.1 函数信号发生器设计要求

1. 频率调节部分技术要求:

(1)输出信号频率1Hz到100Hz可调。实现(1Hz-10Hz,10Hz-100Hz)频段连续可调。

(2)频率稳定度不劣于10-4

2. 输出波形部分技术要求

(1)方波输出信号的峰峰值V

-;

p

Up24

(2)三角波输出信号幅度峰峰值V

-;

=

Up8

p

(3)正弦波输出信号的峰峰值V

-。

p

Up1

2.2 函数信号发生器电路设计的基本原理

产生正弦波、方波和三角波的方案有很多种,比如先产生正弦波,然后通过整形电路的正弦波变换成方波,再由积分电路将方波转换成三角波;也可以先产生三角波—方波,再将三角波变换成正弦波或将方波变换成正弦波等等。本课题研究先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,其电路组成如图1所示:

图1函数信号发生器组成框图

2.3 运算放大器的介绍

集成运算放大器是一种十分理想的增益器件,常简称为运放,是具有很高放大倍数的电路单元,在实际电路中,通常结合反馈网络共同组成某种功能模块,运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。尤其在模拟集成电路中,它的应用最广,几乎涉及模拟信号处理的各个领域。本设计中应用到的集成运算放大器是迟滞电压比较器和积分电路,下面将它们一一介绍:

2.3.1迟滞电压比较器

电压比较器(Voltage Comparator )的作用是对两个输入电压进行比较,并根据比较结果输出高、低两个电平的电压,以满足后面连接的数字电路对1和0两个逻辑电平的要求。电压比较器广泛应用于信号处理和检测电路、波形产生电路、A/D 和D/A 转换电路等。将比较器的输出电压通过反馈网络加到同相输入端,形成正反馈,如图2(a )所示,待比较电压1u 加在反相输入端。通常将这种电路称为迟滞比较器(Hysteresis Comparator ),又称施密特触发器(Schmitt Trigger )。在理想情况下,它的比较特性如图2(b )所示。由图可见,它有两个门限电压,分别称为上门限电压+i U 和下门限-i U ,两者的差值称为门限宽度或迟滞宽度(Hysteresis Voltage ),即:

-+-=?i i U U U

假设比较器输出高电平

OH U ,则OH U 和REF U 共同加到同相输入端的合成电压为

REF OH U R R R U R R R U 2

112121+++= 当1u 由小增大地通过1U 时,输出电压由OH U 下跃到OL U 。可见,上式所示的1U 就是比较器的上门限电压,即1U U i =+。

当比较器输出为低电平OL U 时,按同样的分析求得加到同相输入端合成电压为

REF OL U R R R U R R R U 2

112122+++= 若1u 由大减小地通过2U ,则输出电压由OL U 上跃到OH U 。可见,上式所示的2U 就是比较器的下门限电压,既2U U i =-。相应的门限宽度为

)(2

12OL OH i i U U R R R U U U -+=

-=?-+ 调节1R 和2R ,可以改变U ?。 21543R

R 2

R 3

R 1

D 1

D 2

U RE F

U 1

图2(a )迟滞电压比较器

O U

OH U

-i U +i U

OL U

图2(b )迟滞电压比较器比较特性

2.3.2 积分电路

积分电路主要用于波形变换、放大电路失调电压的消除及反馈控制中的积分补偿等场合。它可以使输入方波转换成三角波或者斜波,也可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。积分电路被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。

图3为有源积分电路。由图可见,输入信号电压S u 在R 中产生的电流R u i s ≈1。这个电流全部转移到反馈支路,向C 充电,形成相应的输出电压o u 。若C 上的起始电压为零,则

??-=-=t

s t o dt u RC dt i C u 0

0111 实现理想的积分运算。

215

43

C

R R L +-

U s U 0

+

-i1

图3积分电路

2.4 差分放大器的介绍

差分放大器(Differential Amplifier ),又称差动放大器,它是另一类基本放大器,它是一种零点漂移很小的直接耦合放大器,常用于直流放大。它可以是平衡输入和输出,也可以是单端(非平衡)输入和输出,常用来实现平衡与不平衡电路的相互转换,是各种集成电路的一种基本单元。 广泛应用于集成电路中。

差分放大器的基本电路如图4所示。它是由两个对称的共发放大器通过发射极电阻EE R 相耦合而成的。一般采用正、负两个极性的电源供电,且||EE V Vcc 。它有两个输入端,分别作用着输入信号电压1i U 和2i U ;有两个输出端。输出信号或从其中任一个集电极取出,称为单端输出,或从两个集电极之间取出,称为双端输出或浮动输出.

R c R L

R c

R L R EE +-

U i1

V CC

T2T1U i2

-+

V EE

图4差分放大器电路 3 总体电路设计

3.1方波—三角波产生电路的设计

图5所示的电路是能自动产生方波—三角波信号。电路工作原理如下:运算放大器1A 与1R 、2R 及3R 、1RP 组成迟滞电压比较器,1C 称为加速电容,可加速比较器的翻转。运放的反相端接基准电压,即,即0=-U ,同相端接输入电压i U ,1R 称为平衡电阻。迟滞电压比较器的输出1o U 的高电平等于正电源电压Vcc +,低电平等于负电源电压|)||(|EE EE V Vcc V -=+-。当-≤+U U 时,输出01U 从高电平Vcc +翻转到低电平EE V -;当-≥+U U 时,输出01U 从低电平EE V -跳到高电平Vcc +。

多波形函数信号发生器方案

个人资料整理仅限学习使用中文摘要

英文摘要

目录 1 引言.......................................................... - 1 - 2函数信号发生器设计要求及过程.................................. - 2 - 2.1函数信号发生器设计要求 (2) 2.2函数信号发生器电路设计的基本原理 (2) 2.3运算放大器的介绍 (3) 2.3.1迟滞电压比较器......................................... - 3 - 2.3.2 积分电路.............................................. - 5 - 2.4差分放大器的介绍 (6) 3总体电路设计 (7) 3.1方波—三角波产生电路的设计 (7) 3.2三角波—正弦波变换电路的设计 (11) 4.1EWB软件的简介 (15) 4.1.1 EWB软件的概述........................................ - 15 - 4.1.2 EWB软件的基本操作方法................................ - 15 - 4.2函数信号发生器的仿真过程及结果 (16) 4.2.1使用EWB对电路进行设计和实验仿真的基本步骤............. -16 - 4.2.2方波—三角波信号发生器电路的装调及仿真结果............ - 16 - 4.2.3三角波—正弦波变换电路的装调和仿真.................... - 17 - 结论........................................................... - 20 - 参考文献

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

DSP多波形信号发生器

数字信号处理(DSP) 综合设计性实验报告 学院:电子信息工程学院 班级:自动化 指导教师: 学生: 北京交通大学电工电子教学基地 2014年9月20日

目录 一实验目的 (3) 二实验技术指标与设计要求 (3) 三实验原理 (3) 四实验操作 (4) 五程序设计 (10) 六硬件输出演示 (16) 七实验感想与体会 (22) 八参考文献 (23)

一 实验目的 1 掌握多波形信号发生器的DSP 设计可使学生更加透彻的理解和应用奈奎斯特采样定理,提 高学生系统地思考问题和解决问题的能力。 2 通过对DSP 信号处理器及D/A 转换器的编程,可以培养学生C 语言编程能力以及使用DSP 硬件平台实现数字信号处理算法的能力。 3 学习并掌握使用DSP 产生正弦波、方波、三角波、锯齿波灯信号的原理和算法,并利用GEL 文件实现频率和幅度的自动可调。 4 掌握利用CCS 建立工程、编译与调试代码的基本过程,可以在软件中观察图形及变量,并利用硬件进行输出显示。 5 掌握产生多种波形的理论方法,并比较产生信号的两种主要方法(查表发和计算法)的优缺点。 二 实验技术指标与设计要求 1 基本部分 1) 使用DSP 产生300—16000Hz 的正弦、方波、锯齿波和三角波信号,输出信号的幅度从 0~1VRMS (有效值)。要求使用计算法,并且频率可变、幅度可变。 2) 调节信号的频率和幅度时不能中断程序的运行。(提示:可以使用CCS 下的GEL 语言实现此功能) 2 发挥部分 在实验板的信号输出端分别接入16欧姆和32欧姆负载电阻,信号仍然保持空载时所设定的 输出幅度。 三 实验原理 1 产生连续的波形的方法主要有以下两种方法: 1)查表法:把事先将需要输出的数据计算好,存储在DSP 中,然后依次输出就可以了。查表法的优点是速度快,可以产生频率较高的波形,而且不占用DSP 的计算时间;查表法的缺点是在于需要占用DSP 的内部的存储空间,尤其对采样频率比较大的输出波形,这样,需要占用的内部的空间将更大,而DSP 内部的存储空间毕竟有所限制。这使得查表法的应用场合十分有限。 2)计算法:计算法可以使用泰勒级数展开法进行计算,也可以使用差分方程进行迭代计算或者直接使用三角函数进行计算。计算结果可以边计算边输出,也可以先计算后输出。计算法的使用比查表法灵活。计算法的优缺点正好和查表法相反。即:其优点是不占用DSP 的存储空间,其缺点是占用DSP 的计算时间,使得执行程序的开销变大。 本实验将用第二种方法即计算法产生一个正弦波信号,从DA 输出。正弦函数和余弦函数的泰勒级数数学表达式为: =x sin +-+-+-+---)1(121 9753x x x x x x n n ,x ?),(∞-∞∈

函数波形信号发生器

函数波形发生器设计 摘要 函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 经过仿真得出了方波、三角波、正弦波、方波——三角波转换及三角波——正弦波转换的波形图。 关键字:函数信号发生器、集成运算放大器、晶体管差分放 设计目的、意义 1 设计目的 (1)掌握方波—三角波——正弦波函数发生器的原理及设计方法。 (2)掌握迟滞型比较器的特性参数的计算。 (3)了解单片集成函数发生器8038的工作原理及应用。 (4)能够使用电路仿真软件进行电路调试。 2 设计意义 函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。 在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、导航、宇航等领域。 设计内容 1 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等): 1.1课程设计的内容 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; (4)对单片集成函数发生器8038应用接线进行设计。 1.2课程设计的要求 (1)提出具体方案 (2)给出所设计电路的原理图。 (3)进行电路仿真,PCB设计。 2 函数波形发生器原理 2.1函数波形发生器原理框图 图2.1 函数发生器组成框图

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

多波形函数信号发生器

多波形函数信号发生器

————————————————————————————————作者:————————————————————————————————日期:

电子课程设计 设计题目:多波型信号发生器 系部:信息工程学院 专业:电子信息工程 班级:1301班 学号:8 姓名:高旭 指导老师:陈亮

目录 一设计要求 (3) 二总体概要设计 (3) 三各单元模块设计与分析······························································································4 3.1 正弦波发生 器 (4) 3.1.1 RC桥式振荡 器····························································································4 3.2方波转化电 路 (6) 3.2.1555定时 片································································································6 3.2.2由555芯片构成的施密特触发 器 (7) 3.2.3方波幅度调节电 路 (8) 3.3三角波转化电路 (8) 3.3.1RC无源积分器 (8) 3.3.2自举电路反相放大器················································································9 四总电路图 (10)

多波形信号发生器设计 电子技术课程设计

湖南文理学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级:通信工程08101班 学生姓名:林洪湖(200816020143) 指导教师:邱德润 完成时间:2010 年6月25日 报告成绩:

目录 1.绪论 (3) 信号发生器现状 (3) 2.系统设计 (3) 控制芯片的选择 (4) 3.硬件电路的设计 (4) 3.1基本原理: (4) 3.2各部分电路原理 (8) 4.软件设计 (14) 4.1主程序流程图 (14) 4.2子程序流程图 (15) 5.测试结论 (18) 5.1软件仿真结果 (19) 5.2硬件测试结果 (21) 参考文献 (21)

多波形信号发生器设计 1.绪论 1.1信号发生器现状 波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。 信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。一旦工作需求功能有增加,则电路复杂程度会大大增加。 本次用要用到的有函数发生器5G8038、集成振荡器E1648、集成定时器555/556. 2.系统设计 2.1系统方案 方案:采用函数信号发生器5G8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。但是这种模块产生的波形都不是纯净的波形,会寄生一些高次谐波分量,采用其他的措施虽可滤除一些,但不能完全滤除掉。

DSP任意波形信号发生器毕业设计

目录 摘 要 (2) Abstract (3) 1 绪论 (4) 1.1概述 (4) 1.2选题的目的、意义 (4) 1.3 选题的背景 (5) 1.4 本文所研究的内容 (6) 2 波形信号发生器的原理及方案选择 (7) 2.1任意波形信号发生器的原理 (7) 2.1.1 直接模拟法 (7) 2.1.2 直接数字法 (7) 2.2 任意波形发生器的设计方案 (9) 2.2.1 查表法 (9) 2.2.2计算法 (9) 2.2.3传统方法 (10) 3 基于DSP 5416的任意波形信号发生器的软件设计 (12) 3.1 TMS320C5416的开发流程 (12) 3.2软件开发环境 (13) 3.3任意波形信号发生器的软件编程 (14) 3.3.1 计算法实现波形输出 (14) 3.3.2 D/A转换 (15) 3.3.3波形控制及软件设计流程图 (16) 3.4参数的设定 (18) 4 基于DSP 5416的任意波形信号发生器的硬件设计 (20) 4.1 TMS320VC5416开发板 (20) 4.2 TMS320VC5416实验箱的连接 (23) 4.3 波形信号发生器的硬件测试过程 (23) 5 任意波形信号发生器展望 (28) 结束语 (29) 致谢 (30) 参考文献 (31)

摘 要 任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 随着无线电应用领域的扩展,针对广播、电视、雷达、通信的专用信号发生器获得了长足的发展,表现在载波调制方式的多样化,从调幅、调频、调相到脉冲调制。如果采用多台信号发生器获得测量信号显然是很不方便的。因此需要任意波形发生器(Arbitrary Waveform Generator,AWG),使其能够产生任意频率的载频信号和多种载波调制信号。 目前我国已经开始研制任意波形发生器,并取得了可喜的成果。但总的来说,我国任意波形发生器还没有形成真正的产业。并且我国目前在任意波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。 本文主要工作分为以下几个方面:首先,介绍研制任意波形信号发生器的目的、意义、背景,以及利用CCS仿真工具用软件实现任意波形信号发生器的的过程 ;之后,对硬件的连接及测试结果作介绍;最后,简要的对任意波形信号发生器的未来作一下展望。 关键词:DSP,任意波形信号发生器,DDS

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

陈冲EDA课程设计_任意波形信号发生器

EDA课程设计 任 意 波 形 信 号 发 生 器

姓名: 陈冲 班级: 07通信工程 指导老师:孙惠章 目录 一.简述 (3) 二.设计性能要求 (3) 三.系统框图 (3) 四.系统电路图 (3) 五.基本工作原理 (4) 六. 单元电路模块源程序及功能 (5)

七.系统仿真波形 (10) 八.引脚锁定 (11) 九.实验结果及硬件验证 (11) 十.实验心得 (13) 任意波形信号发生器的设计 一.简述 随着信息科技的发展,波形发生器在科技社会等多个领域发挥着越来越重要作 用。采用eda技术利用quartus60软件平台,基于大规模可编程逻辑器件fpga 设计的多功能波形发生器系统,大大简化其结构, 降低成本, 提高了系统的可靠性 和灵活性。设计中运用计数器,数据选择器,对所需的频率进行选择和同步。使用宏 功能模块存储波形。然后多波形进行幅度的选择。产生满足需要的不用频率和幅度的 波形。 二.设计性能要求 1.能输出正弦波,锯齿波,阶梯波,三角波,方波,矩形脉冲等八种波形。 2.具有幅度和频率的调整。 3.单元电路模块使用VHDL语言编写。

三.系统框图 图1.任意波形信号发生器系统框图四.系统电路图

图2.任意波形信号发生器系统电路图 五.基本工作原理 将要产生的波形数据存入波形存储器中, 然后在参考脉冲的作用下, 对输入的频率数据进行累加, 并将累加器输出的一部分作为读取波形存储器的地址, 将读出的波形数据经D/A 转换为相应的电压信号,D/A 转换器输出的一系列的阶梯电压信号经低通滤波器滤波后便输出了光滑的合成波形的信号。 选择八种基础波形为设计与实现的对象,而八个波形作为同一个任意波形发生器里的四个部分,是有着同一个输入与输出,因此在设计上还需要对波形进行选择与控制的部分,通过对时钟脉冲输入的选择,使得八个波形模块只有一个输入为时钟脉冲,其他三个模块则输入始终为0。在波形输出时,设计一个模块控制输出的波形是所要求输出的波形,在时钟脉冲选择与输出波形选择两模块之间。 对于频率的选择可以选择分频器,同时也可以选择计数器,本实验采用的是计数器以实现分频的效果,输出分别为二分频,四分频,八分频,十六分频用以实现不同的频率。幅度调节可以使用lpm_divide,可以实现八种不同的幅度调节。 六.单元电路模块源程序及功能 1.分频模块 以下为分频模块(CT74161)的VHDL语言编程源程序 LIBRARY IEEE;

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

相关文档
最新文档